क्रिटिकल हीट फ्लक्स: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Heat flux at which boiling is no longer an effective method of heat transfer}} ऊष्मा स्थानांतरण के अध्ययन...")
 
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Heat flux at which boiling is no longer an effective method of heat transfer}}
{{short description|Heat flux at which boiling is no longer an effective method of heat transfer}}


ऊष्मा स्थानांतरण के अध्ययन में, क्रिटिकल [[ [[गर्मी]] का प्रवाह ]] (CHF) वह ऊष्मा प्रवाह है जिस पर [[उबलना]] एक [[ठोस]] सतह से [[तरल]] में गर्मी स्थानांतरित करने का एक प्रभावी रूप नहीं रह जाता है।
ऊष्मा स्थानांतरण के अध्ययन में '''क्रिटिकल हीट फ्लक्स''' (सीएचएफ़) वह ऊष्मा फ्लक्स है जिस पर उबलटी हुई [[ठोस]] सतह से द्रव में ऊष्मा स्थानांतरित करने का प्रभावी रूप नहीं रह जाता है।


==विवरण==
==विवरण==
[[File:Flow_regimes.png|thumb|प्रवाह उबलने की व्यवस्था की प्रगति (ऊपर) और गर्मी हस्तांतरण का गुणात्मक विवरण (नीचे)।]]उबलने वाली प्रणालियाँ वे होती हैं जिनमें तरल [[शीतलक]] गर्म ठोस सतह से ऊर्जा को अवशोषित करता है और [[चरण (पदार्थ)]] में परिवर्तन करता है। प्रवाह उबलने वाली प्रणालियों में, वाष्प की गुणवत्ता बढ़ने पर संतृप्त द्रव प्रवाह व्यवस्थाओं की एक श्रृंखला के माध्यम से आगे बढ़ता है। उन प्रणालियों में जो उबलने का उपयोग करते हैं, गर्मी हस्तांतरण दर तरल पदार्थ के एकल चरण (यानी सभी तरल या सभी वाष्प) की तुलना में काफी अधिक होती है। गर्म सतह से अधिक कुशल ऊष्मा स्थानांतरण वाष्पीकरण की ऊष्मा और संवेदी ऊष्मा के कारण होता है। इसलिए, उबलते ताप हस्तांतरण ने परमाणु ऊर्जा संयंत्र और जीवाश्म ऊर्जा संयंत्रों में [[ स्थूल ]] हीट ट्रांसफर [[ उष्मा का आदान प्रदान करने वाला ]] और हीट [[पाइप (सामग्री)]] और [[ माइक्रोचैनल (सूक्ष्मप्रौद्योगिकी) ]] जैसे सूक्ष्म ताप हस्तांतरण उपकरणों में औद्योगिक गर्मी हस्तांतरण प्रक्रियाओं में एक महत्वपूर्ण भूमिका निभाई है। [[ इलेक्ट्रानिक्स ]] [[ एकीकृत परिपथ ]] को ठंडा करने के लिए।
[[File:Flow_regimes.png|thumb|फ्लक्स उबलटी हुई की व्यवस्था की प्रगति (ऊपर) और ऊष्मा हस्तांतरण का गुणात्मक विवरण (नीचे)।]]उबलटी हुई प्रणालियाँ वह होती हैं जिनमें द्रव [[शीतलक]] गर्म ठोस सतह से ऊर्जा को अवशोषित करता है और [[चरण (पदार्थ)|फेज (पदार्थ)]] में परिवर्तन करता है। फ्लक्स उबलटी हुई प्रणालियों में, वाष्प की गुणवत्ता बढ़ने पर संतृप्त द्रव फ्लक्स व्यवस्थाओं की श्रृंखला के माध्यम से आगे बढ़ता है। उन प्रणालियों में जो उबलटी हुई का उपयोग करते हैं, इस प्रकार ऊष्मा हस्तांतरण दर द्रव पदार्थ के एकल फेज (अर्थात सभी द्रव या सभी वाष्प) की तुलना में अधिक अधिक होती है। गर्म सतह से अधिक कुशल ऊष्मा स्थानांतरण वाष्पीकरण की ऊष्मा और संवेदी ऊष्मा के कारण होता है। इसलिए, उबलटी हुई ताप हस्तांतरण ने परमाणु ऊर्जा संयंत्र और जीवाश्म ऊर्जा संयंत्रों में [[ स्थूल |मैक्रोस्कोपिक]] हीट ट्रांसफर एक्सचेंजर्स और [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] [[ एकीकृत परिपथ |एकीकृत परिपथ]] को ठंडा करने के लिए हीट [[पाइप (सामग्री)|पाइप]] और [[ माइक्रोचैनल (सूक्ष्मप्रौद्योगिकी) |माइक्रोचैनल (सूक्ष्मप्रौद्योगिकी)]] जैसे सूक्ष्म ताप हस्तांतरण उपकरणों में औद्योगिक ऊष्मा हस्तांतरण प्रक्रियाओं में महत्वपूर्ण योगदान दिया है।  


गर्मी हटाने के साधन के रूप में उबालने का उपयोग 'क्रिटिकल हीट फ्लक्स (सीएचएफ)' नामक स्थिति द्वारा सीमित है। सीएचएफ के आसपास होने वाली सबसे गंभीर समस्या यह है कि गर्मी हस्तांतरण में महत्वपूर्ण कमी के कारण गर्म सतह का तापमान नाटकीय रूप से बढ़ सकता है। इलेक्ट्रॉनिक्स कूलिंग या अंतरिक्ष में इंस्ट्रूमेंटेशन जैसे औद्योगिक अनुप्रयोगों में, तापमान में अचानक वृद्धि संभवतः डिवाइस की अखंडता से समझौता कर सकती है।
गर्मी हटाने के साधन के रूप में उबलटी हुई का उपयोग 'क्रिटिकल हीट फ्लक्स (सीएचएफ)' नामक स्थिति द्वारा सीमित है। इस प्रकार सीएचएफ के निकट होने वाली सबसे गंभीर समस्या यह है कि ऊष्मा हस्तांतरण में महत्वपूर्ण कमी के कारण गर्म सतह का तापमान नाटकीय रूप से बढ़ सकता है। इलेक्ट्रॉनिक्स कूलिंग या अंतरिक्ष में इंस्ट्रूमेंटेशन जैसे औद्योगिक अनुप्रयोगों में, तापमान में अचानक वृद्धि संभवतः डिवाइस की अखंडता से समझौता कर सकती है।


== दो चरण गर्मी हस्तांतरण ==
== दो फेज ऊष्मा हस्तांतरण ==
एक समान रूप से गर्म दीवार और काम कर रहे तरल पदार्थ के बीच संवहन ताप हस्तांतरण को न्यूटन के शीतलन के नियम द्वारा वर्णित किया गया है:
सामान्यतः गर्म दीवार और कार्य कर रहे द्रव पदार्थ के मध्य संवहन ताप हस्तांतरण को न्यूटन के शीतलन के नियम द्वारा वर्णित किया गया है:


:<math>q = h(T_w-T_f)\,</math>
:<math>q = h(T_w-T_f)\,</math>
कहाँ <math>q</math> ऊष्मा प्रवाह का प्रतिनिधित्व करता है, <math>h</math> आनुपातिकता स्थिरांक का प्रतिनिधित्व करता है जिसे ऊष्मा स्थानांतरण गुणांक कहा जाता है, <math>T_w</math> दीवार के तापमान का प्रतिनिधित्व करता है और <math>T_f</math> द्रव तापमान का प्रतिनिधित्व करता है. अगर <math>h</math> CHF स्थिति के घटित होने के कारण उल्लेखनीय रूप से घट जाती है, <math>T_w</math> निश्चित के लिए वृद्धि होगी <math>q</math> और <math>T_f</math> जबकि <math>q</math> निश्चित के लिए कमी होगी <math>\Delta T</math>.
 
जहां <math>q</math> ऊष्मा फ्लक्स का प्रतिनिधित्व करता है <math>h</math> आनुपातिक स्थिरांक का प्रतिनिधित्व करता है जिसे ऊष्मा स्थानांतरण गुणांक कहा जाता है, <math>T_w</math> दीवार के तापमान का प्रतिनिधित्व करता है और <math>T_f</math> द्रव तापमान का प्रतिनिधित्व करता है। यदि सीएचएफ़ स्थिति के घटित होने के कारण <math>h</math> अधिक कम हो जाता है तो निश्चित <math>q</math> और <math>T_f</math> के लिए <math>T_w</math> बढ़ जाएगा जबकि निश्चित <math>\Delta T</math> के लिए <math>q</math> कम हो जाता है


== सीएचएफ के मोड ==
== सीएचएफ के मोड ==
सीएचएफ घटना की समझ और सीएचएफ स्थिति की सटीक भविष्यवाणी [[परमाणु रिएक्टर]]ों, [[जीवाश्म ईंधन]] [[ बायलर ]]ों, [[संलयन रिएक्टर]]ों, इलेक्ट्रॉनिक चिप्स इत्यादि सहित कई गर्मी हस्तांतरण इकाइयों के सुरक्षित और आर्थिक डिजाइन के लिए महत्वपूर्ण है। इसलिए, इस घटना की बड़े पैमाने पर जांच की गई है [[नुकियामा]] के बाद से दुनिया ने पहली बार इसकी विशेषता बताई।<ref>{{cite journal|title=पतले तारों पर उबलते पानी की फिल्म बनाएं|journal=Soc. Mech. Engng., Japan|date=1934|first=S. |last=Nukiyama|volume=37}}</ref> 1950 में [[सैमसन अगला]] ने बर्नआउट संकट के हाइड्रोडायनामिकल सिद्धांत का सुझाव दिया।<ref>{{cite journal| title=मुक्त संवहन की स्थिति में उबलने के संकट का हाइड्रोमैकेनिकल मॉडल|journal=Journal of Technical Physics, USSR|date=1950|first=S.S.|last=Kutateladze|volume=20|issue=11|pages=1389–1392}}</ref> पिछले दशकों के दौरान जल-ठंडा परमाणु रिएक्टरों के विकास के साथ कई महत्वपूर्ण कार्य किए गए हैं। अब घटना के कई पहलुओं को अच्छी तरह से समझ लिया गया है और सामान्य हितों की स्थितियों के लिए कई विश्वसनीय [[भविष्यवाणी]] [[मॉडल (सार)]] उपलब्ध हैं।
सीएचएफ घटना की समझ और सीएचएफ स्थिति की स्पष्ट पूर्वानुमान [[परमाणु रिएक्टर]], [[जीवाश्म ईंधन]] [[ बायलर |बायलर]] , [[संलयन रिएक्टर]], इलेक्ट्रॉनिक चिप्स इत्यादि सहित विभिन्न ऊष्मा हस्तांतरण इकाइयों के सुरक्षित और आर्थिक डिजाइन के लिए महत्वपूर्ण है। इसलिए, इस घटना की बड़े माप पर जांच की गई है [[नुकियामा]] के पश्चात् से संसार ने पहली बार इसकी विशेषता बताई थी।<ref>{{cite journal|title=पतले तारों पर उबलते पानी की फिल्म बनाएं|journal=Soc. Mech. Engng., Japan|date=1934|first=S. |last=Nukiyama|volume=37}}</ref> 1950 में [[सैमसन अगला|कुटाटेलैड्ज़े]] ने बर्नआउट संकट के हाइड्रोडायनामिकल सिद्धांत का सुझाव दिया था।<ref>{{cite journal| title=मुक्त संवहन की स्थिति में उबलने के संकट का हाइड्रोमैकेनिकल मॉडल|journal=Journal of Technical Physics, USSR|date=1950|first=S.S.|last=Kutateladze|volume=20|issue=11|pages=1389–1392}}</ref> गर्म सतह पिछले दशकों के समय जल-ठंडा परमाणु रिएक्टरों के विकास के साथ विभिन्न महत्वपूर्ण कार्य किए गए हैं। अब घटना के विभिन्न तथ्यों को अच्छी तरह से समझ लिया गया है और सामान्य विभिन्न स्थितियों के लिए विभिन्न विश्वसनीय [[भविष्यवाणी|पूर्वानुमान]] [[मॉडल (सार)]] उपलब्ध हैं।
 
क्रिटिकल हीट फ्लक्स (सीएचएफ) शब्द का उपयोग लेखकों के बीच असंगत है।<ref name=":0">{{Cite journal |last=Morse |first=R. W. |last2=Moreira |first2=T. A. |last3=Chan |first3=J. |last4=Dressler |first4=K. M. |last5=Ribatski |first5=G. |last6=Hurlburt |first6=E. T. |last7=McCarroll |first7=L. L. |last8=Nellis |first8=G. F. |last9=Berson |first9=A. |date=2021-10-01 |title=ऊर्ध्वाधर दो-चरण कुंडलाकार प्रवाह में गंभीर ताप प्रवाह और तरल फिल्म का सूखना|url=https://www.sciencedirect.com/science/article/pii/S0017931021005901 |journal=International Journal of Heat and Mass Transfer |language=en |volume=177 |pages=121487 |doi=10.1016/j.ijheatmasstransfer.2021.121487 |issn=0017-9310}}</ref> संयुक्त राज्य परमाणु नियामक आयोग ने दो-चरण ताप हस्तांतरण में महत्वपूर्ण कमी से जुड़ी घटना को इंगित करने के लिए "क्रिटिकल बॉयलिंग ट्रांज़िशन" (सीबीटी) शब्द का उपयोग करने का सुझाव दिया है।<ref>{{Cite journal |date=1998-03-01 |title=Nuclear Regulatory Commission issuances. Volume 47, Number 3 |url=http://dx.doi.org/10.2172/595661}}</ref> एकल प्रजाति के लिए, तरल चरण में आमतौर पर वाष्प चरण, अर्थात् तापीय चालकता की तुलना में काफी बेहतर गर्मी हस्तांतरण गुण होते हैं। तो सामान्य तौर पर सीबीटी गर्म सतह के साथ स्थानीय स्थिति में कुछ हद तक तरल पदार्थ की कमी का परिणाम है। सीबीटी तक पहुंचने के परिणामस्वरूप दो तंत्र हैं: न्यूक्लियेट उबलने (डीएनबी) से प्रस्थान और तरल फिल्म का सूखना।
 
<बड़ा>डीएनबी</बड़ा>
 
न्यूक्लियेट क्वथनांक (डीएनबी) से प्रस्थान उप-ठंडा प्रवाह और बुलबुले प्रवाह शासन में होता है। डीएनबी तब होता है जब गर्म सतह के पास कई बुलबुले एकत्रित हो जाते हैं और स्थानीय तरल की सतह तक पहुंचने की क्षमता बाधित हो जाती है। गर्म सतह और स्थानीय तरल के बीच वाष्प के द्रव्यमान को वाष्प कंबल के रूप में संदर्भित किया जा सकता है।


<बड़ा>सूखना</बड़ा>
क्रिटिकल हीट फ्लक्स (सीएचएफ) शब्द का उपयोग लेखकों के मध्य असंगत है।<ref name=":0">{{Cite journal |last=Morse |first=R. W. |last2=Moreira |first2=T. A. |last3=Chan |first3=J. |last4=Dressler |first4=K. M. |last5=Ribatski |first5=G. |last6=Hurlburt |first6=E. T. |last7=McCarroll |first7=L. L. |last8=Nellis |first8=G. F. |last9=Berson |first9=A. |date=2021-10-01 |title=ऊर्ध्वाधर दो-चरण कुंडलाकार प्रवाह में गंभीर ताप प्रवाह और तरल फिल्म का सूखना|url=https://www.sciencedirect.com/science/article/pii/S0017931021005901 |journal=International Journal of Heat and Mass Transfer |language=en |volume=177 |pages=121487 |doi=10.1016/j.ijheatmasstransfer.2021.121487 |issn=0017-9310}}</ref> संयुक्त राज्य परमाणु नियामक आयोग ने दो-फेज ताप हस्तांतरण में महत्वपूर्ण कमी से जुड़ी घटना को संकेत करने के लिए "क्रिटिकल उबलटी हुई ट्रांज़िशन" (सीबीटी) शब्द का उपयोग करने का सुझाव दिया है।<ref>{{Cite journal |date=1998-03-01 |title=Nuclear Regulatory Commission issuances. Volume 47, Number 3 |url=http://dx.doi.org/10.2172/595661}}</ref> गर्म सतह एकल प्रजाति के लिए, द्रव फेज में सामान्यतः वाष्प फेज, अर्थात् तापीय चालकता की तुलना में अधिक उत्तम ऊष्मा हस्तांतरण गुण होते हैं। तो सामान्यतः सीबीटी गर्म सतह के साथ स्थानीय स्थिति में कुछ सीमा तक द्रव पदार्थ की कमी का परिणाम है। सीबीटी तक पहुंचने के परिणामस्वरूप दो तंत्र हैं: न्यूक्लियेट उबलटी हुई (डीएनबी) से प्रस्थान और द्रव फिल्म का ड्राईआउट होता है।
[[File:Normalized HTC vs temporal dry fraction.png|thumb|मोर्स एट अल से चित्र। (2021)]]ड्राईआउट का अर्थ है गर्मी हस्तांतरण सतह पर तरल का गायब होना जिसके परिणामस्वरूप सीबीटी होता है। तरल फिल्म का सूखना [[कुंडलाकार प्रवाह]] में होता है।<ref name=":0" />कुंडलाकार प्रवाह की विशेषता वाष्प कोर, दीवार पर तरल फिल्म और कोर के भीतर फंसी तरल बूंदें हैं। तरल-वाष्प इंटरफ़ेस पर कतरनी गर्म सतह के साथ तरल फिल्म के प्रवाह को संचालित करती है। सामान्य तौर पर, तरल-फिल्म की मोटाई कम होने पर दो-चरण एचटीसी बढ़ जाती है। यह प्रक्रिया ड्राईआउट घटनाओं के कई उदाहरणों में घटित होती दिखाई गई है, जो एक सीमित अवधि और एक स्थिति के लिए स्थानीय होती है।<ref name=":0" />सीबीटी तब होता है जब किसी स्थानीय स्थिति के शुष्क होने का समय महत्वपूर्ण हो जाता है।<ref name=":0" />एक एकल शुष्क घटना, या यहां तक ​​कि कई शुष्क घटनाओं के बाद पहले से शुष्क क्षेत्र [https://mediaspace.wisc.edu/media/Dryout-rewet/1_7sn93wd2] के संपर्क में तरल फिल्म के बने रहने की अवधि हो सकती है। अनुक्रम में होने वाली कई ड्राईआउट घटनाएं (सैकड़ों या हजारों) गर्मी हस्तांतरण से संबंधित ड्राईआउट सीबीटी में महत्वपूर्ण कमी के लिए तंत्र हैं।<ref name=":0" />  <बड़ा>पोस्ट-सीएचएफ</बड़ा>


पोस्ट-सीएचएफ का उपयोग प्रवाह उबलने की प्रक्रिया में सामान्य गर्मी हस्तांतरण में गिरावट को दर्शाने के लिए किया जाता है, और तरल बूंदों के बिखरे हुए स्प्रे, निरंतर तरल कोर, या पिछले दो मामलों के बीच संक्रमण के रूप में हो सकता है। पोस्ट-ड्राईआउट का उपयोग विशेष रूप से उस स्थिति में गर्मी हस्तांतरण में गिरावट को दर्शाने के लिए किया जा सकता है जब तरल केवल बिखरी हुई बूंदों के रूप में होता है, और अन्य मामलों को पोस्ट-डीएनबी शब्द से दर्शाया जाता है। <ref>Yu, D., Feuerstein, F., Koeckert, L., & Cheng, X. (2018). Analysis and modeling of post-dryout heat transfer in upward vertical flow. Annals of Nuclear Energy, 115, 186-194.</ref>
=== डीएनबी ===
न्यूक्लियेट क्वथनांक (डीएनबी) से प्रस्थान उप-ठंडा फ्लक्स और बबली फ्लक्स शासन में होता है। गर्म सतह डीएनबी तब होता है जब गर्म सतह के पास विभिन्न बबली एकत्रित हो जाते हैं और स्थानीय द्रव की सतह तक पहुंचने की क्षमता बाधित हो जाती है। गर्म सतह और स्थानीय द्रव के मध्य वाष्प के द्रव्यमान को वाष्प कंबल के रूप में संदर्भित किया जा सकता है।


=== ड्राईआउट ===
[[File:Normalized HTC vs temporal dry fraction.png|thumb|मोर्स एट अल से चित्र। (2021)]]ड्राईआउट का अर्थ है ऊष्मा हस्तांतरण सतह पर द्रव का विलुप्त होना जिसके परिणामस्वरूप सीबीटी होता है। गर्म सतह द्रव फिल्म का ड्राईआउट [[कुंडलाकार प्रवाह|वलयाकार फ्लक्स]] में होता है।<ref name=":0" /> वलयाकार फ्लक्स की विशेषता वाष्प कोर, दीवार पर द्रव फिल्म और कोर के अन्दर फंसी द्रव बूंदें हैं। जो कि तरल-वाष्प इंटरफ़ेस पर कतरनी गर्म सतह के साथ द्रव फिल्म के फ्लक्स को संचालित करती है। सामान्यतः, तरल-फिल्म की मोटाई कम होने पर दो-फेज एचटीसी बढ़ जाती है। यह प्रक्रिया ड्राईआउट घटनाओं के विभिन्न उदाहरणों में घटित होती दिखाई गई है, जो सीमित अवधि और स्थिति के लिए स्थानीय होती है।<ref name=":0" /> गर्म सतह सीबीटी तब होता है जब किसी स्थानीय स्थिति के शुष्क होने का समय महत्वपूर्ण हो जाता है।<ref name=":0" /> एकल शुष्क घटना, या यहां तक ​​कि विभिन्न शुष्क घटनाओं के पश्चात् पहले से शुष्क क्षेत्र [https://mediaspace.wisc.edu/media/Dryout-rewet/1_7sn93wd2] के संपर्क में द्रव फिल्म के बने रहने की अवधि हो सकती है। अनुक्रम में होने वाली विभिन्न ड्राईआउट घटनाएं (सैकड़ों या हजारों) ऊष्मा हस्तांतरण से संबंधित ड्राईआउट सीबीटी में महत्वपूर्ण कमी के लिए तंत्र हैं।<ref name=":0" />


=== पोस्ट-सीएचएफ ===
पोस्ट-सीएचएफ का उपयोग फ्लक्स उबलटी हुई की प्रक्रिया में सामान्य ऊष्मा हस्तांतरण में क्षय को दर्शाने के लिए किया जाता है, और द्रव बूंदों के बिखरे हुए स्प्रे, निरंतर द्रव कोर, या पिछले दो स्थितियों के मध्य संक्रमण के रूप में हो सकता है। गर्म सतह पोस्ट-ड्राईआउट का उपयोग विशेष रूप से उस स्थिति में ऊष्मा हस्तांतरण में क्षय को दर्शाने के लिए किया जा सकता है जब द्रव केवल बिखरी हुई बूंदों के रूप में होता है, और अन्य स्थितियों को पोस्ट-डीएनबी शब्द से दर्शाया जाता है। <ref>Yu, D., Feuerstein, F., Koeckert, L., & Cheng, X. (2018). Analysis and modeling of post-dryout heat transfer in upward vertical flow. Annals of Nuclear Energy, 115, 186-194.</ref>
==सहसंबंध==
==सहसंबंध==


क्रांतिक ताप प्रवाह क्वथनांक वक्र पर एक महत्वपूर्ण बिंदु है और इस बिंदु के निकट क्वथनांक प्रक्रिया को संचालित करना वांछनीय हो सकता है। हालाँकि, कोई भी इस मात्रा से अधिक गर्मी नष्ट करने को लेकर सतर्क हो सकता है। जुबेर,<ref>{{cite journal |last=Zuber |first=Novak |date=June 1959 |title=उबलते ताप स्थानांतरण के हाइड्रोडायनामिक पहलू|url=http://www.osti.gov/scitech/servlets/purl/4175511/ |doi=10.2172/4175511 |access-date=4 April 2016}}</ref> समस्या के हाइड्रोडायनामिक स्थिरता विश्लेषण के माध्यम से इस बिंदु को अनुमानित करने के लिए एक अभिव्यक्ति विकसित की गई है।
क्रांतिक ताप फ्लक्स क्वथनांक वक्र पर महत्वपूर्ण बिंदु है और इस बिंदु के निकट क्वथनांक प्रक्रिया को संचालित करना वांछनीय हो सकता है। चूँकि, कोई भी इस मात्रा से अधिक ऊष्मा नष्ट करने को लेकर सतर्क हो सकता है। जुबेर,<ref>{{cite journal |last=Zuber |first=Novak |date=June 1959 |title=उबलते ताप स्थानांतरण के हाइड्रोडायनामिक पहलू|url=http://www.osti.gov/scitech/servlets/purl/4175511/ |doi=10.2172/4175511 |access-date=4 April 2016}}</ref> समस्या के हाइड्रोडायनामिक स्थिरता विश्लेषण के माध्यम से इस बिंदु को अनुमानित करने के लिए अभिव्यक्ति विकसित की गई है।


: <math>
: <math>
   \frac{q}{A_\text{max}} =
   \frac{q}{A_\text{max}} =
   Ch_{fg}\rho_v \left[ \frac{\sigma g\left( \rho_L - \rho_v \right)}{\rho_v^2} \right]^\frac{1}{4}(1 +\rho_v/\rho_L )
   Ch_{fg}\rho_v \left[ \frac{\sigma g\left( \rho_L - \rho_v \right)}{\rho_v^2} \right]^\frac{1}{4}(1 +\rho_v/\rho_L )                                            
</math>
</math>
इकाइयाँ: क्रांतिक प्रवाह: किलोवाट/मीटर{{sup|2}}; एच{{sub|fg}}: केजे/किग्रा; σ: एन/एम; ρ: किग्रा/मी{{sup|3}}; जी: मैसर्स{{sup|2}}.
इकाइयाँ: महत्वपूर्ण फ्लक्स: ''kW/m<sup>2</sup>; h<sub>fg</sub>: kJ/kg; σ: N/m; ρ: kg/m<sup>3</sup>; g: m/s<sup>2</sup>.''
 
यह सतह पदार्थ से स्वतंत्र है और स्थिरांक सी द्वारा वर्णित गर्म सतह ज्यामिति पर अशक्त रूप से निर्भर है। बड़े क्षैतिज सिलेंडरों, गोले और बड़ी परिमित गर्म सतहों के लिए, जुबेर स्थिरांक का मान <math>C = \frac{\pi}{24} \approx 0.131</math>. बड़ी क्षैतिज प्लेटों के लिए, का मान <math>C \approx 0.149</math> अधिक उपयुक्त है.


यह सतह सामग्री से स्वतंत्र है और स्थिरांक सी द्वारा वर्णित गर्म सतह ज्यामिति पर कमजोर रूप से निर्भर है। बड़े क्षैतिज सिलेंडरों, गोले और बड़ी परिमित गर्म सतहों के लिए, जुबेर स्थिरांक का मान <math>C = \frac{\pi}{24} \approx 0.131</math>. बड़ी क्षैतिज प्लेटों के लिए, का मान <math>C \approx 0.149</math> अधिक उपयुक्त है.
महत्वपूर्ण ताप फ्लक्स दबाव पर अत्यधिक निर्भर करता है। कम दबाव (वायुमंडलीय दबाव सहित) पर, दबाव निर्भरता मुख्य रूप से वाष्प घनत्व में परिवर्तन के माध्यम से होती है गर्म सतह जिससे दबाव के साथ महत्वपूर्ण ताप फ्लक्स में वृद्धि होती है। चूँकि, जैसे-जैसे दबाव महत्वपूर्ण दबाव के निकट पहुँचता है, सतह का तनाव और वाष्पीकरण की ऊष्मा दोनों शून्य में परिवर्तित हो जाते हैं, जिससे वह दबाव निर्भरता के प्रमुख स्रोत बन जाते हैं।<ref>{{cite journal |title=Fundamentals of Heat and Mass Transfer 6th Edition by Incropera}}</ref>


महत्वपूर्ण ताप प्रवाह दबाव पर अत्यधिक निर्भर करता है। कम दबाव (वायुमंडलीय दबाव सहित) पर, दबाव निर्भरता मुख्य रूप से वाष्प घनत्व में परिवर्तन के माध्यम से होती है जिससे दबाव के साथ महत्वपूर्ण ताप प्रवाह में वृद्धि होती है। हालाँकि, जैसे-जैसे दबाव महत्वपूर्ण दबाव के करीब पहुँचता है, सतह का तनाव और वाष्पीकरण की गर्मी दोनों शून्य में परिवर्तित हो जाते हैं, जिससे वे दबाव निर्भरता के प्रमुख स्रोत बन जाते हैं।<ref>{{cite journal |title=Fundamentals of Heat and Mass Transfer 6th Edition by Incropera}}</ref>
1 एटीएम पानी के लिए, उपरोक्त समीकरण लगभग 1000 किलोवाट/मीटर{{sup|2}} के महत्वपूर्ण ताप फ्लक्स की गणना करता है.
1 बजे पानी के लिए{{nbsp}}एटीएम, उपरोक्त समीकरण लगभग 1000 किलोवाट/मीटर के महत्वपूर्ण ताप प्रवाह की गणना करता है{{sup|2}}.


==यह भी देखें==
==यह भी देखें==
*लीडेनफ्रॉस्ट प्रभाव
*लीडेनफ्रॉस्ट प्रभाव
*न्यूक्लिएट का उबलना
*न्यूक्लिएट का उबलटी हुई


==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}


==बाहरी संबंध==
==बाहरी संबंध==
*[https://web.archive.org/web/20080604014136/http://www.pmmh.espci.fr/~vnikol/boiling_crisis.html Modeling of the boiling crisis]
*[https://web.archive.org/web/20080604014136/http://www.pmmh.espci.fr/~vnikol/boiling_crisis.html Modeling of the boiling crisis]
*[https://www.youtube.com/watch?v=XV7A_kblqjI Film dryout near critical heat flux] - video{{refimprove|date=April 2010}}
*[https://www.youtube.com/watch?v=XV7A_kblqjI Film dryout near critical heat flux] - video
[[Category: ऊष्मप्रवैगिकी]]
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:Created On 07/08/2023]]
[[Category:Created On 07/08/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ऊष्मप्रवैगिकी]]

Latest revision as of 19:05, 21 August 2023

ऊष्मा स्थानांतरण के अध्ययन में क्रिटिकल हीट फ्लक्स (सीएचएफ़) वह ऊष्मा फ्लक्स है जिस पर उबलटी हुई ठोस सतह से द्रव में ऊष्मा स्थानांतरित करने का प्रभावी रूप नहीं रह जाता है।

विवरण

फ्लक्स उबलटी हुई की व्यवस्था की प्रगति (ऊपर) और ऊष्मा हस्तांतरण का गुणात्मक विवरण (नीचे)।

उबलटी हुई प्रणालियाँ वह होती हैं जिनमें द्रव शीतलक गर्म ठोस सतह से ऊर्जा को अवशोषित करता है और फेज (पदार्थ) में परिवर्तन करता है। फ्लक्स उबलटी हुई प्रणालियों में, वाष्प की गुणवत्ता बढ़ने पर संतृप्त द्रव फ्लक्स व्यवस्थाओं की श्रृंखला के माध्यम से आगे बढ़ता है। उन प्रणालियों में जो उबलटी हुई का उपयोग करते हैं, इस प्रकार ऊष्मा हस्तांतरण दर द्रव पदार्थ के एकल फेज (अर्थात सभी द्रव या सभी वाष्प) की तुलना में अधिक अधिक होती है। गर्म सतह से अधिक कुशल ऊष्मा स्थानांतरण वाष्पीकरण की ऊष्मा और संवेदी ऊष्मा के कारण होता है। इसलिए, उबलटी हुई ताप हस्तांतरण ने परमाणु ऊर्जा संयंत्र और जीवाश्म ऊर्जा संयंत्रों में मैक्रोस्कोपिक हीट ट्रांसफर एक्सचेंजर्स और इलेक्ट्रानिक्स एकीकृत परिपथ को ठंडा करने के लिए हीट पाइप और माइक्रोचैनल (सूक्ष्मप्रौद्योगिकी) जैसे सूक्ष्म ताप हस्तांतरण उपकरणों में औद्योगिक ऊष्मा हस्तांतरण प्रक्रियाओं में महत्वपूर्ण योगदान दिया है।

गर्मी हटाने के साधन के रूप में उबलटी हुई का उपयोग 'क्रिटिकल हीट फ्लक्स (सीएचएफ)' नामक स्थिति द्वारा सीमित है। इस प्रकार सीएचएफ के निकट होने वाली सबसे गंभीर समस्या यह है कि ऊष्मा हस्तांतरण में महत्वपूर्ण कमी के कारण गर्म सतह का तापमान नाटकीय रूप से बढ़ सकता है। इलेक्ट्रॉनिक्स कूलिंग या अंतरिक्ष में इंस्ट्रूमेंटेशन जैसे औद्योगिक अनुप्रयोगों में, तापमान में अचानक वृद्धि संभवतः डिवाइस की अखंडता से समझौता कर सकती है।

दो फेज ऊष्मा हस्तांतरण

सामान्यतः गर्म दीवार और कार्य कर रहे द्रव पदार्थ के मध्य संवहन ताप हस्तांतरण को न्यूटन के शीतलन के नियम द्वारा वर्णित किया गया है:

जहां ऊष्मा फ्लक्स का प्रतिनिधित्व करता है आनुपातिक स्थिरांक का प्रतिनिधित्व करता है जिसे ऊष्मा स्थानांतरण गुणांक कहा जाता है, दीवार के तापमान का प्रतिनिधित्व करता है और द्रव तापमान का प्रतिनिधित्व करता है। यदि सीएचएफ़ स्थिति के घटित होने के कारण अधिक कम हो जाता है तो निश्चित और के लिए बढ़ जाएगा जबकि निश्चित के लिए कम हो जाता है

सीएचएफ के मोड

सीएचएफ घटना की समझ और सीएचएफ स्थिति की स्पष्ट पूर्वानुमान परमाणु रिएक्टर, जीवाश्म ईंधन बायलर , संलयन रिएक्टर, इलेक्ट्रॉनिक चिप्स इत्यादि सहित विभिन्न ऊष्मा हस्तांतरण इकाइयों के सुरक्षित और आर्थिक डिजाइन के लिए महत्वपूर्ण है। इसलिए, इस घटना की बड़े माप पर जांच की गई है नुकियामा के पश्चात् से संसार ने पहली बार इसकी विशेषता बताई थी।[1] 1950 में कुटाटेलैड्ज़े ने बर्नआउट संकट के हाइड्रोडायनामिकल सिद्धांत का सुझाव दिया था।[2] गर्म सतह पिछले दशकों के समय जल-ठंडा परमाणु रिएक्टरों के विकास के साथ विभिन्न महत्वपूर्ण कार्य किए गए हैं। अब घटना के विभिन्न तथ्यों को अच्छी तरह से समझ लिया गया है और सामान्य विभिन्न स्थितियों के लिए विभिन्न विश्वसनीय पूर्वानुमान मॉडल (सार) उपलब्ध हैं।

क्रिटिकल हीट फ्लक्स (सीएचएफ) शब्द का उपयोग लेखकों के मध्य असंगत है।[3] संयुक्त राज्य परमाणु नियामक आयोग ने दो-फेज ताप हस्तांतरण में महत्वपूर्ण कमी से जुड़ी घटना को संकेत करने के लिए "क्रिटिकल उबलटी हुई ट्रांज़िशन" (सीबीटी) शब्द का उपयोग करने का सुझाव दिया है।[4] गर्म सतह एकल प्रजाति के लिए, द्रव फेज में सामान्यतः वाष्प फेज, अर्थात् तापीय चालकता की तुलना में अधिक उत्तम ऊष्मा हस्तांतरण गुण होते हैं। तो सामान्यतः सीबीटी गर्म सतह के साथ स्थानीय स्थिति में कुछ सीमा तक द्रव पदार्थ की कमी का परिणाम है। सीबीटी तक पहुंचने के परिणामस्वरूप दो तंत्र हैं: न्यूक्लियेट उबलटी हुई (डीएनबी) से प्रस्थान और द्रव फिल्म का ड्राईआउट होता है।

डीएनबी

न्यूक्लियेट क्वथनांक (डीएनबी) से प्रस्थान उप-ठंडा फ्लक्स और बबली फ्लक्स शासन में होता है। गर्म सतह डीएनबी तब होता है जब गर्म सतह के पास विभिन्न बबली एकत्रित हो जाते हैं और स्थानीय द्रव की सतह तक पहुंचने की क्षमता बाधित हो जाती है। गर्म सतह और स्थानीय द्रव के मध्य वाष्प के द्रव्यमान को वाष्प कंबल के रूप में संदर्भित किया जा सकता है।

ड्राईआउट

मोर्स एट अल से चित्र। (2021)

ड्राईआउट का अर्थ है ऊष्मा हस्तांतरण सतह पर द्रव का विलुप्त होना जिसके परिणामस्वरूप सीबीटी होता है। गर्म सतह द्रव फिल्म का ड्राईआउट वलयाकार फ्लक्स में होता है।[3] वलयाकार फ्लक्स की विशेषता वाष्प कोर, दीवार पर द्रव फिल्म और कोर के अन्दर फंसी द्रव बूंदें हैं। जो कि तरल-वाष्प इंटरफ़ेस पर कतरनी गर्म सतह के साथ द्रव फिल्म के फ्लक्स को संचालित करती है। सामान्यतः, तरल-फिल्म की मोटाई कम होने पर दो-फेज एचटीसी बढ़ जाती है। यह प्रक्रिया ड्राईआउट घटनाओं के विभिन्न उदाहरणों में घटित होती दिखाई गई है, जो सीमित अवधि और स्थिति के लिए स्थानीय होती है।[3] गर्म सतह सीबीटी तब होता है जब किसी स्थानीय स्थिति के शुष्क होने का समय महत्वपूर्ण हो जाता है।[3] एकल शुष्क घटना, या यहां तक ​​कि विभिन्न शुष्क घटनाओं के पश्चात् पहले से शुष्क क्षेत्र [1] के संपर्क में द्रव फिल्म के बने रहने की अवधि हो सकती है। अनुक्रम में होने वाली विभिन्न ड्राईआउट घटनाएं (सैकड़ों या हजारों) ऊष्मा हस्तांतरण से संबंधित ड्राईआउट सीबीटी में महत्वपूर्ण कमी के लिए तंत्र हैं।[3]

पोस्ट-सीएचएफ

पोस्ट-सीएचएफ का उपयोग फ्लक्स उबलटी हुई की प्रक्रिया में सामान्य ऊष्मा हस्तांतरण में क्षय को दर्शाने के लिए किया जाता है, और द्रव बूंदों के बिखरे हुए स्प्रे, निरंतर द्रव कोर, या पिछले दो स्थितियों के मध्य संक्रमण के रूप में हो सकता है। गर्म सतह पोस्ट-ड्राईआउट का उपयोग विशेष रूप से उस स्थिति में ऊष्मा हस्तांतरण में क्षय को दर्शाने के लिए किया जा सकता है जब द्रव केवल बिखरी हुई बूंदों के रूप में होता है, और अन्य स्थितियों को पोस्ट-डीएनबी शब्द से दर्शाया जाता है। [5]

सहसंबंध

क्रांतिक ताप फ्लक्स क्वथनांक वक्र पर महत्वपूर्ण बिंदु है और इस बिंदु के निकट क्वथनांक प्रक्रिया को संचालित करना वांछनीय हो सकता है। चूँकि, कोई भी इस मात्रा से अधिक ऊष्मा नष्ट करने को लेकर सतर्क हो सकता है। जुबेर,[6] समस्या के हाइड्रोडायनामिक स्थिरता विश्लेषण के माध्यम से इस बिंदु को अनुमानित करने के लिए अभिव्यक्ति विकसित की गई है।

इकाइयाँ: महत्वपूर्ण फ्लक्स: kW/m2; hfg: kJ/kg; σ: N/m; ρ: kg/m3; g: m/s2.

यह सतह पदार्थ से स्वतंत्र है और स्थिरांक सी द्वारा वर्णित गर्म सतह ज्यामिति पर अशक्त रूप से निर्भर है। बड़े क्षैतिज सिलेंडरों, गोले और बड़ी परिमित गर्म सतहों के लिए, जुबेर स्थिरांक का मान . बड़ी क्षैतिज प्लेटों के लिए, का मान अधिक उपयुक्त है.

महत्वपूर्ण ताप फ्लक्स दबाव पर अत्यधिक निर्भर करता है। कम दबाव (वायुमंडलीय दबाव सहित) पर, दबाव निर्भरता मुख्य रूप से वाष्प घनत्व में परिवर्तन के माध्यम से होती है गर्म सतह जिससे दबाव के साथ महत्वपूर्ण ताप फ्लक्स में वृद्धि होती है। चूँकि, जैसे-जैसे दबाव महत्वपूर्ण दबाव के निकट पहुँचता है, सतह का तनाव और वाष्पीकरण की ऊष्मा दोनों शून्य में परिवर्तित हो जाते हैं, जिससे वह दबाव निर्भरता के प्रमुख स्रोत बन जाते हैं।[7]

1 एटीएम पानी के लिए, उपरोक्त समीकरण लगभग 1000 किलोवाट/मीटर2 के महत्वपूर्ण ताप फ्लक्स की गणना करता है.

यह भी देखें

  • लीडेनफ्रॉस्ट प्रभाव
  • न्यूक्लिएट का उबलटी हुई

संदर्भ

  1. Nukiyama, S. (1934). "पतले तारों पर उबलते पानी की फिल्म बनाएं". Soc. Mech. Engng., Japan. 37.
  2. Kutateladze, S.S. (1950). "मुक्त संवहन की स्थिति में उबलने के संकट का हाइड्रोमैकेनिकल मॉडल". Journal of Technical Physics, USSR. 20 (11): 1389–1392.
  3. 3.0 3.1 3.2 3.3 3.4 Morse, R. W.; Moreira, T. A.; Chan, J.; Dressler, K. M.; Ribatski, G.; Hurlburt, E. T.; McCarroll, L. L.; Nellis, G. F.; Berson, A. (2021-10-01). "ऊर्ध्वाधर दो-चरण कुंडलाकार प्रवाह में गंभीर ताप प्रवाह और तरल फिल्म का सूखना". International Journal of Heat and Mass Transfer (in English). 177: 121487. doi:10.1016/j.ijheatmasstransfer.2021.121487. ISSN 0017-9310.
  4. "Nuclear Regulatory Commission issuances. Volume 47, Number 3". 1998-03-01. {{cite journal}}: Cite journal requires |journal= (help)
  5. Yu, D., Feuerstein, F., Koeckert, L., & Cheng, X. (2018). Analysis and modeling of post-dryout heat transfer in upward vertical flow. Annals of Nuclear Energy, 115, 186-194.
  6. Zuber, Novak (June 1959). "उबलते ताप स्थानांतरण के हाइड्रोडायनामिक पहलू". doi:10.2172/4175511. Retrieved 4 April 2016. {{cite journal}}: Cite journal requires |journal= (help)
  7. "Fundamentals of Heat and Mass Transfer 6th Edition by Incropera". {{cite journal}}: Cite journal requires |journal= (help)

बाहरी संबंध