हाइब्रिड स्वचालित दोहराव अनुरोध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Hybrid error-detection and correction code in communications}}
{{Short description|Hybrid error-detection and correction code in communications}}


हाइब्रिड [[ स्वचालित दोहराव अनुरोध ]] (हाइब्रिड एआरक्यू या एचएआरक्यू) हाई-रेट [[ आगे त्रुटि सुधार ]] (एफईसी) और ऑटोमैटिक रिपीट रिक्वेस्ट (एआरक्यू) त्रुटि-नियंत्रण का संयोजन है। मानक एआरक्यू में, त्रुटि-पहचान कोड | त्रुटि-पहचान (ईडी) कोड जैसे चक्रीय अतिरेक जांच (सीआरसी) का उपयोग करके प्रसारित किए जाने वाले डेटा में अनावश्यक बिट्स जोड़े जाते हैं। दूषित संदेश का पता लगाने वाले रिसीवर प्रेषक से नए संदेश का अनुरोध करेंगे। हाइब्रिड एआरक्यू में, मूल डेटा को एफईसी कोड के साथ एन्कोड किया जाता है, और समता बिट्स या तो तुरंत संदेश के साथ भेजे जाते हैं या केवल अनुरोध पर प्रसारित होते हैं जब रिसीवर गलत संदेश का पता लगाता है। ईडी कोड तब छोड़ा जा सकता है जब ऐसे कोड का उपयोग किया जाता है जो त्रुटि का पता लगाने के अतिरिक्त फॉरवर्ड त्रुटि सुधार (एफईसी) दोनों कर सकता है, जैसे रीड-सोलोमन त्रुटि सुधार|रीड-सोलोमन कोड। एफईसी कोड को होने वाली सभी त्रुटियों के अपेक्षित उपसमूह को ठीक करने के लिए चुना जाता है, जबकि एआरक्यू विधि का उपयोग उन त्रुटियों को ठीक करने के लिए फ़ॉल-बैक के रूप में किया जाता है जो केवल प्रारंभिक ट्रांसमिशन में भेजे गए अतिरेक का उपयोग करके ठीक नहीं की जा सकती हैं। परिणामस्वरूप, हाइब्रिड एआरक्यू खराब सिग्नल स्थितियों में सामान्य एआरक्यू से बेहतर प्रदर्शन करता है, किन्तु अपने सरलतम रूप में यह अच्छी सिग्नल स्थितियों में काफी कम थ्रूपुट की कीमत पर आता है। सामान्यतः सिग्नल गुणवत्ता क्रॉस-ओवर पॉइंट होता है जिसके नीचे सरल हाइब्रिड एआरक्यू बेहतर होता है, और जिसके ऊपर बेसिक एआरक्यू बेहतर होता है।
'''हाइब्रिड[[ स्वचालित दोहराव अनुरोध | स्वचालित दोहराव अनुरोध]]''' ('''हाइब्रिड एआरक्यू''' या '''एचएआरक्यू''') हाई-रेट [[ आगे त्रुटि सुधार |फॉरवर्ड त्रुटि सुधार]] (एफईसी) और ऑटोमैटिक रिपीट रिक्वेस्ट (एआरक्यू) त्रुटि-नियंत्रण का संयोजन है। मानक एआरक्यू में, चक्रीय अतिरेक परीक्षण (सीआरसी) जैसे त्रुटि-पहचान (ईडी) कोड का उपयोग करके प्रसारित किए जाने वाले डेटा में अनावश्यक बिट्स जोड़े जाते हैं। अनुपयोगी संदेश को ज्ञात करने वाले रिसीवर प्रेषक से नए संदेश का अनुरोध करता है। हाइब्रिड एआरक्यू में, मूल डेटा को एफईसी कोड के साथ एन्कोड किया जाता है, और समता बिट्स या तो शीघ्र संदेश के साथ भेजे जाते हैं या केवल अनुरोध पर प्रसारित होते हैं जब रिसीवर त्रुटिपूर्ण संदेश को ज्ञात करता है। ईडी कोड तब त्यागा जा सकता है जब ऐसे कोड का उपयोग किया जाता है जो त्रुटि को ज्ञात करने के अतिरिक्त फॉरवर्ड त्रुटि सुधार (एफईसी) दोनों कर सकता है, जैसे रीड-सोलोमन कोड। एफईसी कोड को होने वाली सभी त्रुटियों के अपेक्षित उपसमूह को ठीक करने के लिए चयन किया जाता है, जबकि एआरक्यू विधि का उपयोग उन त्रुटियों को ठीक करने के लिए फ़ॉल-बैक के रूप में किया जाता है जो केवल प्रारंभिक ट्रांसमिशन में भेजे गए अतिरेक का उपयोग करके ठीक नहीं की जा सकती हैं। परिणामस्वरूप, हाइब्रिड एआरक्यू दुर्बल सिग्नल स्थितियों में सामान्य एआरक्यू से उत्तम प्रदर्शन करता है, किन्तु अपने सरलतम रूप में यह उत्तम सिग्नल स्थितियों में अधिक अल्प थ्रूपुट की मूल्य पर आता है। सामान्यतः सिग्नल गुणवत्ता क्रॉस-ओवर पॉइंट होता है जिसके नीचे सरल हाइब्रिड एआरक्यू उत्तम होता है, और जिसके ऊपर बेसिक एआरक्यू उत्तम होता है।


==सरल हाइब्रिड एआरक्यू==
==सरल हाइब्रिड एआरक्यू==
Line 7: Line 7:
एचएआरक्यू का सबसे सरल संस्करण, '''टाइप I एचएआरक्यू''', ट्रांसमिशन से पूर्व प्रत्येक संदेश में ईडी और एफईसी दोनों सूचना जोड़ता है। जब कोडित डेटा ब्लॉक प्राप्त होता है, तो रिसीवर प्रथम त्रुटि-सुधार कोड को डीकोड करता है। यदि चैनल की गुणवत्ता अधिक उत्तम है, तो सभी ट्रांसमिशन त्रुटियां सुधार योग्य होनी चाहिए, और रिसीवर सही डेटा ब्लॉक प्राप्त कर सकता है। यदि चैनल की गुणवत्ता दुर्बल है, और सभी ट्रांसमिशन त्रुटियों को ठीक नहीं किया जा सकता है, तो रिसीवर त्रुटि-पहचान कोड का उपयोग करके इस स्थिति को ज्ञात करता है, फिर प्राप्त कोडित डेटा ब्लॉक को अस्वीकार कर दिया जाता है और एआरक्यू के समान, रिसीवर द्वारा पुनः ट्रांसमिशन का अनुरोध किया जाता है।<ref>Comroe/Costello 1984, p.&nbsp;474</ref>
एचएआरक्यू का सबसे सरल संस्करण, '''टाइप I एचएआरक्यू''', ट्रांसमिशन से पूर्व प्रत्येक संदेश में ईडी और एफईसी दोनों सूचना जोड़ता है। जब कोडित डेटा ब्लॉक प्राप्त होता है, तो रिसीवर प्रथम त्रुटि-सुधार कोड को डीकोड करता है। यदि चैनल की गुणवत्ता अधिक उत्तम है, तो सभी ट्रांसमिशन त्रुटियां सुधार योग्य होनी चाहिए, और रिसीवर सही डेटा ब्लॉक प्राप्त कर सकता है। यदि चैनल की गुणवत्ता दुर्बल है, और सभी ट्रांसमिशन त्रुटियों को ठीक नहीं किया जा सकता है, तो रिसीवर त्रुटि-पहचान कोड का उपयोग करके इस स्थिति को ज्ञात करता है, फिर प्राप्त कोडित डेटा ब्लॉक को अस्वीकार कर दिया जाता है और एआरक्यू के समान, रिसीवर द्वारा पुनः ट्रांसमिशन का अनुरोध किया जाता है।<ref>Comroe/Costello 1984, p.&nbsp;474</ref>


अधिक परिष्कृत रूप में, टाइप II एचएआरक्यू, संदेश प्रवर्तक त्रुटि-पता लगाने वाले समता बिट्स और केवल एफईसी समता बिट्स के साथ संदेश बिट्स के मध्य वैकल्पिक करता है। जब पहला ट्रांसमिशन त्रुटि रहित प्राप्त होता है, तो एफईसी समता बिट्स कभी नहीं भेजे जाते हैं। इसके अतिरिक्त, त्रुटि सुधार के लिए दो लगातार ट्रांसमिशन को जोड़ा जा सकता है यदि कोई भी त्रुटि मुक्त नहीं है।<ref>Comroe/Costello 1984, pp.&nbsp;474–5</ref>
अधिक परिष्कृत रूप में, '''टाइप II एचएआरक्यू''', संदेश प्रवर्तक त्रुटि-ज्ञात करने वाले समता बिट्स और केवल एफईसी समता बिट्स के साथ संदेश बिट्स के मध्य वैकल्पिक करता है। जब प्रथम ट्रांसमिशन त्रुटि रहित प्राप्त होता है, तो एफईसी समता बिट्स कभी नहीं भेजे जाते हैं। इसके अतिरिक्त, त्रुटि सुधार के लिए दो निरंतर ट्रांसमिशन को जोड़ा जा सकता है यदि कोई भी त्रुटि मुक्त नहीं है।<ref>Comroe/Costello 1984, pp.&nbsp;474–5</ref>


टाइप I और टाइप II हाइब्रिड एआरक्यू के मध्य अंतर को समझने के लिए, ईडी और एफईसी द्वारा जोड़ी गई जानकारी के आकार पर विचार करें: त्रुटि का पता लगाने से सामान्यतः संदेश में केवल कुछ बाइट्स जुड़ते हैं, जो केवल लंबाई में वृद्धिशील वृद्धि है। दूसरी ओर, एफईसी प्रायः त्रुटि सुधार समता के साथ संदेश की लंबाई को दोगुना या तिगुना कर सकता है। थ्रूपुट के संदर्भ में, मानक एआरक्यू सामान्यतः त्रुटि के खिलाफ विश्वसनीय सुरक्षा के लिए चैनल क्षमता का कुछ प्रतिशत खर्च करता है, जबकि एफईसी सामान्यतः चैनल सुधार के लिए सभी चैनल क्षमता का आधा या अधिक खर्च करता है।
टाइप I और टाइप II हाइब्रिड एआरक्यू के मध्य अंतर को समझने के लिए, ईडी और एफईसी द्वारा जोड़ी गई सूचना के आकार पर विचार करें: त्रुटि को ज्ञात करने से सामान्यतः संदेश में केवल कुछ बाइट्स जुड़ते हैं, जो केवल लंबाई में वृद्धिशील वृद्धि है। दूसरी ओर, एफईसी प्रायः त्रुटि सुधार समता के साथ संदेश की लंबाई को दोगुना या तिगुना कर सकता है। थ्रूपुट के संदर्भ में, मानक एआरक्यू सामान्यतः त्रुटि के विरुद्ध विश्वसनीय सुरक्षा के लिए चैनल क्षमता का कुछ प्रतिशत व्यय करता है, जबकि एफईसी सामान्यतः चैनल सुधार के लिए सभी चैनल क्षमता का आधा या अधिक व्यय करता है।


मानक एआरक्यू में त्रुटि का पता लगाने के लिए किसी भी ट्रांसमिशन पर ट्रांसमिशन को त्रुटि मुक्त प्राप्त करना होगा। टाइप II हाइब्रिड एआरक्यू में, पहले ट्रांसमिशन में केवल डेटा और त्रुटि का पता लगाना सम्मिलित है (मानक एआरक्यू से अलग नहीं)। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि डेटा त्रुटिपूर्ण रूप से प्राप्त होता है, तो दूसरे ट्रांसमिशन में एफईसी समानताएं और त्रुटि का पता लगाना सम्मिलित होगा। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि त्रुटि प्राप्त होती है, तो दोनों ट्रांसमिशन से प्राप्त जानकारी को मिलाकर त्रुटि सुधार का प्रयास किया जा सकता है।
मानक एआरक्यू में त्रुटि को ज्ञात करने के लिए किसी भी ट्रांसमिशन पर ट्रांसमिशन को त्रुटि मुक्त प्राप्त करना होता है। टाइप II हाइब्रिड एआरक्यू में, प्रथम ट्रांसमिशन में केवल डेटा और त्रुटि को ज्ञात करना सम्मिलित है (मानक एआरक्यू से भिन्न नहीं)। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो जाता है। यदि डेटा त्रुटिपूर्ण रूप से प्राप्त होता है, तो दूसरे ट्रांसमिशन में एफईसी समानताएं और त्रुटि को ज्ञात करना सम्मिलित होता है। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो जाता है। यदि त्रुटि प्राप्त होती है, तो दोनों ट्रांसमिशन से प्राप्त सूचना को मिलाकर त्रुटि सुधार का प्रयास किया जा सकता है।


केवल टाइप I हाइब्रिड एआरक्यू को मजबूत सिग्नल स्थितियों में क्षमता हानि का सामना करना पड़ता है। टाइप II हाइब्रिड एआरक्यू ऐसा नहीं करता है क्योंकि एफईसी बिट्स केवल आवश्यकतानुसार बाद के पुन: प्रसारण पर प्रसारित होते हैं। मजबूत सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एआरक्यू जितनी अच्छी क्षमता के साथ प्रदर्शन करता है। खराब सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एफईसी जितनी अच्छी संवेदनशीलता के साथ प्रदर्शन करता है।
केवल टाइप I हाइब्रिड एआरक्यू को स्थिर सिग्नल स्थितियों में क्षमता हानि का सामना करना पड़ता है। टाइप II हाइब्रिड एआरक्यू ऐसा नहीं करता है क्योंकि एफईसी बिट्स केवल आवश्यकतानुसार पश्चात के पुन: प्रसारण पर प्रसारित होते हैं। स्थिर सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एआरक्यू जितनी उत्तम क्षमता के साथ प्रदर्शन करता है। दुर्बल सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एफईसी उत्तम संवेदनशीलता के साथ प्रदर्शन करता है।


==सॉफ्ट संयोजन के साथ हाइब्रिड एआरक्यू==
==सॉफ्ट संयोजन के साथ हाइब्रिड एआरक्यू==


व्यवहार में, त्रुटिपूर्ण रूप से प्राप्त कोडित डेटा ब्लॉक को त्यागने के अतिरिक्त प्रायः रिसीवर पर संग्रहीत किया जाता है, और जब पुन: प्रेषित ब्लॉक प्राप्त होता है, तो दोनों ब्लॉक संयुक्त हो जाते हैं। इसे सॉफ्ट संयोजन के साथ हाइब्रिड एआरक्यू कहा जाता है (डहलमैन एट अल., पृष्ठ 120)। चूँकि यह संभव है कि दो दिए गए ट्रांसमिशन को त्रुटि के बिना स्वतंत्र रूप से डिकोड नहीं किया जा सकता है, ऐसा हो सकता है कि पूर्व से त्रुटिपूर्ण रूप से प्राप्त ट्रांसमिशन का संयोजन हमें उचित प्रकार से डिकोड करने के लिए पर्याप्त सूचना देता है। एचएआरक्यू में दो मुख्य सॉफ्ट संयोजन विधियाँ हैं:
व्यवहार में, त्रुटिपूर्ण रूप से प्राप्त कोडित डेटा ब्लॉक को त्यागने के अतिरिक्त प्रायः रिसीवर पर संग्रहीत किया जाता है, और जब पुन: प्रेषित ब्लॉक प्राप्त होता है, तो दोनों ब्लॉक संयुक्त हो जाते हैं। इसे सॉफ्ट संयोजन के साथ हाइब्रिड एआरक्यू कहा जाता है (डहलमैन एट अल., पृष्ठ 120)। चूँकि यह संभव है कि दो दिए गए ट्रांसमिशन को त्रुटि के अतिरिक्त स्वतंत्र रूप से डिकोड नहीं किया जा सकता है, ऐसा हो सकता है कि पूर्व से त्रुटिपूर्ण रूप से प्राप्त ट्रांसमिशन का संयोजन हमें उचित प्रकार से डिकोड करने के लिए पर्याप्त सूचना देता है। एचएआरक्यू में दो मुख्य सॉफ्ट संयोजन विधियाँ हैं:


* '''चेस संयोजन:''' प्रत्येक पुन: प्रसारण में समान सूचना (डेटा और समता बिट्स) होती है। रिसीवर प्राप्त बिट्स को पश्च ट्रांसमिशन से समान बिट्स के साथ संयोजित करने के लिए [[अधिकतम-अनुपात संयोजन]] का उपयोग करता है। क्योंकि सभी प्रसारण समान हैं, चेस संयोजन को अतिरिक्त [[पुनरावृत्ति कोड|पुनरावृत्ति कोडिंग]] के रूप में देखा जा सकता है। प्रत्येक पुन:संचरण को बढ़े हुए Eb/N0 के माध्यम से प्राप्त संचरण में अतिरिक्त ऊर्जा जोड़ने के रूप में सोचा जा सकता है।
* '''चेस संयोजन:''' प्रत्येक पुन: प्रसारण में समान सूचना (डेटा और समता बिट्स) होती है। रिसीवर प्राप्त बिट्स को पश्च ट्रांसमिशन से समान बिट्स के साथ संयोजित करने के लिए [[अधिकतम-अनुपात संयोजन]] का उपयोग करता है। क्योंकि सभी प्रसारण समान हैं, चेस संयोजन को अतिरिक्त [[पुनरावृत्ति कोड|पुनरावृत्ति कोडिंग]] के रूप में देखा जा सकता है। प्रत्येक पुन:संचरण को बढ़े हुए Eb/N0 के माध्यम से प्राप्त संचरण में अतिरिक्त ऊर्जा जोड़ने के रूप में सोचा जा सकता है।
Line 24: Line 24:
दो मुख्य विधियों के कई प्रकार उपस्थित हैं। उदाहरण के लिए, आंशिक चेस संयोजन में मूल ट्रांसमिशन में बिट्स का केवल उपसमूह पुनः प्रसारित किया जाता है। आंशिक वृद्धिशील अतिरेक में, [[व्यवस्थित कोड|व्यवस्थित]] बिट्स को सदैव सम्मिलित किया जाता है जिससे कि प्रत्येक पुन: प्रसारण स्व-डिकोडेबल होता है।
दो मुख्य विधियों के कई प्रकार उपस्थित हैं। उदाहरण के लिए, आंशिक चेस संयोजन में मूल ट्रांसमिशन में बिट्स का केवल उपसमूह पुनः प्रसारित किया जाता है। आंशिक वृद्धिशील अतिरेक में, [[व्यवस्थित कोड|व्यवस्थित]] बिट्स को सदैव सम्मिलित किया जाता है जिससे कि प्रत्येक पुन: प्रसारण स्व-डिकोडेबल होता है।


वृद्धिशील अतिरेक एचएआरक्यू का उदाहरण एचएसडीपीए है: डेटा ब्लॉक को पहले पंचर कोड 1/3 [[टर्बो कोड]] के साथ कोडित किया जाता है, फिर प्रत्येक (पुनः) ट्रांसमिशन के समय कोडित ब्लॉक को सामान्यतः आगे पंचर किया जाता है (अर्थात कोडित बिट्स का केवल अंश का चयन किया जाता है) और भेजा जाता है। प्रत्येक (पुनः) ट्रांसमिशन के समय उपयोग किया जाने वाला पंचर प्रारूप भिन्न होता है, इसलिए प्रत्येक समय भिन्न-भिन्न कोडित बिट्स भेजे जाते हैं। यद्यपि [[एचएसडीपीए]] मानक चेस संयोजन और वृद्धिशील अतिरेक दोनों का समर्थन करता है, किन्तु यह दिखाया गया है कि बढ़ी हुई जटिलता की कीमत पर वृद्धिशील अतिरेक लगभग सदैव चेस संयोजन से उत्तम प्रदर्शन करता है।<ref>{{cite book |doi=10.1109/VTC.2001.956516 |chapter=Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA |date=October 2001 |title=Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th |first=P. |last=Frenger |author2=S. Parkvall |author3=E. Dahlman |volume=3 |pages=1829–1833 |isbn=0-7803-7005-8 |publisher=IEEE Operations Center |location=[[Piscataway Township, New Jersey]]}}</ref>
वृद्धिशील अतिरेक एचएआरक्यू का उदाहरण एचएसडीपीए है: डेटा ब्लॉक को पूर्व पंचर कोड 1/3 [[टर्बो कोड]] के साथ कोडित किया जाता है, फिर प्रत्येक (पुनः) ट्रांसमिशन के समय कोडित ब्लॉक को सामान्यतः आगे पंचर किया जाता है (अर्थात कोडित बिट्स का केवल अंश का चयन किया जाता है) और प्रेक्षित किया जाता है। प्रत्येक (पुनः) ट्रांसमिशन के समय उपयोग किया जाने वाला पंचर प्रारूप भिन्न होता है, इसलिए प्रत्येक समय भिन्न-भिन्न कोडित बिट्स प्रेक्षित किए जाते हैं। यद्यपि [[एचएसडीपीए]] मानक चेस संयोजन और वृद्धिशील अतिरेक दोनों का समर्थन करता है, किन्तु यह प्रदर्शित किया गया है कि बढ़ी हुई जटिलता की कीमत पर वृद्धिशील अतिरेक लगभग सदैव चेस संयोजन से उत्तम प्रदर्शन करता है।<ref>{{cite book |doi=10.1109/VTC.2001.956516 |chapter=Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA |date=October 2001 |title=Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th |first=P. |last=Frenger |author2=S. Parkvall |author3=E. Dahlman |volume=3 |pages=1829–1833 |isbn=0-7803-7005-8 |publisher=IEEE Operations Center |location=[[Piscataway Township, New Jersey]]}}</ref>


एचएआरक्यू का उपयोग [[रुकें और प्रतीक्षा करें ARQ|स्टॉप-एंड-वेट]] मोड या [[चयनात्मक दोहराएँ ARQ|सेलेक्टिव रिपीट]] मोड में किया जा सकता है। स्टॉप-एंड-वेट सरल है, किन्तु प्राप्तकर्ता की स्वीकृति की प्रतीक्षा करने से दक्षता अल्प हो जाती है। इस प्रकार कई स्टॉप-एंड-वेट एचएआरक्यू प्रक्रियाएं प्रायः  व्यवहार में समानांतर में की जाती हैं: जब एचएआरक्यू प्रक्रिया स्वीकृति की प्रतीक्षा कर रही होती है, तो दूसरी प्रक्रिया कुछ और डेटा भेजने के लिए चैनल का उपयोग कर सकती है।
एचएआरक्यू का उपयोग [[रुकें और प्रतीक्षा करें ARQ|स्टॉप-एंड-वेट]] मोड या [[चयनात्मक दोहराएँ ARQ|सेलेक्टिव रिपीट]] मोड में किया जा सकता है। स्टॉप-एंड-वेट सरल है, किन्तु प्राप्तकर्ता की स्वीकृति की प्रतीक्षा करने से दक्षता अल्प हो जाती है। इस प्रकार कई स्टॉप-एंड-वेट एचएआरक्यू प्रक्रियाएं प्रायः  व्यवहार में समानांतर में की जाती हैं: जब एचएआरक्यू प्रक्रिया स्वीकृति की प्रतीक्षा कर रही होती है, तो दूसरी प्रक्रिया कुछ और डेटा भेजने के लिए चैनल का उपयोग कर सकती है।
Line 44: Line 44:
*{{cite book |title=Rate Matching & HARQ (WCDMA/HSDPA) |chapter=Rate Matching & HARQ (WCDMA/HSDPA) |chapter-url=http://www.ecvale.com/index.php?main_page=pub_eind_info&pubs_id=525041317 }}{{Dead link|date=January 2023 |bot=InternetArchiveBot |fix-attempted=yes }}
*{{cite book |title=Rate Matching & HARQ (WCDMA/HSDPA) |chapter=Rate Matching & HARQ (WCDMA/HSDPA) |chapter-url=http://www.ecvale.com/index.php?main_page=pub_eind_info&pubs_id=525041317 }}{{Dead link|date=January 2023 |bot=InternetArchiveBot |fix-attempted=yes }}
*{{cite book|first=Erik|last=Dahlman|first2=Stefan|last2=Parkvall|first3=Johan|last3=Sköld|first4=Per|last4=Beming|title=3G Evolution - HSPA and LTE for Mobile Broadband|edition=2|publisher=Academic Press|year=2008|isbn=978-0-12-374538-5|pages=119–123}}
*{{cite book|first=Erik|last=Dahlman|first2=Stefan|last2=Parkvall|first3=Johan|last3=Sköld|first4=Per|last4=Beming|title=3G Evolution - HSPA and LTE for Mobile Broadband|edition=2|publisher=Academic Press|year=2008|isbn=978-0-12-374538-5|pages=119–123}}
[[Category: तार्किक लिंक नियंत्रण]] [[Category: त्रुटि का पता लगाना और सुधार करना]]


 
[[Category:All articles with dead external links]]
 
[[Category:Articles with dead external links from January 2023]]
[[Category: Machine Translated Page]]
[[Category:Articles with permanently dead external links]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:तार्किक लिंक नियंत्रण]]
[[Category:त्रुटि का पता लगाना और सुधार करना]]

Latest revision as of 19:29, 22 August 2023

हाइब्रिड स्वचालित दोहराव अनुरोध (हाइब्रिड एआरक्यू या एचएआरक्यू) हाई-रेट फॉरवर्ड त्रुटि सुधार (एफईसी) और ऑटोमैटिक रिपीट रिक्वेस्ट (एआरक्यू) त्रुटि-नियंत्रण का संयोजन है। मानक एआरक्यू में, चक्रीय अतिरेक परीक्षण (सीआरसी) जैसे त्रुटि-पहचान (ईडी) कोड का उपयोग करके प्रसारित किए जाने वाले डेटा में अनावश्यक बिट्स जोड़े जाते हैं। अनुपयोगी संदेश को ज्ञात करने वाले रिसीवर प्रेषक से नए संदेश का अनुरोध करता है। हाइब्रिड एआरक्यू में, मूल डेटा को एफईसी कोड के साथ एन्कोड किया जाता है, और समता बिट्स या तो शीघ्र संदेश के साथ भेजे जाते हैं या केवल अनुरोध पर प्रसारित होते हैं जब रिसीवर त्रुटिपूर्ण संदेश को ज्ञात करता है। ईडी कोड तब त्यागा जा सकता है जब ऐसे कोड का उपयोग किया जाता है जो त्रुटि को ज्ञात करने के अतिरिक्त फॉरवर्ड त्रुटि सुधार (एफईसी) दोनों कर सकता है, जैसे रीड-सोलोमन कोड। एफईसी कोड को होने वाली सभी त्रुटियों के अपेक्षित उपसमूह को ठीक करने के लिए चयन किया जाता है, जबकि एआरक्यू विधि का उपयोग उन त्रुटियों को ठीक करने के लिए फ़ॉल-बैक के रूप में किया जाता है जो केवल प्रारंभिक ट्रांसमिशन में भेजे गए अतिरेक का उपयोग करके ठीक नहीं की जा सकती हैं। परिणामस्वरूप, हाइब्रिड एआरक्यू दुर्बल सिग्नल स्थितियों में सामान्य एआरक्यू से उत्तम प्रदर्शन करता है, किन्तु अपने सरलतम रूप में यह उत्तम सिग्नल स्थितियों में अधिक अल्प थ्रूपुट की मूल्य पर आता है। सामान्यतः सिग्नल गुणवत्ता क्रॉस-ओवर पॉइंट होता है जिसके नीचे सरल हाइब्रिड एआरक्यू उत्तम होता है, और जिसके ऊपर बेसिक एआरक्यू उत्तम होता है।

सरल हाइब्रिड एआरक्यू

एचएआरक्यू का सबसे सरल संस्करण, टाइप I एचएआरक्यू, ट्रांसमिशन से पूर्व प्रत्येक संदेश में ईडी और एफईसी दोनों सूचना जोड़ता है। जब कोडित डेटा ब्लॉक प्राप्त होता है, तो रिसीवर प्रथम त्रुटि-सुधार कोड को डीकोड करता है। यदि चैनल की गुणवत्ता अधिक उत्तम है, तो सभी ट्रांसमिशन त्रुटियां सुधार योग्य होनी चाहिए, और रिसीवर सही डेटा ब्लॉक प्राप्त कर सकता है। यदि चैनल की गुणवत्ता दुर्बल है, और सभी ट्रांसमिशन त्रुटियों को ठीक नहीं किया जा सकता है, तो रिसीवर त्रुटि-पहचान कोड का उपयोग करके इस स्थिति को ज्ञात करता है, फिर प्राप्त कोडित डेटा ब्लॉक को अस्वीकार कर दिया जाता है और एआरक्यू के समान, रिसीवर द्वारा पुनः ट्रांसमिशन का अनुरोध किया जाता है।[1]

अधिक परिष्कृत रूप में, टाइप II एचएआरक्यू, संदेश प्रवर्तक त्रुटि-ज्ञात करने वाले समता बिट्स और केवल एफईसी समता बिट्स के साथ संदेश बिट्स के मध्य वैकल्पिक करता है। जब प्रथम ट्रांसमिशन त्रुटि रहित प्राप्त होता है, तो एफईसी समता बिट्स कभी नहीं भेजे जाते हैं। इसके अतिरिक्त, त्रुटि सुधार के लिए दो निरंतर ट्रांसमिशन को जोड़ा जा सकता है यदि कोई भी त्रुटि मुक्त नहीं है।[2]

टाइप I और टाइप II हाइब्रिड एआरक्यू के मध्य अंतर को समझने के लिए, ईडी और एफईसी द्वारा जोड़ी गई सूचना के आकार पर विचार करें: त्रुटि को ज्ञात करने से सामान्यतः संदेश में केवल कुछ बाइट्स जुड़ते हैं, जो केवल लंबाई में वृद्धिशील वृद्धि है। दूसरी ओर, एफईसी प्रायः त्रुटि सुधार समता के साथ संदेश की लंबाई को दोगुना या तिगुना कर सकता है। थ्रूपुट के संदर्भ में, मानक एआरक्यू सामान्यतः त्रुटि के विरुद्ध विश्वसनीय सुरक्षा के लिए चैनल क्षमता का कुछ प्रतिशत व्यय करता है, जबकि एफईसी सामान्यतः चैनल सुधार के लिए सभी चैनल क्षमता का आधा या अधिक व्यय करता है।

मानक एआरक्यू में त्रुटि को ज्ञात करने के लिए किसी भी ट्रांसमिशन पर ट्रांसमिशन को त्रुटि मुक्त प्राप्त करना होता है। टाइप II हाइब्रिड एआरक्यू में, प्रथम ट्रांसमिशन में केवल डेटा और त्रुटि को ज्ञात करना सम्मिलित है (मानक एआरक्यू से भिन्न नहीं)। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो जाता है। यदि डेटा त्रुटिपूर्ण रूप से प्राप्त होता है, तो दूसरे ट्रांसमिशन में एफईसी समानताएं और त्रुटि को ज्ञात करना सम्मिलित होता है। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो जाता है। यदि त्रुटि प्राप्त होती है, तो दोनों ट्रांसमिशन से प्राप्त सूचना को मिलाकर त्रुटि सुधार का प्रयास किया जा सकता है।

केवल टाइप I हाइब्रिड एआरक्यू को स्थिर सिग्नल स्थितियों में क्षमता हानि का सामना करना पड़ता है। टाइप II हाइब्रिड एआरक्यू ऐसा नहीं करता है क्योंकि एफईसी बिट्स केवल आवश्यकतानुसार पश्चात के पुन: प्रसारण पर प्रसारित होते हैं। स्थिर सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एआरक्यू जितनी उत्तम क्षमता के साथ प्रदर्शन करता है। दुर्बल सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एफईसी उत्तम संवेदनशीलता के साथ प्रदर्शन करता है।

सॉफ्ट संयोजन के साथ हाइब्रिड एआरक्यू

व्यवहार में, त्रुटिपूर्ण रूप से प्राप्त कोडित डेटा ब्लॉक को त्यागने के अतिरिक्त प्रायः रिसीवर पर संग्रहीत किया जाता है, और जब पुन: प्रेषित ब्लॉक प्राप्त होता है, तो दोनों ब्लॉक संयुक्त हो जाते हैं। इसे सॉफ्ट संयोजन के साथ हाइब्रिड एआरक्यू कहा जाता है (डहलमैन एट अल., पृष्ठ 120)। चूँकि यह संभव है कि दो दिए गए ट्रांसमिशन को त्रुटि के अतिरिक्त स्वतंत्र रूप से डिकोड नहीं किया जा सकता है, ऐसा हो सकता है कि पूर्व से त्रुटिपूर्ण रूप से प्राप्त ट्रांसमिशन का संयोजन हमें उचित प्रकार से डिकोड करने के लिए पर्याप्त सूचना देता है। एचएआरक्यू में दो मुख्य सॉफ्ट संयोजन विधियाँ हैं:

  • चेस संयोजन: प्रत्येक पुन: प्रसारण में समान सूचना (डेटा और समता बिट्स) होती है। रिसीवर प्राप्त बिट्स को पश्च ट्रांसमिशन से समान बिट्स के साथ संयोजित करने के लिए अधिकतम-अनुपात संयोजन का उपयोग करता है। क्योंकि सभी प्रसारण समान हैं, चेस संयोजन को अतिरिक्त पुनरावृत्ति कोडिंग के रूप में देखा जा सकता है। प्रत्येक पुन:संचरण को बढ़े हुए Eb/N0 के माध्यम से प्राप्त संचरण में अतिरिक्त ऊर्जा जोड़ने के रूप में सोचा जा सकता है।
  • वृद्धिशील अतिरेक: प्रत्येक पुन: प्रसारण में पश्च वाले की तुलना में भिन्न सूचना होती है। कोडित बिट्स के एकाधिक समूह उत्पन्न होते हैं, प्रत्येक सूचना बिट्स के समान समूह का प्रतिनिधित्व करते हैं। री-ट्रांसमिशन सामान्यतः पिछले ट्रांसमिशन की तुलना में कोडित बिट्स के भिन्न समूह का उपयोग करता है, जिसमें छिद्रित कोड एनकोडर आउटपुट द्वारा उत्पन्न विभिन्न रिडंडेंसी संस्करण होते हैं। इस प्रकार, प्रत्येक पुनः प्रसारण पर रिसीवर को अतिरिक्त सूचना प्राप्त होती है।

दो मुख्य विधियों के कई प्रकार उपस्थित हैं। उदाहरण के लिए, आंशिक चेस संयोजन में मूल ट्रांसमिशन में बिट्स का केवल उपसमूह पुनः प्रसारित किया जाता है। आंशिक वृद्धिशील अतिरेक में, व्यवस्थित बिट्स को सदैव सम्मिलित किया जाता है जिससे कि प्रत्येक पुन: प्रसारण स्व-डिकोडेबल होता है।

वृद्धिशील अतिरेक एचएआरक्यू का उदाहरण एचएसडीपीए है: डेटा ब्लॉक को पूर्व पंचर कोड 1/3 टर्बो कोड के साथ कोडित किया जाता है, फिर प्रत्येक (पुनः) ट्रांसमिशन के समय कोडित ब्लॉक को सामान्यतः आगे पंचर किया जाता है (अर्थात कोडित बिट्स का केवल अंश का चयन किया जाता है) और प्रेक्षित किया जाता है। प्रत्येक (पुनः) ट्रांसमिशन के समय उपयोग किया जाने वाला पंचर प्रारूप भिन्न होता है, इसलिए प्रत्येक समय भिन्न-भिन्न कोडित बिट्स प्रेक्षित किए जाते हैं। यद्यपि एचएसडीपीए मानक चेस संयोजन और वृद्धिशील अतिरेक दोनों का समर्थन करता है, किन्तु यह प्रदर्शित किया गया है कि बढ़ी हुई जटिलता की कीमत पर वृद्धिशील अतिरेक लगभग सदैव चेस संयोजन से उत्तम प्रदर्शन करता है।[3]

एचएआरक्यू का उपयोग स्टॉप-एंड-वेट मोड या सेलेक्टिव रिपीट मोड में किया जा सकता है। स्टॉप-एंड-वेट सरल है, किन्तु प्राप्तकर्ता की स्वीकृति की प्रतीक्षा करने से दक्षता अल्प हो जाती है। इस प्रकार कई स्टॉप-एंड-वेट एचएआरक्यू प्रक्रियाएं प्रायः व्यवहार में समानांतर में की जाती हैं: जब एचएआरक्यू प्रक्रिया स्वीकृति की प्रतीक्षा कर रही होती है, तो दूसरी प्रक्रिया कुछ और डेटा भेजने के लिए चैनल का उपयोग कर सकती है।

टर्बो कोड के अतिरिक्त अन्य फॉरवर्ड त्रुटि सुधार कोड भी हैं जिनका उपयोग एचएआरक्यू योजना में किया जा सकता है, उदाहरण के लिए विस्तारित अनियमित दोहराव-संचय (ईआईआरए) कोड और कुशल-एन्कोडेबल दर-संगत (ई2आरसी) कोड, जो दोनों अल्प-घनत्व समता-जांच कोड हैं।

अनुप्रयोग

एचएआरक्यू का उपयोग एचएसडीपीए और एचएसयूपीए में किया जाता है जो यूएमटीएस जैसे मोबाइल फोन नेटवर्क के लिए उच्च गति डेटा ट्रांसमिशन (क्रमशः डाउनलिंक और अपलिंक पर) प्रदान करता है, और मोबाइल ब्रॉडबैंड वायरलेस एक्सेस के लिए आईईईई 802.16-2005 मानक में, जिसे "मोबाइल वाईमैक्स" भी कहा जाता है। इसका उपयोग इवोल्यूशन-डेटा ऑप्टिमाइज़्ड और एलटीई वायरलेस नेटवर्क में भी किया जाता है।

टाइप I हाइब्रिड एआरक्यू का उपयोग आईटीयू-टी जी.एचएन में किया जाता है, जो हाई-स्पीड लोकल एरिया नेटवर्क मानक है जो उपस्थित होम वायरिंग (पावर लाइन संचार, फोन लाइन और समाक्षीय केबल) पर 1 Gbit/s तक डेटा दर पर कार्य कर सकता है। जी.एचएन त्रुटि को ज्ञात करने के लिए सीआरसी-32सी, फॉरवर्ड त्रुटि सुधार के लिए एलडीपीसी और एआरक्यू के लिए चयनात्मक दोहराव का उपयोग करता है।

संदर्भ

  1. Comroe/Costello 1984, p. 474
  2. Comroe/Costello 1984, pp. 474–5
  3. Frenger, P.; S. Parkvall; E. Dahlman (October 2001). "Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA". Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th. Vol. 3. Piscataway Township, New Jersey: IEEE Operations Center. pp. 1829–1833. doi:10.1109/VTC.2001.956516. ISBN 0-7803-7005-8.

अग्रिम पठन