प्रभाव आरेख: Difference between revisions
(Created page with "{{Short description|Visual representation of a decision-making problem}} {{distinguish|binary decision diagram}} एक प्रभाव आरेख (आईडी) (जि...") |
No edit summary |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Visual representation of a decision-making problem}} | {{Short description|Visual representation of a decision-making problem}} | ||
{{distinguish| | {{distinguish|बाइनरी निर्णय आरेख}} | ||
आईडी को पहली बार 1970 के दशक के मध्य में | '''प्रभाव आरेख''' ('''आईडी''') (जिसे '''प्रासंगिकता आरेख''', '''डिसीजन (डिसीजन) आरेख''' या '''डिसीजन नेटवर्क''' भी कहा जाता है) डिसीजन स्थिति का एक संक्षिप्त ग्राफिकल और गणितीय प्रतिनिधित्व है। यह [[बायेसियन नेटवर्क]] का एक सामान्यीकरण है, जिसमें न केवल संभाव्य अनुमान समस्याओं को बल्कि डिसीजन लेने की समस्याओं (अधिकतम अपेक्षित उपयोगिता मानदंड के बाद) को भी मॉडलिंग और हल किया जा सकता है। | ||
आईडी को पहली बार 1970 के दशक के मध्य में डिसीजन विश्लेषकों द्वारा सहज ज्ञान युक्त अर्थ के साथ विकसित किया गया था जिसे समझना आसान है। इसे अब व्यापक रूप से अपनाया गया है और यह डिसीजन ट्री का विकल्प बन गया है, जो सामान्यतः प्रत्येक चर मॉडल के साथ कई शाखाओं में तेजी से वृद्धि से ग्रस्त है। आईडी सीधे टीम डिसीजन विश्लेषण में लागू होती है क्योंकि यह टीम के सदस्यों के बीच जानकारी के अपूर्ण आदान-प्रदान को स्पष्ट रूप से मॉडलिंग और हल करने की अनुमति देती है। आईडी के एक्सटेंशन का उपयोग गेम थ्योरी में गेम ट्री के वैकल्पिक प्रतिनिधित्व के रूप में भी होता है। | |||
==शब्दार्थ== | ==शब्दार्थ== | ||
आईडी एक निर्देशित चक्रीय ग्राफ है जिसमें तीन प्रकार के नोड (प्लस उपप्रकार) और नोड्स के बीच तीन प्रकार के आर्क (या तीर) होते हैं। | |||
नोड्स: | नोड्स: | ||
:* | :* ''डिसीजन नोड'' (प्रत्येक डिसीजन के अनुरूप) आयत के रूप में बनाया गया है। | ||
:* | :* ''अनिश्चितता नोड'' (प्रतिरूपित की जाने वाली प्रत्येक अनिश्चितता के अनुरूप) दीर्घवृत्त के रूप में तैयार किया गया है। | ||
::*नियतात्मक नोड (विशेष प्रकार की अनिश्चितता के अनुरूप | ::*''नियतात्मक नोड'' (एक विशेष प्रकार की अनिश्चितता के अनुरूप इसका परिणाम नियतात्मक रूप से ज्ञात होता है जब भी कुछ अन्य अनिश्चितताओं का परिणाम भी ज्ञात होता है) एक दोहरे दीर्घवृत्त के रूप में तैयार किया जाता है। | ||
:*वैल्यू नोड (एडिटिवली वियोज्य [[वॉन न्यूमैन-मॉर्गनस्टर्न उपयोगिता]] | :*''वैल्यू नोड'' (एडिटिवली वियोज्य [[वॉन न्यूमैन-मॉर्गनस्टर्न उपयोगिता]] फलन के प्रत्येक घटक के अनुरूप) को एक अष्टकोण (या हीरे) के रूप में तैयार किया गया है। | ||
आर्क्स: | आर्क्स: | ||
:* | :* ''फंक्शनल आर्क्स'' (मूल्य नोड में समाप्त होने वाले) से संकेत मिलता है कि योगात्मक रूप से अलग करने योग्य उपयोगिता फलन के घटकों में से एक उनके टेल पर सभी नोड्स का एक फलन है। | ||
:*सशर्त | :* ''सशर्त आर्क'' (अनिश्चितता नोड में समाप्त होने वाले) से संकेत मिलता है कि उनके शीर्ष पर अनिश्चितता संभावित रूप से उनके टेल के सभी नोड्स पर प्रतिबन्धित है। | ||
::*सशर्त | ::*''सशर्त आर्क्स'' (नियतात्मक नोड में समाप्त होने वाले) से संकेत मिलता है कि उनके शीर्ष पर अनिश्चितता उनके टेल के सभी नोड्स पर नियतात्मक रूप से प्रतिबंधित है। | ||
:*सूचनात्मक आर्क्स ( | :*''सूचनात्मक आर्क्स'' (डिसीजन नोड में समाप्त होने वाले) इंगित करते हैं कि उनके शीर्ष पर डिसीजन पहले से ज्ञात उनके टेल के सभी नोड्स के परिणाम के साथ किया जाता है। | ||
उचित रूप से संरचित आईडी दी गई: | उचित रूप से संरचित आईडी दी गई: | ||
:* | :* डिसीजन नोड्स और आने वाली जानकारी सामूहिक रूप से ''विकल्पों'' को बताती है (क्या किया जा सकता है जब कुछ निर्णयों और/या अनिश्चितताओं के नतीजे पहले से ज्ञात हों) | ||
:*अनिश्चितता/नियतात्मक नोड्स और आने | :* अनिश्चितता/नियतात्मक नोड्स और आने वाली सशर्त आर्क सामूहिक रूप से ''सूचना'' को मॉडल करते हैं (क्या ज्ञात हैं और उनके संभाव्य/नियतात्मक संबंध) | ||
:* | :* मूल्य नोड्स और आने वाले फंक्शनल आर्क सामूहिक रूप से ''वरीयता'' को मापते हैं (कैसे चीजों को एक दूसरे पर प्राथमिकता दी जाती है)। | ||
डिसीजन विश्लेषण में ''वैकल्पिक'', ''सूचना'' और ''प्राथमिकता'' को ''डिसीजन आधार'' कहा जाता है, वे किसी भी वैध डिसीजन स्थिति के तीन आवश्यक घटकों का प्रतिनिधित्व करते हैं। | |||
औपचारिक रूप से, प्रभाव आरेख | औपचारिक रूप से, प्रभाव आरेख के शब्दार्थ नोड्स और आर्क्स के अनुक्रमिक निर्माण पर आधारित होते हैं, जो आरेख में सभी सशर्त स्वतंत्रताओं के विनिर्देश का अर्थ है। विनिर्देश बायेसियन नेटवर्क के <math>d</math>-पृथक्करण मानदंड द्वारा परिभाषित किया गया है। इस शब्दार्थ के अनुसार, प्रत्येक नोड संभावित रूप से अपने गैर-उत्तराधिकारी नोड्स से स्वतंत्र है, जो इसके पूर्ववर्ती नोड्स के परिणाम को देखते हैं। इसी तरह, गैर-मूल्य नोड <math>X</math> और गैर-मूल्य नोड <math>Y</math> के बीच लापता आर्क का अर्थ है कि गैर-मूल्य नोड्स <math>Z</math>, जैसे, <math>Y</math> के पेरेंट्स का समुच्चय उपस्थित है, <math>Z</math> में नोड्स के परिणाम को देखते हुए <math>X</math> से स्वतंत्र <math>Y</math> का प्रतिपादन करता है। | ||
==उदाहरण== | ==उदाहरण== | ||
[[File:Simple Influence Diagram.svg|thumb| | [[File:Simple Influence Diagram.svg|thumb|प्रावकाश गतिविधि के बारे में डिसीजन लेने के लिए सरल प्रभाव आरेख]]उस स्थिति का प्रतिनिधित्व करने वाले सरल प्रभाव आरेख पर विचार करें जहां निर्णय-निर्माता अपनी प्रावकाश की योजना बना रहा है। | ||
:*1 | :*1 डिसीजन नोड (''प्रावकाश गतिविधि''), 2 अनिश्चितता नोड (''मौसम की स्थिति'', ''मौसम का पूर्वानुमान''), और 1 मूल्य नोड (''ऋणमुक्ति'') है। | ||
:*2 | :*2 फंक्शनल आर्क (''ऋणमुक्ति'' में समाप्त), 1 सशर्त आर्क (''मौसम पूर्वानुमान'' में समाप्त), और 1 सूचनात्मक आर्क (''प्रावकाश गतिविधि'' में समाप्त) हैं। | ||
:*यह शब्दार्थ की दृष्टि से भी इस प्रकार है, उदाहरण के लिए, कि | :*''ऋणमुक्ति'' में समाप्त होने वाले फंक्शनल आर्क इंगित करते हैं कि ''ऋणमुक्ति'' ''मौसम की स्थिति'' और प्रावकाश गतिविधि का एक उपयोगिता कार्य है। दूसरे शब्दों में, उनकी ऋणमुक्ति को परिमाणित किया जा सकता है यदि वे जानते हैं कि मौसम कैसा है और उनकी पसंद की गतिविधि क्या है। (ध्यान दें कि वे सीधे मौसम पूर्वानुमान को महत्व नहीं देते हैं) | ||
:*''मौसम पूर्वानुमान'' में समाप्त होने वाला सशर्त आर्क उनके विश्वास को इंगित करता है कि ''मौसम पूर्वानुमान'' और ''मौसम की स्थिति'' निर्भर हो सकती है। | |||
:*''प्रावकाश गतिविधि'' में समाप्त होने वाला सूचनात्मक आर्क इंगित करता है कि वे अपनी पसंद बनाते समय केवल ''मौसम का पूर्वानुमान'' ही जानेंगे, मौसम की स्थिति नहीं। दूसरे शब्दों में, वास्तविक मौसम का पता उनके चुनाव करने के बाद ही चलेगा और इस स्तर पर वे केवल पूर्वानुमान पर ही भरोसा कर सकते हैं। | |||
:*यह शब्दार्थ की दृष्टि से भी इस प्रकार है, उदाहरण के लिए, कि ''प्रावकाश गतिविधि'' ''मौसम की स्थिति'' से स्वतंत्र (अप्रासंगिक) है, बशर्ते कि ''मौसम का पूर्वानुमान'' ज्ञात हो। | |||
==सूचना के मूल्य पर प्रयोज्यता== | ==सूचना के मूल्य पर प्रयोज्यता== | ||
उपरोक्त उदाहरण सूचना के मूल्य के रूप में ज्ञात | उपरोक्त उदाहरण सूचना के मूल्य के रूप में ज्ञात डिसीजन विश्लेषण में अत्यंत महत्वपूर्ण अवधारणा का प्रतिनिधित्व करने में प्रभाव आरेख की शक्ति पर प्रकाश डालता है। निम्नलिखित तीन परिदृश्यों पर विचार करें; | ||
:*परिदृश्य 1: निर्णयकर्ता यह जानते हुए भी अपनी | :*परिदृश्य 1: निर्णयकर्ता यह जानते हुए भी अपनी प्''रावकाश गतिविधि का डिसीजन'' ले सकता है कि ''मौसम की स्थिति'' कैसी होगी। यह उपरोक्त प्रभाव आरेख में ''मौसम की स्थिति'' से लेकर प्''रावकाश गतिविधि'' तक अतिरिक्त सूचनात्मक आर्क जोड़ने से मेल खाता है। | ||
:*परिदृश्य 2: मूल प्रभाव आरेख जैसा कि ऊपर दिखाया गया है। | :*परिदृश्य 2: मूल प्रभाव आरेख जैसा कि ऊपर दिखाया गया है। | ||
:*परिदृश्य 3: | :*परिदृश्य 3: डिसीजन-निर्माता ''मौसम पूर्वानुमान'' को जाने बिना भी अपना डिसीजन लेते हैं। यह उपरोक्त प्रभाव आरेख में ''मौसम पूर्वानुमान'' से प्रावकाश गतिविधि तक सूचनात्मक आर्क को हटाने से मेल खाता है। | ||
इस | इस डिसीजन की स्थिति के लिए परिदृश्य 1 सबसे अच्छा संभव परिदृश्य है क्योंकि डिसीजन लेते समय वे किस चीज़ (''मौसम की स्थिति'') की परवाह करते हैं, इस पर अब कोई अनिश्चितता नहीं है। परिदृश्य 3, हालांकि, इस डिसीजन की स्थिति के लिए सबसे खराब संभावित परिदृश्य है क्योंकि उन्हें बिना किसी संकेत (''मौसम पूर्वानुमान'') के अपना डिसीजन लेने की आवश्यकता होती है कि वे किस बारे में ध्यान करते हैं (''मौसम की स्थिति'') क्या होगा। | ||
डिसीजन लेने वाले के लिए सामान्यतः नई जानकारी प्राप्त करके परिदृश्य 3 से परिदृश्य 2 में जाना बेहतर होता है (निश्चित रूप से इससे बदतर स्थिति नहीं होती, औसतन)। इस तरह के कदम के लिए उन्हें जितना अधिक भुगतान करने को तैयार होना चाहिए, उसे मौसम पूर्वानुमान पर [[जानकारी का मूल्य]] कहा जाता है, जो अनिवार्य रूप से ''मौसम की स्थिति'' पर [[नमूना जानकारी का अपेक्षित मूल्य]] है। | |||
इसी तरह, | इसी तरह, डिसीजन लेने वाले के लिए परिदृश्य 3 से परिदृश्य 1 में जाना सबसे अच्छा है। इस तरह के कदम के लिए उन्हें जितना अधिक भुगतान करने को तैयार होना चाहिए, उसे ''मौसम की स्थिति'' पर सही जानकारी का अपेक्षित मूल्य कहा जाता है। | ||
इस सरल आईडी की प्रयोज्यता और सूचना अवधारणा का मूल्य | इस सरल आईडी की प्रयोज्यता और सूचना अवधारणा का मूल्य उत्कृष्ट है, खासकर डिसीजन लेने में जब अधिकांश डिसीजन अपने रोगियों, बीमारियों आदि के बारे में अपूर्ण जानकारी के साथ लेने पड़ते हैं। | ||
==संबंधित अवधारणाएँ== | ==संबंधित अवधारणाएँ== | ||
प्रभाव आरेख पदानुक्रमित होते हैं और इन्हें | प्रभाव आरेख पदानुक्रमित होते हैं और इन्हें उनकी संरचना के संदर्भ में या आरेख तत्वों के बीच फंक्शनल और संख्यात्मक संबंध के संदर्भ में अधिक विस्तार से परिभाषित किया जा सकता है। आईडी जिसे सभी स्तरों - संरचना, कार्य और संख्या - पर लगातार परिभाषित किया जाता है, अच्छी तरह से परिभाषित गणितीय प्रतिनिधित्व है और इसे ''अच्छी तरह से निर्मित प्रभाव आरेख'' (डब्ल्यूएफआईडी) के रूप में जाना जाता है। संभाव्य, अनुमानात्मक और निर्णय संबंधी प्रश्नों के बड़े वर्ग के उत्तर प्राप्त करने के लिए उत्क्रमण और निष्कासन संचालन का उपयोग करके डब्ल्यूएफआईडी का मूल्यांकन किया जा सकता है। बायेसियन नेटवर्क अनुमान (विश्वास प्रसार) से संबंधित कृत्रिम बुद्धिमत्ता शोधकर्ताओं द्वारा हाल ही की तकनीकें विकसित की गई हैं। | ||
प्रभाव आरेख जिसमें केवल अनिश्चितता नोड्स (यानी, बायेसियन नेटवर्क) होते हैं, को '''[[प्रासंगिकता]] आरेख''' भी कहा जाता है। नोड ''A'' को ''B'' से जोड़ने वाला आर्क न केवल यह दर्शाता है कि "''A'', ''B'' के लिए प्रासंगिक है", बल्कि यह भी कि "''B'', ''A'' के लिए प्रासंगिक है" (यानी, प्रासंगिकता [[सममित]] संबंध है)। | |||
==यह भी देखें== | ==यह भी देखें== | ||
{{div col}} | {{div col}} | ||
* | *बेयसियन नेटवर्क | ||
*[[ | *[[डिसीजन मेकिंग सॉफ्टवेयर]] | ||
* | *डिसीजन ट्री | ||
*[[फ़िशबोन चित्र]] | *[[फ़िशबोन चित्र]] | ||
*[[फ़्लोचार्ट]] | *[[फ़्लोचार्ट]] | ||
Line 91: | Line 90: | ||
*[http://www.lumina.com/technology/influence-diagrams/ What are influence diagrams?] | *[http://www.lumina.com/technology/influence-diagrams/ What are influence diagrams?] | ||
*{{cite journal |first=J. |last=Pearl |title=Influence Diagrams — Historical and Personal Perspectives |journal=Decision Analysis |volume=2 |issue=4 |pages=232–4 |date=December 2005 |doi=10.1287/deca.1050.0055 |url=http://ftp.cs.ucla.edu/pub/stat_ser/r326.pdf |format=PDF}} | *{{cite journal |first=J. |last=Pearl |title=Influence Diagrams — Historical and Personal Perspectives |journal=Decision Analysis |volume=2 |issue=4 |pages=232–4 |date=December 2005 |doi=10.1287/deca.1050.0055 |url=http://ftp.cs.ucla.edu/pub/stat_ser/r326.pdf |format=PDF}} | ||
[[Category: | [[Category:CS1 errors]] | ||
[[Category:Created On 11/07/2023]] | [[Category:Created On 11/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:चित्र]] | |||
[[Category:निर्णय विश्लेषण]] | |||
[[Category:बायेसियन नेटवर्क]] |
Latest revision as of 16:05, 22 August 2023
प्रभाव आरेख (आईडी) (जिसे प्रासंगिकता आरेख, डिसीजन (डिसीजन) आरेख या डिसीजन नेटवर्क भी कहा जाता है) डिसीजन स्थिति का एक संक्षिप्त ग्राफिकल और गणितीय प्रतिनिधित्व है। यह बायेसियन नेटवर्क का एक सामान्यीकरण है, जिसमें न केवल संभाव्य अनुमान समस्याओं को बल्कि डिसीजन लेने की समस्याओं (अधिकतम अपेक्षित उपयोगिता मानदंड के बाद) को भी मॉडलिंग और हल किया जा सकता है।
आईडी को पहली बार 1970 के दशक के मध्य में डिसीजन विश्लेषकों द्वारा सहज ज्ञान युक्त अर्थ के साथ विकसित किया गया था जिसे समझना आसान है। इसे अब व्यापक रूप से अपनाया गया है और यह डिसीजन ट्री का विकल्प बन गया है, जो सामान्यतः प्रत्येक चर मॉडल के साथ कई शाखाओं में तेजी से वृद्धि से ग्रस्त है। आईडी सीधे टीम डिसीजन विश्लेषण में लागू होती है क्योंकि यह टीम के सदस्यों के बीच जानकारी के अपूर्ण आदान-प्रदान को स्पष्ट रूप से मॉडलिंग और हल करने की अनुमति देती है। आईडी के एक्सटेंशन का उपयोग गेम थ्योरी में गेम ट्री के वैकल्पिक प्रतिनिधित्व के रूप में भी होता है।
शब्दार्थ
आईडी एक निर्देशित चक्रीय ग्राफ है जिसमें तीन प्रकार के नोड (प्लस उपप्रकार) और नोड्स के बीच तीन प्रकार के आर्क (या तीर) होते हैं।
नोड्स:
- डिसीजन नोड (प्रत्येक डिसीजन के अनुरूप) आयत के रूप में बनाया गया है।
- अनिश्चितता नोड (प्रतिरूपित की जाने वाली प्रत्येक अनिश्चितता के अनुरूप) दीर्घवृत्त के रूप में तैयार किया गया है।
- नियतात्मक नोड (एक विशेष प्रकार की अनिश्चितता के अनुरूप इसका परिणाम नियतात्मक रूप से ज्ञात होता है जब भी कुछ अन्य अनिश्चितताओं का परिणाम भी ज्ञात होता है) एक दोहरे दीर्घवृत्त के रूप में तैयार किया जाता है।
- वैल्यू नोड (एडिटिवली वियोज्य वॉन न्यूमैन-मॉर्गनस्टर्न उपयोगिता फलन के प्रत्येक घटक के अनुरूप) को एक अष्टकोण (या हीरे) के रूप में तैयार किया गया है।
आर्क्स:
- फंक्शनल आर्क्स (मूल्य नोड में समाप्त होने वाले) से संकेत मिलता है कि योगात्मक रूप से अलग करने योग्य उपयोगिता फलन के घटकों में से एक उनके टेल पर सभी नोड्स का एक फलन है।
- सशर्त आर्क (अनिश्चितता नोड में समाप्त होने वाले) से संकेत मिलता है कि उनके शीर्ष पर अनिश्चितता संभावित रूप से उनके टेल के सभी नोड्स पर प्रतिबन्धित है।
- सशर्त आर्क्स (नियतात्मक नोड में समाप्त होने वाले) से संकेत मिलता है कि उनके शीर्ष पर अनिश्चितता उनके टेल के सभी नोड्स पर नियतात्मक रूप से प्रतिबंधित है।
- सूचनात्मक आर्क्स (डिसीजन नोड में समाप्त होने वाले) इंगित करते हैं कि उनके शीर्ष पर डिसीजन पहले से ज्ञात उनके टेल के सभी नोड्स के परिणाम के साथ किया जाता है।
उचित रूप से संरचित आईडी दी गई:
- डिसीजन नोड्स और आने वाली जानकारी सामूहिक रूप से विकल्पों को बताती है (क्या किया जा सकता है जब कुछ निर्णयों और/या अनिश्चितताओं के नतीजे पहले से ज्ञात हों)
- अनिश्चितता/नियतात्मक नोड्स और आने वाली सशर्त आर्क सामूहिक रूप से सूचना को मॉडल करते हैं (क्या ज्ञात हैं और उनके संभाव्य/नियतात्मक संबंध)
- मूल्य नोड्स और आने वाले फंक्शनल आर्क सामूहिक रूप से वरीयता को मापते हैं (कैसे चीजों को एक दूसरे पर प्राथमिकता दी जाती है)।
डिसीजन विश्लेषण में वैकल्पिक, सूचना और प्राथमिकता को डिसीजन आधार कहा जाता है, वे किसी भी वैध डिसीजन स्थिति के तीन आवश्यक घटकों का प्रतिनिधित्व करते हैं।
औपचारिक रूप से, प्रभाव आरेख के शब्दार्थ नोड्स और आर्क्स के अनुक्रमिक निर्माण पर आधारित होते हैं, जो आरेख में सभी सशर्त स्वतंत्रताओं के विनिर्देश का अर्थ है। विनिर्देश बायेसियन नेटवर्क के -पृथक्करण मानदंड द्वारा परिभाषित किया गया है। इस शब्दार्थ के अनुसार, प्रत्येक नोड संभावित रूप से अपने गैर-उत्तराधिकारी नोड्स से स्वतंत्र है, जो इसके पूर्ववर्ती नोड्स के परिणाम को देखते हैं। इसी तरह, गैर-मूल्य नोड और गैर-मूल्य नोड के बीच लापता आर्क का अर्थ है कि गैर-मूल्य नोड्स , जैसे, के पेरेंट्स का समुच्चय उपस्थित है, में नोड्स के परिणाम को देखते हुए से स्वतंत्र का प्रतिपादन करता है।
उदाहरण
उस स्थिति का प्रतिनिधित्व करने वाले सरल प्रभाव आरेख पर विचार करें जहां निर्णय-निर्माता अपनी प्रावकाश की योजना बना रहा है।
- 1 डिसीजन नोड (प्रावकाश गतिविधि), 2 अनिश्चितता नोड (मौसम की स्थिति, मौसम का पूर्वानुमान), और 1 मूल्य नोड (ऋणमुक्ति) है।
- 2 फंक्शनल आर्क (ऋणमुक्ति में समाप्त), 1 सशर्त आर्क (मौसम पूर्वानुमान में समाप्त), और 1 सूचनात्मक आर्क (प्रावकाश गतिविधि में समाप्त) हैं।
- ऋणमुक्ति में समाप्त होने वाले फंक्शनल आर्क इंगित करते हैं कि ऋणमुक्ति मौसम की स्थिति और प्रावकाश गतिविधि का एक उपयोगिता कार्य है। दूसरे शब्दों में, उनकी ऋणमुक्ति को परिमाणित किया जा सकता है यदि वे जानते हैं कि मौसम कैसा है और उनकी पसंद की गतिविधि क्या है। (ध्यान दें कि वे सीधे मौसम पूर्वानुमान को महत्व नहीं देते हैं)
- मौसम पूर्वानुमान में समाप्त होने वाला सशर्त आर्क उनके विश्वास को इंगित करता है कि मौसम पूर्वानुमान और मौसम की स्थिति निर्भर हो सकती है।
- प्रावकाश गतिविधि में समाप्त होने वाला सूचनात्मक आर्क इंगित करता है कि वे अपनी पसंद बनाते समय केवल मौसम का पूर्वानुमान ही जानेंगे, मौसम की स्थिति नहीं। दूसरे शब्दों में, वास्तविक मौसम का पता उनके चुनाव करने के बाद ही चलेगा और इस स्तर पर वे केवल पूर्वानुमान पर ही भरोसा कर सकते हैं।
- यह शब्दार्थ की दृष्टि से भी इस प्रकार है, उदाहरण के लिए, कि प्रावकाश गतिविधि मौसम की स्थिति से स्वतंत्र (अप्रासंगिक) है, बशर्ते कि मौसम का पूर्वानुमान ज्ञात हो।
सूचना के मूल्य पर प्रयोज्यता
उपरोक्त उदाहरण सूचना के मूल्य के रूप में ज्ञात डिसीजन विश्लेषण में अत्यंत महत्वपूर्ण अवधारणा का प्रतिनिधित्व करने में प्रभाव आरेख की शक्ति पर प्रकाश डालता है। निम्नलिखित तीन परिदृश्यों पर विचार करें;
- परिदृश्य 1: निर्णयकर्ता यह जानते हुए भी अपनी प्रावकाश गतिविधि का डिसीजन ले सकता है कि मौसम की स्थिति कैसी होगी। यह उपरोक्त प्रभाव आरेख में मौसम की स्थिति से लेकर प्रावकाश गतिविधि तक अतिरिक्त सूचनात्मक आर्क जोड़ने से मेल खाता है।
- परिदृश्य 2: मूल प्रभाव आरेख जैसा कि ऊपर दिखाया गया है।
- परिदृश्य 3: डिसीजन-निर्माता मौसम पूर्वानुमान को जाने बिना भी अपना डिसीजन लेते हैं। यह उपरोक्त प्रभाव आरेख में मौसम पूर्वानुमान से प्रावकाश गतिविधि तक सूचनात्मक आर्क को हटाने से मेल खाता है।
इस डिसीजन की स्थिति के लिए परिदृश्य 1 सबसे अच्छा संभव परिदृश्य है क्योंकि डिसीजन लेते समय वे किस चीज़ (मौसम की स्थिति) की परवाह करते हैं, इस पर अब कोई अनिश्चितता नहीं है। परिदृश्य 3, हालांकि, इस डिसीजन की स्थिति के लिए सबसे खराब संभावित परिदृश्य है क्योंकि उन्हें बिना किसी संकेत (मौसम पूर्वानुमान) के अपना डिसीजन लेने की आवश्यकता होती है कि वे किस बारे में ध्यान करते हैं (मौसम की स्थिति) क्या होगा।
डिसीजन लेने वाले के लिए सामान्यतः नई जानकारी प्राप्त करके परिदृश्य 3 से परिदृश्य 2 में जाना बेहतर होता है (निश्चित रूप से इससे बदतर स्थिति नहीं होती, औसतन)। इस तरह के कदम के लिए उन्हें जितना अधिक भुगतान करने को तैयार होना चाहिए, उसे मौसम पूर्वानुमान पर जानकारी का मूल्य कहा जाता है, जो अनिवार्य रूप से मौसम की स्थिति पर नमूना जानकारी का अपेक्षित मूल्य है।
इसी तरह, डिसीजन लेने वाले के लिए परिदृश्य 3 से परिदृश्य 1 में जाना सबसे अच्छा है। इस तरह के कदम के लिए उन्हें जितना अधिक भुगतान करने को तैयार होना चाहिए, उसे मौसम की स्थिति पर सही जानकारी का अपेक्षित मूल्य कहा जाता है।
इस सरल आईडी की प्रयोज्यता और सूचना अवधारणा का मूल्य उत्कृष्ट है, खासकर डिसीजन लेने में जब अधिकांश डिसीजन अपने रोगियों, बीमारियों आदि के बारे में अपूर्ण जानकारी के साथ लेने पड़ते हैं।
संबंधित अवधारणाएँ
प्रभाव आरेख पदानुक्रमित होते हैं और इन्हें उनकी संरचना के संदर्भ में या आरेख तत्वों के बीच फंक्शनल और संख्यात्मक संबंध के संदर्भ में अधिक विस्तार से परिभाषित किया जा सकता है। आईडी जिसे सभी स्तरों - संरचना, कार्य और संख्या - पर लगातार परिभाषित किया जाता है, अच्छी तरह से परिभाषित गणितीय प्रतिनिधित्व है और इसे अच्छी तरह से निर्मित प्रभाव आरेख (डब्ल्यूएफआईडी) के रूप में जाना जाता है। संभाव्य, अनुमानात्मक और निर्णय संबंधी प्रश्नों के बड़े वर्ग के उत्तर प्राप्त करने के लिए उत्क्रमण और निष्कासन संचालन का उपयोग करके डब्ल्यूएफआईडी का मूल्यांकन किया जा सकता है। बायेसियन नेटवर्क अनुमान (विश्वास प्रसार) से संबंधित कृत्रिम बुद्धिमत्ता शोधकर्ताओं द्वारा हाल ही की तकनीकें विकसित की गई हैं।
प्रभाव आरेख जिसमें केवल अनिश्चितता नोड्स (यानी, बायेसियन नेटवर्क) होते हैं, को प्रासंगिकता आरेख भी कहा जाता है। नोड A को B से जोड़ने वाला आर्क न केवल यह दर्शाता है कि "A, B के लिए प्रासंगिक है", बल्कि यह भी कि "B, A के लिए प्रासंगिक है" (यानी, प्रासंगिकता सममित संबंध है)।
यह भी देखें
- बेयसियन नेटवर्क
- डिसीजन मेकिंग सॉफ्टवेयर
- डिसीजन ट्री
- फ़िशबोन चित्र
- फ़्लोचार्ट
- रूपात्मक विश्लेषण (समस्या-समाधान)
ग्रन्थसूची
- Detwarasiti, A.; Shachter, R.D. (December 2005). "Influence diagrams for team decision analysis" (PDF). Decision Analysis. 2 (4): 207–228. doi:10.1287/deca.1050.0047.
- Holtzman, Samuel (1988). Intelligent decision systems. Addison-Wesley. ISBN 978-0-201-11602-1.
- Howard, R.A. and J.E. Matheson, "Influence diagrams" (1981), in Readings on the Principles and Applications of Decision Analysis, eds. R.A. Howard and J.E. Matheson, Vol. II (1984), Menlo Park CA: Strategic Decisions Group.
- Koller, D.; Milch, B. (October 2003). "Multi-agent influence diagrams for representing and solving games" (PDF). Games and Economic Behavior. 45: 181–221. doi:10.1016/S0899-8256(02)00544-4.
- Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Representation and Reasoning Series. San Mateo CA: Morgan Kaufmann. ISBN 0-934613-73-7.
- Shachter, R.D. (November–December 1986). "Evaluating influence diagrams" (PDF). Operations Research. 34 (6): 871–882. doi:10.1287/opre.34.6.871.
- Shachter, R.D. (July–August 1988). "Probabilistic inference and influence diagrams" (PDF). Operations Research. 36 (4): 589–604. doi:10.1287/opre.36.4.589. hdl:10338.dmlcz/135724.
- Virine, Lev; Trumper, Michael (2008). Project Decisions: The Art and Science. Vienna VA: Management Concepts. ISBN 978-1-56726-217-9.
- Pearl, J. (1985). Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning (UCLA Technical Report CSD-850017). Proceedings of the Seventh Annual Conference of the Cognitive Science Society 15–17 April 1985. http://ftp.cs.ucla.edu/tech-report/198_-reports/850017.pdf., University of California, Irvine, CA. pp. 329–334. Retrieved 2010-05-01.
{{cite conference}}
: External link in
(help)|conference=
बाहरी संबंध
- What are influence diagrams?
- Pearl, J. (December 2005). "Influence Diagrams — Historical and Personal Perspectives" (PDF). Decision Analysis. 2 (4): 232–4. doi:10.1287/deca.1050.0055.