हीलियम फ्लैश: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Brief thermal runaway nuclear fusion in the core of low mass stars}} File:Helium flash.svg|300px|thumb|right|कम द्रव्यमान वाल...")
 
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Brief thermal runaway nuclear fusion in the core of low mass stars}}
{{short description|Brief thermal runaway nuclear fusion in the core of low mass stars}}
[[File:Helium flash.svg|300px|thumb|right|कम द्रव्यमान वाले तारों के केंद्र में हीलियम का संलयन।]][[हीलियम]] फ्लैश कम द्रव्यमान वाले तारों (0.8 [[सौर द्रव्यमान]] के बीच) के कोर में [[ट्रिपल-अल्फा प्रक्रिया]] के माध्यम से [[कार्बन]] में बड़ी मात्रा में हीलियम का एक बहुत संक्षिप्त थर्मल भगोड़ा [[परमाणु संलयन]] है ({{Solar mass|link=yes}}) और 2.0 {{Solar mass}}<ref>{{cite book|type=lecture notes|title=तारकीय संरचना और विकास|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}</ref>) उनके [[लाल विशाल]] चरण के दौरान (सूर्य को [[मुख्य अनुक्रम]] छोड़ने के 1.2 अरब वर्ष बाद एक फ्लैश का अनुभव होने की भविष्यवाणी की गई है)। अभिवृद्धि (खगोल भौतिकी) सफेद बौने सितारों की सतह पर एक बहुत ही दुर्लभ भगोड़ा हीलियम संलयन प्रक्रिया भी हो सकती है।
[[File:Helium flash.svg|300px|thumb|right|कम द्रव्यमान वाले तारों के केंद्र में हीलियम का विलयन ।]]


कम द्रव्यमान वाले तारे सामान्य हीलियम संलयन शुरू करने के लिए पर्याप्त [[गुरुत्वाकर्षण]] दबाव उत्पन्न नहीं करते हैं। जैसे ही कोर में हाइड्रोजन समाप्त हो जाता है, पीछे बचे कुछ हीलियम को आदर्श गैस कानून के बजाय [[क्वांटम यांत्रिकी]] दबाव द्वारा [[गुरुत्वाकर्षण पतन]] के खिलाफ समर्थित, [[पतित पदार्थ]] में संकुचित कर दिया जाता है। इससे कोर का घनत्व और तापमान तब तक बढ़ जाता है जब तक कि यह लगभग 100 मिलियन [[केल्विन]] तक नहीं पहुंच जाता, जो कोर में हीलियम संलयन (या हीलियम जलने) का कारण बनने के लिए पर्याप्त गर्म होता है।
'''हीलियम फ्लैश''' कम द्रव्यमान वाले तारों (0.8 सौर द्रव्यमान {{Solar mass|link=yes}}) और 2.0 {{Solar mass|link=yes}}<ref>{{cite book|type=lecture notes|title=तारकीय संरचना और विकास|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}</ref> के बीच) के समय ट्रिपल-अल्फा प्रक्रिया के माध्यम से कार्बन में हीलियम की बड़ी मात्रा का बहुत ही संक्षिप्त थर्मल रनवे परमाणु विलयन है। लाल विशाल चरण (सूर्य को मुख्य अनुक्रम छोड़ने के 1.2 अरब वर्ष पश्चात् फ़्लैश का अनुभव होने की पूर्वानुमान की गई है)। बढ़ते हुए सफेद वामन तारों की सतह पर बहुत ही दुर्लभ रनवे हीलियम विलयन प्रक्रिया भी हो सकती है।


हालाँकि, पतित पदार्थ का एक मौलिक गुण यह है कि तापमान में वृद्धि से पदार्थ की मात्रा में वृद्धि नहीं होती है जब तक कि थर्मल दबाव इतना अधिक न हो जाए कि यह अपक्षयी दबाव से अधिक न हो जाए। मुख्य अनुक्रम तारों में, हाइड्रोस्टैटिक संतुलन कोर तापमान को नियंत्रित करता है, लेकिन पतित कोर में ऐसा नहीं होता है। हीलियम संलयन से तापमान बढ़ता है, जिससे संलयन दर बढ़ती है, जिससे भगोड़े प्रतिक्रिया में तापमान और बढ़ जाता है। इससे अत्यंत तीव्र हीलियम संलयन की एक चमक उत्पन्न होती है जो केवल कुछ हज़ार वर्षों तक (खगोलीय पैमाने पर तात्कालिक) रहती है, लेकिन, कुछ ही सेकंड में, संपूर्ण [[आकाशगंगा]] के बराबर दर से ऊर्जा उत्सर्जित करती है।
कम द्रव्यमान वाले तारे सामान्य हीलियम विलयन प्रारंभ करने के लिए पर्याप्त [[गुरुत्वाकर्षण]] दबाव उत्पन्न नहीं करते हैं। जैसे ही कोर में हाइड्रोजन समाप्त हो जाता है, जिसके पीछे बचे कुछ हीलियम को आदर्श गैस नियम के अतिरिक्त [[क्वांटम यांत्रिकी]] दबाव द्वारा [[गुरुत्वाकर्षण पतन]] के विपरीत समर्थित, [[पतित पदार्थ|ड्वार्फ पदार्थ]] में संकुचित कर दिया जाता है। इससे कोर का घनत्व और तापमान तब तक बढ़ जाता है जब तक कि यह लगभग 100 मिलियन [[केल्विन]] तक नहीं पहुंच जाता है, जो कोर में हीलियम विलयन (या हीलियम जलने) का कारण बनने के लिए पर्याप्त गर्म होता है।


सामान्य कम द्रव्यमान वाले तारों के मामले में, विशाल ऊर्जा रिलीज के कारण कोर का अधिकांश हिस्सा अध: पतन से बाहर आ जाता है, जिससे इसे थर्मल रूप से विस्तारित होने की इजाजत मिलती है, हालांकि, हीलियम फ्लैश द्वारा जारी कुल ऊर्जा के बराबर ऊर्जा की खपत होती है, और कोई भी बचा हुआ -अधिक ऊर्जा तारे की ऊपरी परतों में अवशोषित हो जाती है। इस प्रकार हीलियम फ्लैश ज्यादातर अवलोकन द्वारा पता नहीं चल पाता है, और इसका वर्णन केवल खगोल भौतिकी मॉडल द्वारा किया जाता है। कोर के विस्तार और ठंडा होने के बाद, तारे की सतह तेजी से ठंडी हो जाती है और 10,000 वर्षों में सिकुड़ जाती है जब तक कि यह अपनी पूर्व त्रिज्या और चमक का लगभग 2% न रह जाए। यह अनुमान लगाया गया है कि इलेक्ट्रॉन-विकृत हीलियम कोर का वजन तारे के द्रव्यमान का लगभग 40% होता है और कोर का 6% कार्बन में परिवर्तित हो जाता है।<ref>{{cite web |url= http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title= सूर्य का अंत|first= David |last= Taylor |website= North Western }}</ref>
चूँकि, ड्वार्फ पदार्थ का मौलिक गुण यह है कि तापमान में वृद्धि से पदार्थ की मात्रा में वृद्धि नहीं होती है जब तक कि थर्मल दबाव इतना अधिक न हो जाए कि यह अपक्षयी दबाव से अधिक न हो जाए। मुख्य अनुक्रम तारों में, हाइड्रोस्टैटिक संतुलन कोर तापमान को नियंत्रित करता है, किंतु ड्वार्फ कोर में ऐसा नहीं होता है। हीलियम विलयन से तापमान बढ़ता है, जिससे विलयन दर बढ़ती है, जिससे रनवे प्रतिक्रिया में तापमान और बढ़ जाता है। इससे अत्यंत तीव्र हीलियम विलयन की फ़्लैश उत्पन्न होती है जो केवल कुछ हज़ार वर्षों तक (खगोलीय मापदंड पर तात्कालिक) रहती है, किंतु, कुछ ही सेकंड में, संपूर्ण [[आकाशगंगा|गैलक्सी]] के समान दर से ऊर्जा उत्सर्जित करती है।


सामान्य कम द्रव्यमान वाले तारों के स्थिति में, विशाल ऊर्जा रिलीज के कारण कोर का अधिकांश भाग अध: पतन से बाहर आ जाता है, जिससे इसे थर्मल रूप से विस्तारित होने की स्वीकृति मिलती है, चूँकि, हीलियम फ्लैश द्वारा जारी कुल ऊर्जा के समान ऊर्जा की खपत होती है, और कोई भी बचा हुआ -अधिक ऊर्जा तारे की ऊपरी लेयर में अवशोषित हो जाती है। इस प्रकार हीलियम फ्लैश अधिकत्तर अवलोकन द्वारा पता नहीं चल पाता है, और इसका वर्णन केवल खगोल भौतिकी मॉडल द्वारा किया जाता है। जो की कोर के विस्तार और ठंडा होने के पश्चात्, तारे की सतह तेजी से ठंडी हो जाती है और 10,000 वर्षों में सिकुड़ जाती है जब तक कि यह अपनी पूर्व त्रिज्या और प्रकाश का लगभग 2% न रह जाए। यह अनुमान लगाया गया है कि इलेक्ट्रॉन-विकृत हीलियम कोर का वजन तारे के द्रव्यमान का लगभग 40% होता है और कोर का 6% कार्बन में परिवर्तित हो जाता है।<ref>{{cite web |url= http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title= सूर्य का अंत|first= David |last= Taylor |website= North Western }}</ref>


==लाल दिग्गज==
[[File:White Dwarf Resurrection.jpg|thumb|सकुराई की वस्तु एक सफेद बौना है जो हीलियम फ्लैश से गुजर रहा है।<ref>{{cite web|title=सफेद बौना पुनरुत्थान|url=http://www.eso.org/public/images/potw1531a/|access-date=3 August 2015}}</ref>]]2.0 से कम वाले तारों में [[तारकीय विकास]] के लाल विशाल चरण के दौरान {{Solar mass}} हाइड्रोजन का परमाणु संलयन कोर में समाप्त हो जाता है क्योंकि यह समाप्त हो जाता है, जिससे हीलियम युक्त कोर निकल जाता है। जबकि तारे के खोल में हाइड्रोजन का संलयन जारी रहता है, जिससे कोर में हीलियम का संचय जारी रहता है, जिससे कोर सघन हो जाता है, फिर भी तापमान हीलियम संलयन के लिए आवश्यक स्तर तक पहुंचने में असमर्थ होता है, जैसा कि अधिक विशाल सितारों में होता है। इस प्रकार संलयन से थर्मल दबाव अब गुरुत्वाकर्षण पतन का मुकाबला करने और अधिकांश सितारों में पाए जाने वाले हाइड्रोस्टैटिक संतुलन बनाने के लिए पर्याप्त नहीं है। इसके कारण तारे का तापमान सिकुड़ना और बढ़ना शुरू हो जाता है, जब तक कि यह अंततः हीलियम कोर के विकृत पदार्थ बनने के लिए पर्याप्त रूप से संकुचित नहीं हो जाता। यह अध:पतन दबाव अंततः सबसे केंद्रीय सामग्री के आगे पतन को रोकने के लिए पर्याप्त है लेकिन शेष कोर सिकुड़ता रहता है और तापमान तब तक बढ़ता रहता है जब तक कि यह एक बिंदु तक नहीं पहुंच जाता ({{val|p=≈|1|e=8|ul=K}}) जिस पर हीलियम प्रज्वलित हो सकता है और संलयन शुरू हो सकता है।<ref name=Hansen2004>{{cite book|title=तारकीय आंतरिक साज-सज्जा - भौतिक सिद्धांत, संरचना और विकास|url=https://archive.org/details/stellarinteriors00hans_446|url-access=limited|last1=Hansen|first1=Carl J.|last2=Kawaler|first2=Steven D.|last3=Trimble|first3=Virginia|isbn=978-0387200897 |date=2004|edition=2|publisher=Springer|pages=[https://archive.org/details/stellarinteriors00hans_446/page/n73 62]–5}}</ref><ref name=Seeds2012>{{cite book|title=खगोल विज्ञान की नींव|last1=Seeds|first1=Michael A.|last2=Backman|first2=Dana E.|pages=249–51|date=2012|edition=12|publisher=[[Cengage Learning]]|isbn=978-1133103769}}</ref><ref name=Karttunen2007>{{cite book|title=मौलिक खगोल विज्ञान|url=https://archive.org/details/fundamentalastro00kart_346|url-access=limited|isbn=978-3540341437|edition=5|page=[https://archive.org/details/fundamentalastro00kart_346/page/n251 249]|editor-first=Hannu|editor-last=Karttunen|editor2-first=Pekka|editor2-last=Kröger|editor3-first=Heikki|editor3-last=Oja|editor4-first=Markku|editor4-last=Poutanen|editor5-first=Karl Johan|editor5-last=Donner|publisher=Springer|date=2007-06-27}}</ref>
हीलियम फ़्लैश की विस्फोटक प्रकृति इसके अपक्षयी पदार्थ में होने से उत्पन्न होती है। एक बार जब तापमान 100 मिलियन-200 मिलियन केल्विन तक पहुंच जाता है और हीलियम संलयन ट्रिपल-अल्फा प्रक्रिया का उपयोग करना शुरू कर देता है, तो तापमान तेजी से बढ़ता है, जिससे हीलियम संलयन दर बढ़ जाती है और, क्योंकि पतित पदार्थ एक अच्छा थर्मल चालन है, जिससे प्रतिक्रिया क्षेत्र का विस्तार होता है।


हालाँकि, चूंकि अध:पतन दबाव (जो पूरी तरह से घनत्व का एक कार्य है) थर्मल दबाव (घनत्व और तापमान के उत्पाद के आनुपातिक) पर हावी हो रहा है, कुल दबाव केवल तापमान पर कमजोर रूप से निर्भर है। इस प्रकार, तापमान में नाटकीय वृद्धि से केवल दबाव में मामूली वृद्धि होती है, इसलिए कोर का कोई स्थिर शीतलन विस्तार नहीं होता है।


यह आकस्मिक प्रतिक्रिया तेजी से तारे के सामान्य ऊर्जा उत्पादन (कुछ सेकंड के लिए) से लगभग 100 बिलियन गुना तक बढ़ जाती है जब तक कि तापमान इस बिंदु तक नहीं बढ़ जाता कि थर्मल दबाव फिर से प्रभावी हो जाता है, जिससे अध: पतन समाप्त हो जाता है। इसके बाद कोर का विस्तार और ठंडा हो सकता है और हीलियम का स्थिर जलना जारी रहेगा।<ref>{{Cite journal| volume = 317| pages = 724–732| last = Deupree| first = R. G.|author2=R. K. Wallace| title = कोर हीलियम फ़्लैश और सतह बहुतायत विसंगतियाँ| journal = Astrophysical Journal| date = 1987|bibcode = 1987ApJ...317..724D| doi = 10.1086/165319}}</ref>
एक तारा जिसका द्रव्यमान लगभग 2.25 से अधिक है {{Solar mass}} हीलियम को उसके मूल को नष्ट किए बिना जलाना शुरू कर देता है, और इसलिए इस प्रकार की हीलियम फ़्लैश प्रदर्शित नहीं होती है। बहुत कम द्रव्यमान वाले तारे में (लगभग 0.5 से कम)। {{Solar mass}}), कोर कभी भी हीलियम को प्रज्वलित करने के लिए पर्याप्त गर्म नहीं होता है। विकृत हीलियम कोर सिकुड़ता रहेगा, और अंततः बहुत कम द्रव्यमान वाला एक सफेद बौना #सितारा बन जाएगा।


हीलियम फ्लैश विद्युत चुम्बकीय विकिरण द्वारा सतह पर सीधे देखने योग्य नहीं है। फ्लैश तारे के अंदर गहरे कोर में होता है, और इसका शुद्ध प्रभाव यह होगा कि जारी की गई सभी ऊर्जा पूरे कोर द्वारा अवशोषित हो जाती है, जिससे पतित अवस्था गैर-डीजनरेट हो जाती है। पहले की गणनाओं से संकेत मिलता था कि कुछ मामलों में गैर-विघटनकारी सामूहिक हानि संभव होगी,<ref name="Deupree1984">{{cite journal|last1= Deupree|first1= R. G.|title= कोर हीलियम फ्लैश के दो- और तीन-आयामी संख्यात्मक सिमुलेशन|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D}}</ref> लेकिन बाद में न्यूट्रिनो ऊर्जा हानि को ध्यान में रखते हुए स्टार मॉडलिंग से ऐसी कोई सामूहिक हानि नहीं होने का संकेत मिलता है।<ref name="Deupree1996">{{cite journal|last1= Deupree|first1=R. G.|title= कोर हीलियम फ्लैश का पुन: परीक्षण|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}</ref><ref>{{Cite thesis |bibcode = 2009PhDT.........2M|title = कम द्रव्यमान वाले तारों में कोर हीलियम फ्लैश के बहुआयामी हाइड्रोडायनामिक सिमुलेशन|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}</ref>
==लाल जाएंट्स                                                                                                                                  ==
एक सौर द्रव्यमान वाले तारे में, हीलियम फ्लैश लगभग जारी होने का अनुमान है {{val|5|e=41|ul=J}},<ref name="Edwards19690">{{cite journal | author=Edwards, A. C.|title= हीलियम फ्लैश का हाइड्रोडायनामिक्स| journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}</ref> या ऊर्जा विमोचन का लगभग 0.3% {{val|1.5|e=44|ul=J}} प्रकार Ia सुपरनोवा,<ref name="Khokhlov1993">{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= विभिन्न विस्फोट तंत्रों के साथ टाइप IA सुपरनोवा मॉडल के प्रकाश वक्र| journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&A...270..223K}}</ref> जो कार्बन-ऑक्सीजन सफेद बौने में अनुरूप [[कार्बन विस्फोट]] से उत्पन्न होता है।
[[File:White Dwarf Resurrection.jpg|thumb|सकुराई की वस्तु सफेद वामन है जो हीलियम फ्लैश से गुजर रहा है।<ref>{{cite web|title=सफेद बौना पुनरुत्थान|url=http://www.eso.org/public/images/potw1531a/|access-date=3 August 2015}}</ref>]]2.0 से कम वाले तारों में [[तारकीय विकास]] के लाल विशाल चरण के समय {{Solar mass}} हाइड्रोजन का परमाणु विलयन कोर में समाप्त हो जाता है क्योंकि यह समाप्त हो जाता है, जिससे हीलियम युक्त कोर निकल जाता है। जबकि तारे के खोल में हाइड्रोजन का विलयन जारी रहता है, जिससे कोर में हीलियम का संचय जारी रहता है, जिससे कोर सघन हो जाता है, फिर भी तापमान हीलियम विलयन के लिए आवश्यक स्तर तक पहुंचने में असमर्थ होता है, जैसा कि अधिक विशाल सितारों में होता है। इस प्रकार विलयन से थर्मल दबाव अब गुरुत्वाकर्षण पतन का प्रतियोगिता करने और अधिकांश सितारों में पाए जाने वाले हाइड्रोस्टैटिक संतुलन बनाने के लिए पर्याप्त नहीं है। इसके कारण तारे का तापमान सिकुड़ना और बढ़ना प्रारंभ हो जाता है, जब तक कि यह अंततः हीलियम कोर के विकृत पदार्थ बनने के लिए पर्याप्त रूप से संकुचित नहीं हो जाता है। यह अध:पतन दबाव अंततः सबसे केंद्रीय पदार्थ के आगे पतन को रोकने के लिए पर्याप्त है किंतु शेष कोर संकुचन रहता है और तापमान तब तक बढ़ता रहता है जब तक कि यह बिंदु ({{val|p=|1|e=8|ul=K}}) तक नहीं पहुंच जाता है जिस पर हीलियम प्रज्वलित हो सकता है और विलयन प्रारंभ हो सकता है।<ref name=Hansen2004>{{cite book|title=तारकीय आंतरिक साज-सज्जा - भौतिक सिद्धांत, संरचना और विकास|url=https://archive.org/details/stellarinteriors00hans_446|url-access=limited|last1=Hansen|first1=Carl J.|last2=Kawaler|first2=Steven D.|last3=Trimble|first3=Virginia|isbn=978-0387200897 |date=2004|edition=2|publisher=Springer|pages=[https://archive.org/details/stellarinteriors00hans_446/page/n73 62]–5}}</ref><ref name=Seeds2012>{{cite book|title=खगोल विज्ञान की नींव|last1=Seeds|first1=Michael A.|last2=Backman|first2=Dana E.|pages=249–51|date=2012|edition=12|publisher=[[Cengage Learning]]|isbn=978-1133103769}}</ref><ref name=Karttunen2007>{{cite book|title=मौलिक खगोल विज्ञान|url=https://archive.org/details/fundamentalastro00kart_346|url-access=limited|isbn=978-3540341437|edition=5|page=[https://archive.org/details/fundamentalastro00kart_346/page/n251 249]|editor-first=Hannu|editor-last=Karttunen|editor2-first=Pekka|editor2-last=Kröger|editor3-first=Heikki|editor3-last=Oja|editor4-first=Markku|editor4-last=Poutanen|editor5-first=Karl Johan|editor5-last=Donner|publisher=Springer|date=2007-06-27}}</ref>
हीलियम फ़्लैश की विस्फोटक प्रकृति इसके अपक्षयी पदार्थ में होने से उत्पन्न होती है। जब तापमान 100 मिलियन-200 मिलियन केल्विन तक पहुंच जाता है और हीलियम विलयन ट्रिपल-अल्फा प्रक्रिया का उपयोग करना प्रारंभ कर देता है, तो तापमान तेजी से बढ़ता है, जिससे हीलियम विलयन दर बढ़ जाती है और, क्योंकि ड्वार्फ पदार्थ अच्छा थर्मल चालन है, जिससे प्रतिक्रिया क्षेत्र का विस्तार होता है।


==बाइनरी सफेद बौने==
चूंकि अध:पतन दबाव (जो पूरी तरह से घनत्व का कार्य है) थर्मल दबाव (घनत्व और तापमान के उत्पाद के आनुपातिक) पर प्रभावित हो रहा है, कुल दबाव केवल तापमान पर अशक्त रूप से निर्भर है। इस प्रकार तापमान में नाटकीय वृद्धि से केवल दबाव में समान्य वृद्धि होती है, इसलिए कोर का कोई स्थिर शीतलन विस्तार नहीं होता है।


जब हाइड्रोजन गैस एक द्विआधारी साथी तारे से एक सफेद बौने पर एकत्रित होती है, तो हाइड्रोजन अभिवृद्धि दरों की एक संकीर्ण सीमा के लिए हीलियम बनाने के लिए फ्यूज हो सकती है, लेकिन अधिकांश प्रणालियाँ पतित सफेद बौने आंतरिक भाग पर हाइड्रोजन की एक परत विकसित करती हैं। यह हाइड्रोजन तारे की सतह के निकट एक आवरण बनाने के लिए एकत्रित हो सकता है। जब हाइड्रोजन का द्रव्यमान पर्याप्त रूप से बड़ा हो जाता है, तो भगोड़ा संलयन एक [[ नया ]] का कारण बनता है। कुछ बाइनरी प्रणालियों में जहां सतह पर हाइड्रोजन फ़्यूज़ होता है, वहां निर्मित हीलियम का द्रव्यमान अस्थिर हीलियम फ्लैश में जल सकता है। कुछ बाइनरी प्रणालियों में साथी तारे ने अपना अधिकांश हाइड्रोजन खो दिया होगा और कॉम्पैक्ट तारे को हीलियम युक्त सामग्री दान कर दी होगी। ध्यान दें कि [[एक्स-रे बर्स्टर]] न्यूट्रॉन सितारों पर होता है।{{citation needed|date=February 2016}}
यह आकस्मिक प्रतिक्रिया तेजी से तारे के सामान्य ऊर्जा उत्पादन (कुछ सेकंड के लिए) से लगभग 100 बिलियन गुना तक बढ़ जाती है जब तक कि तापमान इस बिंदु तक नहीं बढ़ जाता कि थर्मल दबाव फिर से प्रभावी हो जाता है, जिससे अध: पतन समाप्त हो जाता है। इसके पश्चात् कोर का विस्तार और ठंडा हो सकता है और हीलियम का स्थिर जलना जारी रहता है।<ref>{{Cite journal| volume = 317| pages = 724–732| last = Deupree| first = R. G.|author2=R. K. Wallace| title = कोर हीलियम फ़्लैश और सतह बहुतायत विसंगतियाँ| journal = Astrophysical Journal| date = 1987|bibcode = 1987ApJ...317..724D| doi = 10.1086/165319}}</ref>


=={{Anchor|shell helium flash}}शैल हीलियम फ़्लैश==
लगभग 2.25 {{Solar mass}} से अधिक द्रव्यमान वाला तारा अपने कोर के ख़राब हुए बिना हीलियम जलाना प्रारंभ कर देता है, और इसलिए इस प्रकार की हीलियम फ़्लैश प्रदर्शित नहीं करता है। बहुत कम द्रव्यमान वाले तारे (लगभग 0.5 {{Solar mass}} से कम) में, कोर कभी भी हीलियम को प्रज्वलित करने के लिए पर्याप्त गर्म नहीं होता है। विकृत हीलियम कोर संकुचित रहता है और अंततः हीलियम सफेद वामन बन जाता है।


शैल हीलियम चमक कुछ हद तक समान लेकिन बहुत कम हिंसक, गैर-भगोड़ा हीलियम प्रज्वलन घटना है, जो विकृत पदार्थ की अनुपस्थिति में होती है। वे समय-समय पर कोर के बाहर एक खोल में [[स्पर्शोन्मुख विशाल शाखा]] सितारों में होते हैं। यह किसी तारे के जीवन की विशाल अवस्था का अंतिम समय है। तारे ने कोर में उपलब्ध अधिकांश हीलियम को जला दिया है, जो अब कार्बन और ऑक्सीजन से बना है। इस कोर के चारों ओर एक पतले आवरण में हीलियम संलयन जारी रहता है, लेकिन फिर हीलियम समाप्त हो जाने पर यह बंद हो जाता है। यह हीलियम परत के ऊपर एक परत में हाइड्रोजन संलयन शुरू करने की अनुमति देता है। पर्याप्त अतिरिक्त हीलियम जमा होने के बाद, हीलियम संलयन फिर से शुरू हो जाता है, जिससे एक थर्मल पल्स उत्पन्न होता है जो अंततः तारे का विस्तार और अस्थायी रूप से चमकने का कारण बनता है (चमकदारता में पल्स में देरी होती है क्योंकि पुनरारंभ हीलियम संलयन से ऊर्जा को तारे तक पहुंचने में कई साल लग जाते हैं) सतह<ref name = "Wood"/>). ऐसी तरंगें कुछ सौ वर्षों तक चल सकती हैं, और माना जाता है कि ये हर 10,000 से 100,000 वर्षों में समय-समय पर घटित होती हैं।<ref name = "Wood">{{Cite journal
हीलियम फ्लैश विद्युत चुम्बकीय विकिरण द्वारा सतह पर सीधे देखने योग्य नहीं है। फ्लैश तारे के अंदर गहरे कोर में होता है, और इसका शुद्ध प्रभाव यह होगा कि जारी की गई सभी ऊर्जा पूरे कोर द्वारा अवशोषित हो जाती है, जिससे ड्वार्फ अवस्था गैर-डीजनरेट हो जाती है। पहले की गणनाओं से संकेत मिलता था कि कुछ स्थितियों में गैर-विघटनकारी सामूहिक हानि संभव होती है,<ref name="Deupree1984">{{cite journal|last1= Deupree|first1= R. G.|title= कोर हीलियम फ्लैश के दो- और तीन-आयामी संख्यात्मक सिमुलेशन|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D}}</ref> किंतु पश्चात् में न्यूट्रिनो ऊर्जा हानि को ध्यान में रखते हुए स्टार मॉडलिंग से ऐसी कोई सामूहिक हानि नहीं होने का संकेत मिलता है।<ref name="Deupree1996">{{cite journal|last1= Deupree|first1=R. G.|title= कोर हीलियम फ्लैश का पुन: परीक्षण|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}</ref><ref>{{Cite thesis |bibcode = 2009PhDT.........2M|title = कम द्रव्यमान वाले तारों में कोर हीलियम फ्लैश के बहुआयामी हाइड्रोडायनामिक सिमुलेशन|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}</ref>
 
एक सौर द्रव्यमान वाले तारे में, हीलियम फ़्लैश से लगभग {{val|5|e=41|ul=J}},<ref name="Edwards19690">{{cite journal | author=Edwards, A. C.|title= हीलियम फ्लैश का हाइड्रोडायनामिक्स| journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}</ref> या {{val|1.5|e=44|ul=J}} प्रकार Ia सुपरनोवा की लगभग 0.3% ऊर्जा निकलने का अनुमान है <ref name="Khokhlov1993">{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= विभिन्न विस्फोट तंत्रों के साथ टाइप IA सुपरनोवा मॉडल के प्रकाश वक्र| journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&A...270..223K}}</ref> जो अनुरूप द्वारा ट्रिगर होता है कार्बन-ऑक्सीजन सफेद वामन में कार्बन विलयन का प्रज्वलन उत्पन्न होता है।
 
==बाइनरी सफेद वामन                                                                                                                                              ==
 
जब हाइड्रोजन गैस द्विआधारी साथी तारे से सफेद वामन पर एकत्रित होती है, तो हाइड्रोजन अभिवृद्धि दरों की संकीर्ण सीमा के लिए हीलियम बनाने के लिए फ्यूज हो सकती है, किंतु अधिकांश प्रणालियाँ ड्वार्फ सफेद वामन आंतरिक भाग पर हाइड्रोजन की लेयर विकसित करती हैं। यह हाइड्रोजन तारे की सतह के निकट आवरण बनाने के लिए एकत्रित हो सकता है। जब हाइड्रोजन का द्रव्यमान पर्याप्त रूप से बड़ा हो जाता है, तो रनवे विलयन [[ नया |नोवा]] का कारण बनता है। कुछ बाइनरी प्रणालियों में जहां सतह पर हाइड्रोजन फ़्यूज़ होता है, वहां निर्मित हीलियम का द्रव्यमान अस्थिर हीलियम फ्लैश में जल सकता है। कुछ बाइनरी प्रणालियों में साथी तारे ने अपना अधिकांश हाइड्रोजन खो दिया होगा और कॉम्पैक्ट तारे को हीलियम युक्त पदार्थ दान कर दी होगी। ध्यान दें कि [[एक्स-रे बर्स्टर]] न्यूट्रॉन सितारों पर होता है।                                                                                                                                               
 
==शैल हीलियम फ़्लैश                                                                                                                                      ==
 
शैल हीलियम फ़्लैश कुछ सीमा तक समान किंतु बहुत कम हिंसक, गैर-रनवे हीलियम प्रज्वलन घटना है, जो विकृत पदार्थ की अनुपस्थिति में होती है। वह समय-समय पर कोर के बाहर खोल में [[स्पर्शोन्मुख विशाल शाखा]] सितारों में होते हैं। यह किसी तारे के जीवन की विशाल अवस्था का अंतिम समय है। तारे ने कोर में उपलब्ध अधिकांश हीलियम को जला दिया है, जो अब कार्बन और ऑक्सीजन से बना है। इस कोर के चारों ओर पतले आवरण में हीलियम विलयन जारी रहता है, किंतु फिर हीलियम समाप्त हो जाने पर यह संवर्त हो जाता है। यह हीलियम लेयर के ऊपर लेयर में हाइड्रोजन विलयन प्रारंभ करने की अनुमति देता है। पर्याप्त अतिरिक्त हीलियम जमा होने के पश्चात्, हीलियम विलयन फिर से प्रारंभ हो जाता है, जिससे थर्मल पल्स उत्पन्न होता है जो अंततः तारे का विस्तार और अस्थायी रूप से चमकने का कारण बनता है (प्रकाश में स्पंदन में देरी होती है क्योंकि पुनः आरंभ होने वाले हीलियम संलयन से ऊर्जा को सतह तक पहुंचने में अनेक साल लग जाते हैं) <ref name = "Wood"/> ऐसी तरंगें कुछ सौ वर्षों तक चल सकती हैं, और माना जाता है कि ये हर 10,000 से 100,000 वर्षों में समय-समय पर घटित होती हैं।<ref name = "Wood">{{Cite journal
| volume = 247
| volume = 247
| issue = Part 1
| issue = Part 1
Line 38: Line 44:
|bibcode = 1981ApJ...247..247W
|bibcode = 1981ApJ...247..247W
|doi = 10.1086/159032
|doi = 10.1086/159032
| pages = 247 }}</ref> फ़्लैश के बाद, हीलियम संलयन चक्र के लगभग 40% तक तेजी से क्षय होने की दर पर जारी रहता है क्योंकि हीलियम शेल का उपभोग हो जाता है।<ref name = "Wood"/>तापीय तरंगों के कारण तारे से गैस और धूल के परिस्थितिजन्य गोले निकल सकते हैं।{{citation needed|date=February 2016}}
| pages = 247 }}</ref> फ़्लैश के पश्चात्, हीलियम विलयन चक्र के लगभग 40% तक तेजी से क्षय होने की दर पर जारी रहता है क्योंकि हीलियम शेल का उपभोग हो जाता है।<ref name = "Wood"/> तापीय तरंगों के कारण तारे से गैस और धूल के परिस्थितिजन्य गोले निकल सकते हैं।


==यह भी देखें==
==यह भी देखें==
* कार्बन विस्फोट
* कार्बन विस्फोट


==संदर्भ==
==संदर्भ                                                                                                                                                                                         ==
<references/>
<references/>


{{white dwarf}}
{{DEFAULTSORT:Helium Flash}}
{{Star}}
 
{{DEFAULTSORT:Helium Flash}}[[Category: तारकीय विकास]] [[Category: खगोल भौतिकी]] [[Category: न्यूक्लियोसिंथेसिस]] [[Category: हीलियम]] [[Category: विदेशी पदार्थ]]
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 26/07/2023|Helium Flash]]
[[Category:Created On 26/07/2023]]
[[Category:Lua-based templates|Helium Flash]]
[[Category:Machine Translated Page|Helium Flash]]
[[Category:Pages with script errors|Helium Flash]]
[[Category:Short description with empty Wikidata description|Helium Flash]]
[[Category:Templates Vigyan Ready|Helium Flash]]
[[Category:Templates that add a tracking category|Helium Flash]]
[[Category:Templates that generate short descriptions|Helium Flash]]
[[Category:Templates using TemplateData|Helium Flash]]
[[Category:खगोल भौतिकी|Helium Flash]]
[[Category:तारकीय विकास|Helium Flash]]
[[Category:न्यूक्लियोसिंथेसिस|Helium Flash]]
[[Category:विदेशी पदार्थ|Helium Flash]]
[[Category:हीलियम|Helium Flash]]

Latest revision as of 11:38, 21 August 2023

कम द्रव्यमान वाले तारों के केंद्र में हीलियम का विलयन ।

हीलियम फ्लैश कम द्रव्यमान वाले तारों (0.8 सौर द्रव्यमान M) और 2.0 M[1] के बीच) के समय ट्रिपल-अल्फा प्रक्रिया के माध्यम से कार्बन में हीलियम की बड़ी मात्रा का बहुत ही संक्षिप्त थर्मल रनवे परमाणु विलयन है। लाल विशाल चरण (सूर्य को मुख्य अनुक्रम छोड़ने के 1.2 अरब वर्ष पश्चात् फ़्लैश का अनुभव होने की पूर्वानुमान की गई है)। बढ़ते हुए सफेद वामन तारों की सतह पर बहुत ही दुर्लभ रनवे हीलियम विलयन प्रक्रिया भी हो सकती है।

कम द्रव्यमान वाले तारे सामान्य हीलियम विलयन प्रारंभ करने के लिए पर्याप्त गुरुत्वाकर्षण दबाव उत्पन्न नहीं करते हैं। जैसे ही कोर में हाइड्रोजन समाप्त हो जाता है, जिसके पीछे बचे कुछ हीलियम को आदर्श गैस नियम के अतिरिक्त क्वांटम यांत्रिकी दबाव द्वारा गुरुत्वाकर्षण पतन के विपरीत समर्थित, ड्वार्फ पदार्थ में संकुचित कर दिया जाता है। इससे कोर का घनत्व और तापमान तब तक बढ़ जाता है जब तक कि यह लगभग 100 मिलियन केल्विन तक नहीं पहुंच जाता है, जो कोर में हीलियम विलयन (या हीलियम जलने) का कारण बनने के लिए पर्याप्त गर्म होता है।

चूँकि, ड्वार्फ पदार्थ का मौलिक गुण यह है कि तापमान में वृद्धि से पदार्थ की मात्रा में वृद्धि नहीं होती है जब तक कि थर्मल दबाव इतना अधिक न हो जाए कि यह अपक्षयी दबाव से अधिक न हो जाए। मुख्य अनुक्रम तारों में, हाइड्रोस्टैटिक संतुलन कोर तापमान को नियंत्रित करता है, किंतु ड्वार्फ कोर में ऐसा नहीं होता है। हीलियम विलयन से तापमान बढ़ता है, जिससे विलयन दर बढ़ती है, जिससे रनवे प्रतिक्रिया में तापमान और बढ़ जाता है। इससे अत्यंत तीव्र हीलियम विलयन की फ़्लैश उत्पन्न होती है जो केवल कुछ हज़ार वर्षों तक (खगोलीय मापदंड पर तात्कालिक) रहती है, किंतु, कुछ ही सेकंड में, संपूर्ण गैलक्सी के समान दर से ऊर्जा उत्सर्जित करती है।

सामान्य कम द्रव्यमान वाले तारों के स्थिति में, विशाल ऊर्जा रिलीज के कारण कोर का अधिकांश भाग अध: पतन से बाहर आ जाता है, जिससे इसे थर्मल रूप से विस्तारित होने की स्वीकृति मिलती है, चूँकि, हीलियम फ्लैश द्वारा जारी कुल ऊर्जा के समान ऊर्जा की खपत होती है, और कोई भी बचा हुआ -अधिक ऊर्जा तारे की ऊपरी लेयर में अवशोषित हो जाती है। इस प्रकार हीलियम फ्लैश अधिकत्तर अवलोकन द्वारा पता नहीं चल पाता है, और इसका वर्णन केवल खगोल भौतिकी मॉडल द्वारा किया जाता है। जो की कोर के विस्तार और ठंडा होने के पश्चात्, तारे की सतह तेजी से ठंडी हो जाती है और 10,000 वर्षों में सिकुड़ जाती है जब तक कि यह अपनी पूर्व त्रिज्या और प्रकाश का लगभग 2% न रह जाए। यह अनुमान लगाया गया है कि इलेक्ट्रॉन-विकृत हीलियम कोर का वजन तारे के द्रव्यमान का लगभग 40% होता है और कोर का 6% कार्बन में परिवर्तित हो जाता है।[2]



लाल जाएंट्स

सकुराई की वस्तु सफेद वामन है जो हीलियम फ्लैश से गुजर रहा है।[3]

2.0 से कम वाले तारों में तारकीय विकास के लाल विशाल चरण के समय M हाइड्रोजन का परमाणु विलयन कोर में समाप्त हो जाता है क्योंकि यह समाप्त हो जाता है, जिससे हीलियम युक्त कोर निकल जाता है। जबकि तारे के खोल में हाइड्रोजन का विलयन जारी रहता है, जिससे कोर में हीलियम का संचय जारी रहता है, जिससे कोर सघन हो जाता है, फिर भी तापमान हीलियम विलयन के लिए आवश्यक स्तर तक पहुंचने में असमर्थ होता है, जैसा कि अधिक विशाल सितारों में होता है। इस प्रकार विलयन से थर्मल दबाव अब गुरुत्वाकर्षण पतन का प्रतियोगिता करने और अधिकांश सितारों में पाए जाने वाले हाइड्रोस्टैटिक संतुलन बनाने के लिए पर्याप्त नहीं है। इसके कारण तारे का तापमान सिकुड़ना और बढ़ना प्रारंभ हो जाता है, जब तक कि यह अंततः हीलियम कोर के विकृत पदार्थ बनने के लिए पर्याप्त रूप से संकुचित नहीं हो जाता है। यह अध:पतन दबाव अंततः सबसे केंद्रीय पदार्थ के आगे पतन को रोकने के लिए पर्याप्त है किंतु शेष कोर संकुचन रहता है और तापमान तब तक बढ़ता रहता है जब तक कि यह बिंदु (≈1×108 K) तक नहीं पहुंच जाता है जिस पर हीलियम प्रज्वलित हो सकता है और विलयन प्रारंभ हो सकता है।[4][5][6]

हीलियम फ़्लैश की विस्फोटक प्रकृति इसके अपक्षयी पदार्थ में होने से उत्पन्न होती है। जब तापमान 100 मिलियन-200 मिलियन केल्विन तक पहुंच जाता है और हीलियम विलयन ट्रिपल-अल्फा प्रक्रिया का उपयोग करना प्रारंभ कर देता है, तो तापमान तेजी से बढ़ता है, जिससे हीलियम विलयन दर बढ़ जाती है और, क्योंकि ड्वार्फ पदार्थ अच्छा थर्मल चालन है, जिससे प्रतिक्रिया क्षेत्र का विस्तार होता है।

चूंकि अध:पतन दबाव (जो पूरी तरह से घनत्व का कार्य है) थर्मल दबाव (घनत्व और तापमान के उत्पाद के आनुपातिक) पर प्रभावित हो रहा है, कुल दबाव केवल तापमान पर अशक्त रूप से निर्भर है। इस प्रकार तापमान में नाटकीय वृद्धि से केवल दबाव में समान्य वृद्धि होती है, इसलिए कोर का कोई स्थिर शीतलन विस्तार नहीं होता है।

यह आकस्मिक प्रतिक्रिया तेजी से तारे के सामान्य ऊर्जा उत्पादन (कुछ सेकंड के लिए) से लगभग 100 बिलियन गुना तक बढ़ जाती है जब तक कि तापमान इस बिंदु तक नहीं बढ़ जाता कि थर्मल दबाव फिर से प्रभावी हो जाता है, जिससे अध: पतन समाप्त हो जाता है। इसके पश्चात् कोर का विस्तार और ठंडा हो सकता है और हीलियम का स्थिर जलना जारी रहता है।[7]

लगभग 2.25 M से अधिक द्रव्यमान वाला तारा अपने कोर के ख़राब हुए बिना हीलियम जलाना प्रारंभ कर देता है, और इसलिए इस प्रकार की हीलियम फ़्लैश प्रदर्शित नहीं करता है। बहुत कम द्रव्यमान वाले तारे (लगभग 0.5 M से कम) में, कोर कभी भी हीलियम को प्रज्वलित करने के लिए पर्याप्त गर्म नहीं होता है। विकृत हीलियम कोर संकुचित रहता है और अंततः हीलियम सफेद वामन बन जाता है।

हीलियम फ्लैश विद्युत चुम्बकीय विकिरण द्वारा सतह पर सीधे देखने योग्य नहीं है। फ्लैश तारे के अंदर गहरे कोर में होता है, और इसका शुद्ध प्रभाव यह होगा कि जारी की गई सभी ऊर्जा पूरे कोर द्वारा अवशोषित हो जाती है, जिससे ड्वार्फ अवस्था गैर-डीजनरेट हो जाती है। पहले की गणनाओं से संकेत मिलता था कि कुछ स्थितियों में गैर-विघटनकारी सामूहिक हानि संभव होती है,[8] किंतु पश्चात् में न्यूट्रिनो ऊर्जा हानि को ध्यान में रखते हुए स्टार मॉडलिंग से ऐसी कोई सामूहिक हानि नहीं होने का संकेत मिलता है।[9][10]

एक सौर द्रव्यमान वाले तारे में, हीलियम फ़्लैश से लगभग 5×1041 J,[11] या 1.5×1044 J प्रकार Ia सुपरनोवा की लगभग 0.3% ऊर्जा निकलने का अनुमान है [12] जो अनुरूप द्वारा ट्रिगर होता है कार्बन-ऑक्सीजन सफेद वामन में कार्बन विलयन का प्रज्वलन उत्पन्न होता है।

बाइनरी सफेद वामन

जब हाइड्रोजन गैस द्विआधारी साथी तारे से सफेद वामन पर एकत्रित होती है, तो हाइड्रोजन अभिवृद्धि दरों की संकीर्ण सीमा के लिए हीलियम बनाने के लिए फ्यूज हो सकती है, किंतु अधिकांश प्रणालियाँ ड्वार्फ सफेद वामन आंतरिक भाग पर हाइड्रोजन की लेयर विकसित करती हैं। यह हाइड्रोजन तारे की सतह के निकट आवरण बनाने के लिए एकत्रित हो सकता है। जब हाइड्रोजन का द्रव्यमान पर्याप्त रूप से बड़ा हो जाता है, तो रनवे विलयन नोवा का कारण बनता है। कुछ बाइनरी प्रणालियों में जहां सतह पर हाइड्रोजन फ़्यूज़ होता है, वहां निर्मित हीलियम का द्रव्यमान अस्थिर हीलियम फ्लैश में जल सकता है। कुछ बाइनरी प्रणालियों में साथी तारे ने अपना अधिकांश हाइड्रोजन खो दिया होगा और कॉम्पैक्ट तारे को हीलियम युक्त पदार्थ दान कर दी होगी। ध्यान दें कि एक्स-रे बर्स्टर न्यूट्रॉन सितारों पर होता है।

शैल हीलियम फ़्लैश

शैल हीलियम फ़्लैश कुछ सीमा तक समान किंतु बहुत कम हिंसक, गैर-रनवे हीलियम प्रज्वलन घटना है, जो विकृत पदार्थ की अनुपस्थिति में होती है। वह समय-समय पर कोर के बाहर खोल में स्पर्शोन्मुख विशाल शाखा सितारों में होते हैं। यह किसी तारे के जीवन की विशाल अवस्था का अंतिम समय है। तारे ने कोर में उपलब्ध अधिकांश हीलियम को जला दिया है, जो अब कार्बन और ऑक्सीजन से बना है। इस कोर के चारों ओर पतले आवरण में हीलियम विलयन जारी रहता है, किंतु फिर हीलियम समाप्त हो जाने पर यह संवर्त हो जाता है। यह हीलियम लेयर के ऊपर लेयर में हाइड्रोजन विलयन प्रारंभ करने की अनुमति देता है। पर्याप्त अतिरिक्त हीलियम जमा होने के पश्चात्, हीलियम विलयन फिर से प्रारंभ हो जाता है, जिससे थर्मल पल्स उत्पन्न होता है जो अंततः तारे का विस्तार और अस्थायी रूप से चमकने का कारण बनता है (प्रकाश में स्पंदन में देरी होती है क्योंकि पुनः आरंभ होने वाले हीलियम संलयन से ऊर्जा को सतह तक पहुंचने में अनेक साल लग जाते हैं) [13] ऐसी तरंगें कुछ सौ वर्षों तक चल सकती हैं, और माना जाता है कि ये हर 10,000 से 100,000 वर्षों में समय-समय पर घटित होती हैं।[13] फ़्लैश के पश्चात्, हीलियम विलयन चक्र के लगभग 40% तक तेजी से क्षय होने की दर पर जारी रहता है क्योंकि हीलियम शेल का उपभोग हो जाता है।[13] तापीय तरंगों के कारण तारे से गैस और धूल के परिस्थितिजन्य गोले निकल सकते हैं।

यह भी देखें

  • कार्बन विस्फोट

संदर्भ

  1. Pols, Onno (September 2009). "Chapter 9: Post-main sequence evolution through helium burning" (PDF). तारकीय संरचना और विकास (lecture notes). Archived from the original (PDF) on 20 May 2019.
  2. Taylor, David. "सूर्य का अंत". North Western.
  3. "सफेद बौना पुनरुत्थान". Retrieved 3 August 2015.
  4. Hansen, Carl J.; Kawaler, Steven D.; Trimble, Virginia (2004). तारकीय आंतरिक साज-सज्जा - भौतिक सिद्धांत, संरचना और विकास (2 ed.). Springer. pp. 62–5. ISBN 978-0387200897.
  5. Seeds, Michael A.; Backman, Dana E. (2012). खगोल विज्ञान की नींव (12 ed.). Cengage Learning. pp. 249–51. ISBN 978-1133103769.
  6. Karttunen, Hannu; Kröger, Pekka; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan, eds. (2007-06-27). मौलिक खगोल विज्ञान (5 ed.). Springer. p. 249. ISBN 978-3540341437.
  7. Deupree, R. G.; R. K. Wallace (1987). "कोर हीलियम फ़्लैश और सतह बहुतायत विसंगतियाँ". Astrophysical Journal. 317: 724–732. Bibcode:1987ApJ...317..724D. doi:10.1086/165319.
  8. Deupree, R. G. (1984). "कोर हीलियम फ्लैश के दो- और तीन-आयामी संख्यात्मक सिमुलेशन". The Astrophysical Journal. 282: 274. Bibcode:1984ApJ...282..274D. doi:10.1086/162200.
  9. Deupree, R. G. (1996-11-01). "कोर हीलियम फ्लैश का पुन: परीक्षण". The Astrophysical Journal. 471 (1): 377–384. Bibcode:1996ApJ...471..377D. CiteSeerX 10.1.1.31.44. doi:10.1086/177976. S2CID 15585754.
  10. Mocák, M (2009). कम द्रव्यमान वाले तारों में कोर हीलियम फ्लैश के बहुआयामी हाइड्रोडायनामिक सिमुलेशन (PhD. Thesis). Technische Universität München. Bibcode:2009PhDT.........2M.
  11. Edwards, A. C. (1969). "हीलियम फ्लैश का हाइड्रोडायनामिक्स". Monthly Notices of the Royal Astronomical Society. 146 (4): 445–472. Bibcode:1969MNRAS.146..445E. doi:10.1093/mnras/146.4.445.
  12. Khokhlov, A.; Müller, E.; Höflich, P. (1993). "विभिन्न विस्फोट तंत्रों के साथ टाइप IA सुपरनोवा मॉडल के प्रकाश वक्र". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.
  13. 13.0 13.1 13.2 Wood, P. R.; D. M. Zarro (1981). "Helium-shell flashing in low-mass stars and period changes in mira variables". Astrophysical Journal. 247 (Part 1): 247. Bibcode:1981ApJ...247..247W. doi:10.1086/159032.