मैट्रिक्स का लघुगणक: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical operation on invertible matrices}} | {{Short description|Mathematical operation on invertible matrices}} | ||
गणित में, '''आव्यूह का लघुगणक''' अन्य [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] होता है, जैसे कि | गणित में, '''आव्यूह का लघुगणक''' अन्य [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] होता है, जैसे कि पश्चात् आव्यूह का [[मैट्रिक्स घातांक|आव्यूह घातांक]] मूल आव्यूह के समान होता है। इस प्रकार यह अदिश लघुगणक का सामान्यीकरण है और कुछ अर्थों में आव्यूह घातांक का व्युत्क्रम फलन है। सभी आव्यूहों में लघुगणक नहीं होता और जिन आव्यूहों में लघुगणक होता है उनमें से अधिक लघुगणक हो सकते हैं। आव्यूहों के लघुगणक का अध्ययन लाई सिद्धांत की ओर ले जाता है क्योंकि जब किसी आव्यूह में लघुगणक होता है तो वह लाई समूह के अवयव में होता है और लघुगणक लाई बीजगणित के सदिश समिष्ट का संगत अवयव होता है। | ||
==परिभाषा== | ==परिभाषा== | ||
Line 8: | Line 7: | ||
एक आव्यूह B को देखते हुए, दूसरे आव्यूह A को 'आव्यूह लॉगरिदम' कहा जाता है यदि {{math|''B'' if ''e''<sup>''A''</sup> {{=}} ''B''}}. क्योंकि घातांकीय फलन सम्मिश्र संख्याओं के लिए विशेषण नहीं है (उदाहरण. <math>e^{\pi i} = e^{3 \pi i} = -1</math>), संख्याओं में एकाधिक सम्मिश्र लघुगणक हो सकते हैं, और इसके परिणामस्वरूप, कुछ आव्यूहों में से अधिक लघुगणक हो सकते हैं, जैसा कि नीचे बताया गया है। | एक आव्यूह B को देखते हुए, दूसरे आव्यूह A को 'आव्यूह लॉगरिदम' कहा जाता है यदि {{math|''B'' if ''e''<sup>''A''</sup> {{=}} ''B''}}. क्योंकि घातांकीय फलन सम्मिश्र संख्याओं के लिए विशेषण नहीं है (उदाहरण. <math>e^{\pi i} = e^{3 \pi i} = -1</math>), संख्याओं में एकाधिक सम्मिश्र लघुगणक हो सकते हैं, और इसके परिणामस्वरूप, कुछ आव्यूहों में से अधिक लघुगणक हो सकते हैं, जैसा कि नीचे बताया गया है। | ||
== | ==घात श्रृंखला अभिव्यक्ति== | ||
यदि B पहचान आव्यूह के पर्याप्त रूप से निकट है, तो B के लघुगणक की गणना निम्नलिखित | यदि B पहचान आव्यूह के पर्याप्त रूप से निकट है, तो B के लघुगणक की गणना निम्नलिखित घात श्रृंखला के माध्यम से की जा सकती है: | ||
:<math>\log(B)= \sum_{k=1}^\infty{(-1)^{k+1}\frac{(B-I)^k}{k}} =(B-I)-\frac{(B-I)^2}{2}+\frac{(B-I)^3}{3}-\frac{(B-I)^4}{4}+\cdots</math>. | :<math>\log(B)= \sum_{k=1}^\infty{(-1)^{k+1}\frac{(B-I)^k}{k}} =(B-I)-\frac{(B-I)^2}{2}+\frac{(B-I)^3}{3}-\frac{(B-I)^4}{4}+\cdots</math>. | ||
विशेष रूप से, यदि <math>\left\|B-I\right\|<1</math>, फिर पूर्ववर्ती श्रृंखला अभिसरण करती है और <math>e^{\log(B)}=B</math>.<ref>{{harvnb|Hall|2015}} Theorem 2.8</ref> | विशेष रूप से, यदि <math>\left\|B-I\right\|<1</math>, फिर पूर्ववर्ती श्रृंखला अभिसरण करती है और <math>e^{\log(B)}=B</math>.<ref>{{harvnb|Hall|2015}} Theorem 2.8</ref> | ||
Line 87: | Line 86: | ||
{{Collapse bottom}} | {{Collapse bottom}} | ||
Line 103: | Line 103: | ||
==अस्तित्व== | ==अस्तित्व== | ||
जब सम्मिश्र सेटिंग में विचार किया जाता है तो इस प्रश्न का उत्तर | जब सम्मिश्र सेटिंग में विचार किया जाता है तो इस प्रश्न का उत्तर अधिक सरल होता है कि आव्यूह में लघुगणक है या नहीं है। सम्मिश्र आव्यूह में लघुगणक होता है यदि और केवल तभी जब यह [[उलटा मैट्रिक्स|विपरीत आव्यूह]] होता है।<ref>{{harvtxt|Higham|2008}}, Theorem 1.27</ref> लघुगणक अद्वितीय नहीं है, किन्तु यदि किसी आव्यूह में कोई ऋणात्मक वास्तविक [[eigenvalue|इजेनवैल्यू]] नहीं है, तो अद्वितीय लघुगणक है जिसमें सभी इजेनवैल्यू पट्टी {z ∈ 'C' | −π < Im z < π}. इस लघुगणक को प्रमुख लघुगणक के रूप में जाना जाता है।<ref>{{harvtxt|Higham|2008}}, Theorem 1.31</ref> | ||
उत्तर वास्तविक सेटिंग में अधिक सम्मिलित है। वास्तविक आव्यूह में वास्तविक लघुगणक होता है यदि और केवल यदि यह विपरीत हो और ऋणात्मक इजेनवैल्यू से संबंधित प्रत्येक [[जॉर्डन ब्लॉक]] सम संख्या में होता है।<ref>{{harvtxt|Culver|1966}}</ref> यदि विपरीत वास्तविक आव्यूह जॉर्डन ब्लॉक के साथ नियम को पूरा नहीं करता है, तो इसमें केवल गैर-वास्तविक लघुगणक हैं। इसे अदिश स्थिति में पहले से ही देखा जा सकता है: लघुगणक की कोई भी शाखा -1 पर वास्तविक नहीं हो सकती है। वास्तविक 2×2 आव्यूहों के वास्तविक आव्यूह लघुगणक के अस्तित्व | उत्तर वास्तविक सेटिंग में अधिक सम्मिलित है। वास्तविक आव्यूह में वास्तविक लघुगणक होता है यदि और केवल यदि यह विपरीत हो और ऋणात्मक इजेनवैल्यू से संबंधित प्रत्येक [[जॉर्डन ब्लॉक]] सम संख्या में होता है।<ref>{{harvtxt|Culver|1966}}</ref> यदि विपरीत वास्तविक आव्यूह जॉर्डन ब्लॉक के साथ नियम को पूरा नहीं करता है, तो इसमें केवल गैर-वास्तविक लघुगणक हैं। इसे अदिश स्थिति में पहले से ही देखा जा सकता है: लघुगणक की कोई भी शाखा -1 पर वास्तविक नहीं हो सकती है। वास्तविक 2×2 आव्यूहों के वास्तविक आव्यूह लघुगणक के अस्तित्व के पश्चात अनुभाग में विचार किया गया है। | ||
==गुण== | ==गुण== | ||
Line 116: | Line 116: | ||
इसी तरह, गैर-आवागमन करने वाले <math>A</math> और <math>B</math> के लिए, कोई यह दिखा सकता है कि <ref>[https://www.ias.edu/sites/default/files/sns/files/1-matrixlog_tex(1).pdf Unpublished memo] by S Adler (IAS)</ref> | इसी तरह, गैर-आवागमन करने वाले <math>A</math> और <math>B</math> के लिए, कोई यह दिखा सकता है कि <ref>[https://www.ias.edu/sites/default/files/sns/files/1-matrixlog_tex(1).pdf Unpublished memo] by S Adler (IAS)</ref> | ||
:<math>\log{(A+tB)} = \log{(A)} + t\int_0^\infty dz ~\frac{I}{A+zI} B \frac{I}{A+zI} + O(t^2).</math> | :<math>\log{(A+tB)} = \log{(A)} + t\int_0^\infty dz ~\frac{I}{A+zI} B \frac{I}{A+zI} + O(t^2).</math> | ||
अधिक सामान्यतः, लघुगणक की अभिन्न परिभाषा का उपयोग करके <math>t</math> की | अधिक सामान्यतः, लघुगणक की अभिन्न परिभाषा का उपयोग करके <math>t</math> की घात यों में <math>\log{(A+tB)}</math> का एक श्रृंखला विस्तार प्राप्त किया जा सकता है | ||
:<math>\log{(X + \lambda I)} - \log{(X)} = \int_0^\lambda dz \frac{I}{X + zI},</math> | :<math>\log{(X + \lambda I)} - \log{(X)} = \int_0^\lambda dz \frac{I}{X + zI},</math> | ||
सीमा <math>\lambda\rightarrow\infty</math> में <math>X=A</math> और <math>X=A+tB</math> दोनों पर प्रयुक्त होता है | सीमा <math>\lambda\rightarrow\infty</math> में <math>X=A</math> और <math>X=A+tB</math> दोनों पर प्रयुक्त होता है | ||
== | == आगे का उदाहरण: 3डी अंतरिक्ष में घूर्णन का लघुगणक== | ||
एक घुमाव {{mvar|R}} ℝ³ में SO(3) 3×3 [[ऑर्थोगोनल मैट्रिक्स|ऑर्थोगोनल आव्यूह]] द्वारा दिया गया है। | एक घुमाव {{mvar|R}} ℝ³ में SO(3) 3×3 [[ऑर्थोगोनल मैट्रिक्स|ऑर्थोगोनल आव्यूह]] द्वारा दिया गया है। | ||
ऐसे घूर्णन आव्यूह का लघुगणक {{mvar|R}} की गणना रोड्रिग्स के रोटेशन सूत्र के एंटीसिमेट्रिक भाग से सरली से की जा सकती है, स्पष्ट रूप से एक्सिस-कोण प्रतिनिधित्व या लॉग | ऐसे घूर्णन आव्यूह का लघुगणक {{mvar|R}} की गणना रोड्रिग्स के रोटेशन सूत्र के एंटीसिमेट्रिक भाग से सरली से की जा सकती है, स्पष्ट रूप से एक्सिस-कोण प्रतिनिधित्व या लॉग मानचित्र में SO.283.29 से so.283.29 तक यह न्यूनतम [[फ्रोबेनियस मानदंड]] का लघुगणक उत्पन्न करता है, किन्तु जब विफल हो जाता है इस प्रकार {{mvar|R}} का इजेनवैल्यू −1 के समान है जहां यह अद्वितीय नहीं है। | ||
आगे ध्यान दें कि, दिए गए रोटेशन आव्यूह A और B, | आगे ध्यान दें कि, दिए गए रोटेशन आव्यूह A और B, | ||
Line 138: | Line 138: | ||
::<math> A' = V^{-1} A V.\, </math> | ::<math> A' = V^{-1} A V.\, </math> | ||
:तब A' विकर्ण आव्यूह होगा जिसके विकर्ण अवयव A के इजेनवैल्यू हैं। | :तब A' विकर्ण आव्यूह होगा जिसके विकर्ण अवयव A के इजेनवैल्यू हैं। | ||
:<math> \log A' </math> प्राप्त करने के लिए A' के प्रत्येक विकर्ण अवयव को उसके (प्राकृतिक) लघुगणक से | :<math> \log A' </math> प्राप्त करने के लिए A' के प्रत्येक विकर्ण अवयव को उसके (प्राकृतिक) लघुगणक से परिवर्तित करे. | ||
: | :जब | ||
::<math> \log A = V ( \log A' ) V^{-1}. \, </math> | ::<math> \log A = V ( \log A' ) V^{-1}. \, </math> | ||
A का लघुगणक सम्मिश्र आव्यूह हो सकता है, तथापि A वास्तविक होता है, तो इस तथ्य से पता चलता है कि वास्तविक और धनात्मक प्रविष्टियों वाले आव्यूह में फिर भी ऋणात्मक या सम्मिश्र इजेनवैल्यू हो सकते हैं (उदाहरण के लिए [[रोटेशन मैट्रिक्स|रोटेशन आव्यूह]] के लिए यह सत्य है)। आव्यूह के लघुगणक की गैर-विशिष्टता सम्मिश्र संख्या के लघुगणक की गैर-विशिष्टता से उत्पन्न होती है। | यदि A का लघुगणक सम्मिश्र आव्यूह हो सकता है, तथापि A वास्तविक होता है, तो इस तथ्य से पता चलता है कि वास्तविक और धनात्मक प्रविष्टियों वाले आव्यूह में फिर भी ऋणात्मक या सम्मिश्र इजेनवैल्यू हो सकते हैं (उदाहरण के लिए [[रोटेशन मैट्रिक्स|रोटेशन आव्यूह]] के लिए यह सत्य है)। आव्यूह के लघुगणक की गैर-विशिष्टता सम्मिश्र संख्या के लघुगणक की गैर-विशिष्टता से उत्पन्न होती है। | ||
==एक गैर-विकर्णीय आव्यूह का लघुगणक== | ==एक गैर-विकर्णीय आव्यूह का लघुगणक== | ||
Line 174: | Line 174: | ||
:<math>\log B=\log \big(\lambda(I+K)\big)=\log (\lambda I) +\log (I+K)= (\log \lambda) I + K-\frac{K^2}{2}+\frac{K^3}{3}-\frac{K^4}{4}+\cdots </math> | :<math>\log B=\log \big(\lambda(I+K)\big)=\log (\lambda I) +\log (I+K)= (\log \lambda) I + K-\frac{K^2}{2}+\frac{K^3}{3}-\frac{K^4}{4}+\cdots </math> | ||
इस [[श्रृंखला (गणित)]] में पदों की सीमित संख्या है (K<sup>m</sup> शून्य है यदि m, K के आयाम के समान या उससे अधिक है), और इसलिए इसका योग | इस [[श्रृंखला (गणित)]] में पदों की सीमित संख्या है (K<sup>m</sup> शून्य है यदि m, K के आयाम के समान या उससे अधिक है), और इसलिए इसका योग सही प्रकार से परिभाषित है। | ||
इस दृष्टिकोण का उपयोग करके | इस दृष्टिकोण का उपयोग करके प्राप्त किया जाता है | ||
:<math>\log \begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix} | :<math>\log \begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix} | ||
=\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}.</math> | =\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}.</math> | ||
== | == कार्यात्मक विश्लेषण परिप्रेक्ष्य == | ||
एक वर्ग आव्यूह [[ यूक्लिडियन स्थान |यूक्लिडियन समिष्ट]] R<sup>n</sup> पर [[रैखिक ऑपरेटर]] का प्रतिनिधित्व करता है जहां n आव्यूह का आयाम है। चूँकि ऐसा समिष्ट परिमित-आयामी है, यह ऑपरेटर वास्तव में परिबद्ध ऑपरेटर है। | एक वर्ग आव्यूह [[ यूक्लिडियन स्थान |यूक्लिडियन समिष्ट]] R<sup>n</sup> पर [[रैखिक ऑपरेटर]] का प्रतिनिधित्व करता है जहां n आव्यूह का आयाम है। चूँकि ऐसा समिष्ट परिमित-आयामी है, यह ऑपरेटर वास्तव में परिबद्ध ऑपरेटर है। | ||
Line 188: | Line 188: | ||
फलन f(z)=log z को सम्मिश्र तल में किसी भी सरल रूप से जुड़े विवृत समुच्चय पर परिभाषित किया जा सकता है जिसमें मूल नहीं है, और यह ऐसे डोमेन पर होलोमोर्फिक है। इसका तात्पर्य यह है कि कोई एलएन T को तब तक परिभाषित कर सकता है जब तक कि T के स्पेक्ट्रम में मूल सम्मिलित नहीं है और मूल से अनंत तक जाने वाला पथ है जो T के स्पेक्ट्रम को पार नहीं करता है (उदाहरण के लिए, यदि T का स्पेक्ट्रम वृत्त है) इसके अंदर उत्पत्ति, LN T) को परिभाषित करना असंभव है। | फलन f(z)=log z को सम्मिश्र तल में किसी भी सरल रूप से जुड़े विवृत समुच्चय पर परिभाषित किया जा सकता है जिसमें मूल नहीं है, और यह ऐसे डोमेन पर होलोमोर्फिक है। इसका तात्पर्य यह है कि कोई एलएन T को तब तक परिभाषित कर सकता है जब तक कि T के स्पेक्ट्रम में मूल सम्मिलित नहीं है और मूल से अनंत तक जाने वाला पथ है जो T के स्पेक्ट्रम को पार नहीं करता है (उदाहरण के लिए, यदि T का स्पेक्ट्रम वृत्त है) इसके अंदर उत्पत्ति, LN T) को परिभाषित करना असंभव है। | ||
'R<sup>n</sup>' पर रैखिक ऑपरेटर का स्पेक्ट्रम इसके आव्यूह के इजेनवैल्यू का समुच्चय है, और इसलिए यह परिमित समुच्चय है। जब तक मूल स्पेक्ट्रम में नहीं है (आव्यूह विपरीत है), पिछले पैराग्राफ से पथ की स्थिति संतुष्ट है, और एलएन T | 'R<sup>n</sup>' पर रैखिक ऑपरेटर का स्पेक्ट्रम इसके आव्यूह के इजेनवैल्यू का समुच्चय है, और इसलिए यह परिमित समुच्चय है। जब तक मूल स्पेक्ट्रम में नहीं है (आव्यूह विपरीत है), पिछले पैराग्राफ से पथ की स्थिति संतुष्ट है, और एलएन T सही प्रकार से परिभाषित है। आव्यूह लघुगणक की गैर-विशिष्टता इस तथ्य से उत्पन्न होती है कि कोई व्यक्ति लघुगणक की से अधिक शाखा चुन सकता है जिसे आव्यूह के इजेनवैल्यू के समुच्चय पर परिभाषित किया गया है। | ||
== एक लाई समूह सिद्धांत परिप्रेक्ष्य == | == एक लाई समूह सिद्धांत परिप्रेक्ष्य == | ||
Line 196: | Line 196: | ||
: <math> \exp : \mathfrak{g} \rightarrow G. </math> | : <math> \exp : \mathfrak{g} \rightarrow G. </math> | ||
आव्यूह लाई समूहों के लिए, <math>\mathfrak{g}</math> और G के अवयव वर्ग आव्यूह हैं और घातांकीय मानचित्र आव्यूह घातांक द्वारा दिया गया है। विपरीत | आव्यूह लाई समूहों के लिए, <math>\mathfrak{g}</math> और G के अवयव वर्ग आव्यूह हैं और घातांकीय मानचित्र आव्यूह घातांक द्वारा दिया गया है। विपरीत मानचित्र <math> \log=\exp^{-1} </math> बहुमूल्यांकित है और यहां चर्चा किए गए आव्यूह लघुगणक के साथ मेल खाता है। लघुगणक लाई समूह g से लाई बीजगणित <math>\mathfrak{g}</math> में मानचित्र करता है | ||
ध्यान दें कि घातीय मानचित्र शून्य आव्यूह <math> \underline{0} \in \mathfrak{g}</math> के वर्ग u और पहचान आव्यूह <math>\underline{1}\in G</math> के वर्ग V के | ध्यान दें कि घातीय मानचित्र शून्य आव्यूह <math> \underline{0} \in \mathfrak{g}</math> के वर्ग u और पहचान आव्यूह <math>\underline{1}\in G</math> के वर्ग V के मध्य एक स्थानीय भिन्नता है।<ref>{{harvnb|Hall|2015}} Theorem 3.42</ref> इस प्रकार (आव्यूह) लघुगणक एक मानचित्र के रूप में ठीक प्रकार से परिभाषित है, | ||
:<math> \log: G\supset V \rightarrow U\subset \mathfrak{g}.</math> | :<math> \log: G\supset V \rightarrow U\subset \mathfrak{g}.</math> | ||
जैकोबी के सूत्र का महत्वपूर्ण परिणाम यह है | जैकोबी के सूत्र का महत्वपूर्ण परिणाम यह है | ||
Line 220: | Line 220: | ||
एक गैर-एकवचन 2 x 2 आव्यूह में आवश्यक रूप से लघुगणक नहीं होता है, किन्तु यह चार-समूह द्वारा आव्यूह से संयुग्मित होता है जिसमें लघुगणक होता है। | एक गैर-एकवचन 2 x 2 आव्यूह में आवश्यक रूप से लघुगणक नहीं होता है, किन्तु यह चार-समूह द्वारा आव्यूह से संयुग्मित होता है जिसमें लघुगणक होता है। | ||
इससे यह भी पता चलता है कि, उदाहरण के लिए, इस आव्यूह A का वर्गमूल सीधे घातांक (logA)/2 से प्राप्त किया जा सकता है, | इससे यह भी पता चलता है कि, उदाहरण के लिए, इस आव्यूह A का वर्गमूल सीधे घातांक (logA)/2 से प्राप्त किया जा सकता है, | ||
Line 228: | Line 227: | ||
:<math>e^a = \frac {p + r} {q} = \cosh a + \sinh a</math>. | :<math>e^a = \frac {p + r} {q} = \cosh a + \sinh a</math>. | ||
जब | |||
:<math>\exp \begin{pmatrix}0 & a \\ a & 0 \end{pmatrix} = | :<math>\exp \begin{pmatrix}0 & a \\ a & 0 \end{pmatrix} = | ||
\begin{pmatrix}r/q & p/q \\ p/q & r/q \end{pmatrix}</math>. | \begin{pmatrix}r/q & p/q \\ p/q & r/q \end{pmatrix}</math>. | ||
Line 267: | Line 266: | ||
}} | }} | ||
{{DEFAULTSORT:Logarithm Of A Matrix}} | {{DEFAULTSORT:Logarithm Of A Matrix}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 19/07/2023|Logarithm Of A Matrix]] | ||
[[Category: | [[Category:Lua-based templates|Logarithm Of A Matrix]] | ||
[[Category:Machine Translated Page|Logarithm Of A Matrix]] | |||
[[Category:Pages with script errors|Logarithm Of A Matrix]] | |||
[[Category:Short description with empty Wikidata description|Logarithm Of A Matrix]] | |||
[[Category:Templates Vigyan Ready|Logarithm Of A Matrix]] | |||
[[Category:Templates that add a tracking category|Logarithm Of A Matrix]] | |||
[[Category:Templates that generate short descriptions|Logarithm Of A Matrix]] | |||
[[Category:Templates using TemplateData|Logarithm Of A Matrix]] | |||
[[Category:उलटा कार्य|Logarithm Of A Matrix]] | |||
[[Category:मैट्रिक्स सिद्धांत|Logarithm Of A Matrix]] | |||
[[Category:लघुगणक|Logarithm Of A Matrix]] |
Latest revision as of 12:01, 18 August 2023
गणित में, आव्यूह का लघुगणक अन्य आव्यूह (गणित) होता है, जैसे कि पश्चात् आव्यूह का आव्यूह घातांक मूल आव्यूह के समान होता है। इस प्रकार यह अदिश लघुगणक का सामान्यीकरण है और कुछ अर्थों में आव्यूह घातांक का व्युत्क्रम फलन है। सभी आव्यूहों में लघुगणक नहीं होता और जिन आव्यूहों में लघुगणक होता है उनमें से अधिक लघुगणक हो सकते हैं। आव्यूहों के लघुगणक का अध्ययन लाई सिद्धांत की ओर ले जाता है क्योंकि जब किसी आव्यूह में लघुगणक होता है तो वह लाई समूह के अवयव में होता है और लघुगणक लाई बीजगणित के सदिश समिष्ट का संगत अवयव होता है।
परिभाषा
आव्यूह एक्सपोनेंशियल A द्वारा परिभाषित किया गया है
- .
एक आव्यूह B को देखते हुए, दूसरे आव्यूह A को 'आव्यूह लॉगरिदम' कहा जाता है यदि B if eA = B. क्योंकि घातांकीय फलन सम्मिश्र संख्याओं के लिए विशेषण नहीं है (उदाहरण. ), संख्याओं में एकाधिक सम्मिश्र लघुगणक हो सकते हैं, और इसके परिणामस्वरूप, कुछ आव्यूहों में से अधिक लघुगणक हो सकते हैं, जैसा कि नीचे बताया गया है।
घात श्रृंखला अभिव्यक्ति
यदि B पहचान आव्यूह के पर्याप्त रूप से निकट है, तो B के लघुगणक की गणना निम्नलिखित घात श्रृंखला के माध्यम से की जा सकती है:
- .
विशेष रूप से, यदि , फिर पूर्ववर्ती श्रृंखला अभिसरण करती है और .[1]
उदाहरण: समतल में घूर्णन का लघुगणक
समतल में घूमना सरल उदाहरण देता है। मूल बिंदु के चारों ओर कोण α का घूर्णन 2×2-आव्यूह द्वारा दर्शाया जाता है
किसी भी पूर्णांक n के लिए, आव्यूह
A का लघुगणक है।
style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " | प्रमाण
|
---|
⇔ जहाँ
…
|
इस प्रकार, आव्यूह A में अपरिमित रूप से कई लघुगणक हैं। यह इस तथ्य से मेल खाता है कि घूर्णन कोण केवल 2π के गुणकों तक ही निर्धारित होता है।
लाई सिद्धांत की भाषा में, रोटेशन आव्यूह A, लाई ग्रुप वृत्त समूह या so(2) के अवयव हैं। संबंधित लघुगणक B, ली बीजगणित so(2) के अवयव हैं, जिसमें सभी विषम-सममित आव्यूह या विषम-सममित आव्यूह सम्मिलित हैं। आव्यूह
लाई बीजगणित का एक जनरेटर है इसलिए(2)।
अस्तित्व
जब सम्मिश्र सेटिंग में विचार किया जाता है तो इस प्रश्न का उत्तर अधिक सरल होता है कि आव्यूह में लघुगणक है या नहीं है। सम्मिश्र आव्यूह में लघुगणक होता है यदि और केवल तभी जब यह विपरीत आव्यूह होता है।[2] लघुगणक अद्वितीय नहीं है, किन्तु यदि किसी आव्यूह में कोई ऋणात्मक वास्तविक इजेनवैल्यू नहीं है, तो अद्वितीय लघुगणक है जिसमें सभी इजेनवैल्यू पट्टी {z ∈ 'C' | −π < Im z < π}. इस लघुगणक को प्रमुख लघुगणक के रूप में जाना जाता है।[3]
उत्तर वास्तविक सेटिंग में अधिक सम्मिलित है। वास्तविक आव्यूह में वास्तविक लघुगणक होता है यदि और केवल यदि यह विपरीत हो और ऋणात्मक इजेनवैल्यू से संबंधित प्रत्येक जॉर्डन ब्लॉक सम संख्या में होता है।[4] यदि विपरीत वास्तविक आव्यूह जॉर्डन ब्लॉक के साथ नियम को पूरा नहीं करता है, तो इसमें केवल गैर-वास्तविक लघुगणक हैं। इसे अदिश स्थिति में पहले से ही देखा जा सकता है: लघुगणक की कोई भी शाखा -1 पर वास्तविक नहीं हो सकती है। वास्तविक 2×2 आव्यूहों के वास्तविक आव्यूह लघुगणक के अस्तित्व के पश्चात अनुभाग में विचार किया गया है।
गुण
यदि A और B दोनों धनात्मक-निश्चित आव्यूह हैं, तो
मान लीजिए कि A और B आवागमन करते हैं, जिसका अर्थ है कि AB = BA तब
यदि और केवल यदि , जहां का एक इजेनवैल्यू है और का संगत इजेनवैल्यू है।[5] विशेष रूप से, जब A और B आवागमन करते हैं और दोनों धनात्मक-निश्चित हैं। इस समीकरण में B = A −1 समुच्चय करने से परिणाम मिलते हैं
इसी तरह, गैर-आवागमन करने वाले और के लिए, कोई यह दिखा सकता है कि [6]
अधिक सामान्यतः, लघुगणक की अभिन्न परिभाषा का उपयोग करके की घात यों में का एक श्रृंखला विस्तार प्राप्त किया जा सकता है
सीमा में और दोनों पर प्रयुक्त होता है
आगे का उदाहरण: 3डी अंतरिक्ष में घूर्णन का लघुगणक
एक घुमाव R ℝ³ में SO(3) 3×3 ऑर्थोगोनल आव्यूह द्वारा दिया गया है।
ऐसे घूर्णन आव्यूह का लघुगणक R की गणना रोड्रिग्स के रोटेशन सूत्र के एंटीसिमेट्रिक भाग से सरली से की जा सकती है, स्पष्ट रूप से एक्सिस-कोण प्रतिनिधित्व या लॉग मानचित्र में SO.283.29 से so.283.29 तक यह न्यूनतम फ्रोबेनियस मानदंड का लघुगणक उत्पन्न करता है, किन्तु जब विफल हो जाता है इस प्रकार R का इजेनवैल्यू −1 के समान है जहां यह अद्वितीय नहीं है।
आगे ध्यान दें कि, दिए गए रोटेशन आव्यूह A और B,
रोटेशन मैट्रिसेस के 3डी मैनिफोल्ड पर जियोडेसिक दूरी है।
विकर्णीय आव्यूह के लघुगणक की गणना
विकर्णीय आव्यूह विपरीत के लिए एलएन A खोजने की विधि निम्नलिखित है:
- A के इजेनवेक्टर का आव्यूह V खोजें (V का प्रत्येक स्तंभ A का इजेनवेक्टर है)।
- V का व्युत्क्रम V−1 ज्ञात कीजिए।
- मान लीजिए
- तब A' विकर्ण आव्यूह होगा जिसके विकर्ण अवयव A के इजेनवैल्यू हैं।
- प्राप्त करने के लिए A' के प्रत्येक विकर्ण अवयव को उसके (प्राकृतिक) लघुगणक से परिवर्तित करे.
- जब
यदि A का लघुगणक सम्मिश्र आव्यूह हो सकता है, तथापि A वास्तविक होता है, तो इस तथ्य से पता चलता है कि वास्तविक और धनात्मक प्रविष्टियों वाले आव्यूह में फिर भी ऋणात्मक या सम्मिश्र इजेनवैल्यू हो सकते हैं (उदाहरण के लिए रोटेशन आव्यूह के लिए यह सत्य है)। आव्यूह के लघुगणक की गैर-विशिष्टता सम्मिश्र संख्या के लघुगणक की गैर-विशिष्टता से उत्पन्न होती है।
एक गैर-विकर्णीय आव्यूह का लघुगणक
ऊपर दर्शाया गया एल्गोरिदम गैर-विकर्णीय आव्यूह जैसे कि के लिए कार्य नहीं करता है
ऐसे आव्यूह के लिए किसी को इसके जॉर्डन को खोजने की आवश्यकता होती है और, ऊपर दिए गए विकर्ण प्रविष्टियों के लघुगणक की गणना करने के अतिरिक्त, जॉर्डन आव्यूह के लघुगणक की गणना करनी होती है।
उत्तरार्द्ध को इस बात पर ध्यान देकर पूरा किया जाता है कि कोई जॉर्डन ब्लॉक को इस प्रकार लिख सकता है
जहां K आव्यूह है जिसके मुख्य विकर्ण पर और नीचे शून्य है। (संख्या λ इस धारणा से शून्य नहीं है कि जिस आव्यूह का लघुगणक लेने का प्रयास किया जाता है वह विपरीत होता है।)
फिर, मर्केटर श्रृंखला द्वारा
एक मिलता है
इस श्रृंखला (गणित) में पदों की सीमित संख्या है (Km शून्य है यदि m, K के आयाम के समान या उससे अधिक है), और इसलिए इसका योग सही प्रकार से परिभाषित है।
इस दृष्टिकोण का उपयोग करके प्राप्त किया जाता है
कार्यात्मक विश्लेषण परिप्रेक्ष्य
एक वर्ग आव्यूह यूक्लिडियन समिष्ट Rn पर रैखिक ऑपरेटर का प्रतिनिधित्व करता है जहां n आव्यूह का आयाम है। चूँकि ऐसा समिष्ट परिमित-आयामी है, यह ऑपरेटर वास्तव में परिबद्ध ऑपरेटर है।
होलोमोर्फिक कार्यात्मक कैलकुलस के उपकरणों का उपयोग करते हुए, सम्मिश्र विमान में विवृत समुच्चय और बंधे हुए रैखिक ऑपरेटर T पर परिभाषित होलोमोर्फिक फलन F को देखते हुए, कोई F (T) की गणना कर सकता है जब तक F को T के ऑपरेटर के स्पेक्ट्रम पर परिभाषित किया जाता है। .
फलन f(z)=log z को सम्मिश्र तल में किसी भी सरल रूप से जुड़े विवृत समुच्चय पर परिभाषित किया जा सकता है जिसमें मूल नहीं है, और यह ऐसे डोमेन पर होलोमोर्फिक है। इसका तात्पर्य यह है कि कोई एलएन T को तब तक परिभाषित कर सकता है जब तक कि T के स्पेक्ट्रम में मूल सम्मिलित नहीं है और मूल से अनंत तक जाने वाला पथ है जो T के स्पेक्ट्रम को पार नहीं करता है (उदाहरण के लिए, यदि T का स्पेक्ट्रम वृत्त है) इसके अंदर उत्पत्ति, LN T) को परिभाषित करना असंभव है।
'Rn' पर रैखिक ऑपरेटर का स्पेक्ट्रम इसके आव्यूह के इजेनवैल्यू का समुच्चय है, और इसलिए यह परिमित समुच्चय है। जब तक मूल स्पेक्ट्रम में नहीं है (आव्यूह विपरीत है), पिछले पैराग्राफ से पथ की स्थिति संतुष्ट है, और एलएन T सही प्रकार से परिभाषित है। आव्यूह लघुगणक की गैर-विशिष्टता इस तथ्य से उत्पन्न होती है कि कोई व्यक्ति लघुगणक की से अधिक शाखा चुन सकता है जिसे आव्यूह के इजेनवैल्यू के समुच्चय पर परिभाषित किया गया है।
एक लाई समूह सिद्धांत परिप्रेक्ष्य
लाई समूहों के सिद्धांत में, लाई बीजगणित से संबंधित लाई समूह g तक एक घातीय मानचित्र होता है।
आव्यूह लाई समूहों के लिए, और G के अवयव वर्ग आव्यूह हैं और घातांकीय मानचित्र आव्यूह घातांक द्वारा दिया गया है। विपरीत मानचित्र बहुमूल्यांकित है और यहां चर्चा किए गए आव्यूह लघुगणक के साथ मेल खाता है। लघुगणक लाई समूह g से लाई बीजगणित में मानचित्र करता है
ध्यान दें कि घातीय मानचित्र शून्य आव्यूह के वर्ग u और पहचान आव्यूह के वर्ग V के मध्य एक स्थानीय भिन्नता है।[7] इस प्रकार (आव्यूह) लघुगणक एक मानचित्र के रूप में ठीक प्रकार से परिभाषित है,
जैकोबी के सूत्र का महत्वपूर्ण परिणाम यह है
2 × 2 स्थिति में बाधाएँ
यदि 2 × 2 वास्तविक आव्यूह में ऋणात्मक निर्धारक है, तो इसका कोई वास्तविक लघुगणक नहीं है। पहले ध्यान दें कि किसी भी 2 × 2 वास्तविक आव्यूह को सम्मिश्र संख्या z = x + y ε के तीन प्रकारों में से माना जा सकता है, जहां ε² ∈ { −1, 0, +1 }। यह z आव्यूहों के वलय (गणित) के सम्मिश्र उपतल पर बिंदु है।[8] ऐसी स्थिति जहां निर्धारक ऋणात्मक है, केवल ε² =+1 वाले विमान में उत्पन्न होता है, जो विभाजित-सम्मिश्र संख्या विमान है। इस तल का केवल चौथाई भाग घातीय मानचित्र की छवि है, इसलिए लघुगणक केवल उस तिमाही (चतुर्थांश) पर परिभाषित किया गया है। अन्य तीन चतुर्थांश ε और -1 द्वारा उत्पन्न क्लेन चार-समूह के अंतर्गत इसकी छवियां हैं।
उदाहरण के लिए, मान लीजिए a = log 2 ; तब कॉश A = 5/4 और सिंह A = 3/4 आव्यूह के लिए, इसका कारण यह है
- .
तो इस अंतिम आव्यूह में लघुगणक है
- .
चूँकि, इन आव्यूहों में लघुगणक नहीं होता है:
- .
वे उपरोक्त आव्यूह के चार-समूह द्वारा तीन अन्य संयुग्मों का प्रतिनिधित्व करते हैं जिनमें लघुगणक होता है।
एक गैर-एकवचन 2 x 2 आव्यूह में आवश्यक रूप से लघुगणक नहीं होता है, किन्तु यह चार-समूह द्वारा आव्यूह से संयुग्मित होता है जिसमें लघुगणक होता है।
इससे यह भी पता चलता है कि, उदाहरण के लिए, इस आव्यूह A का वर्गमूल सीधे घातांक (logA)/2 से प्राप्त किया जा सकता है,
एक समृद्ध उदाहरण के लिए, पाइथागोरस ट्रिपल (p,q,r) से प्रारंभ करें और माना a = log(p + r) − log q. तब
- .
जब
- .
इस प्रकार
लघुगणक आव्यूह है
- ,
जहाँ a = log(p + r) − log q.
यह भी देखें
- आव्यूह फलन
- आव्यूह का वर्गमूल
- आव्यूह घातांक
- बेकर-कैंपबेल-हॉसडॉर्फ सूत्र
- घातांकीय मानचित्र का व्युत्पन्न
टिप्पणियाँ
- ↑ Hall 2015 Theorem 2.8
- ↑ Higham (2008), Theorem 1.27
- ↑ Higham (2008), Theorem 1.31
- ↑ Culver (1966)
- ↑ APRAHAMIAN, MARY; HIGHAM, NICHOLAS J. (2014). "मैट्रिक्स अनवाइंडिंग फ़ंक्शन, मैट्रिक्स एक्सपोनेंशियल की गणना करने के लिए एक अनुप्रयोग के साथ". SIAM Journal on Matrix Analysis and Applications. 35 (1): 97. doi:10.1137/130920137. Retrieved 13 December 2022.
- ↑ Unpublished memo by S Adler (IAS)
- ↑ Hall 2015 Theorem 3.42
- ↑ Abstract Algebra/2x2 real matrices at Wikibooks
संदर्भ
- Gantmacher, Felix R. (1959), The Theory of Matrices, vol. 1, New York: Chelsea, pp. 239–241.
- Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666
- Culver, Walter J. (1966), "On the existence and uniqueness of the real logarithm of a matrix", Proceedings of the American Mathematical Society, 17 (5): 1146–1151, doi:10.1090/S0002-9939-1966-0202740-6, ISSN 0002-9939.
- Higham, Nicholas (2008), Functions of Matrices. Theory and Computation, SIAM, ISBN 978-0-89871-646-7.
- Engø, Kenth (June 2001), "On the BCH-formula in so(3)", BIT Numerical Mathematics, 41 (3): 629–632, doi:10.1023/A:1021979515229, ISSN 0006-3835, S2CID 126053191