द्रव्यमान आव्युह: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Matrix relating a system's generalized coordinate vector and kinetic energy}} | {{short description|Matrix relating a system's generalized coordinate vector and kinetic energy}} | ||
[[विश्लेषणात्मक यांत्रिकी]] में, '''द्रव्यमान आव्युह''' एक [[सममित मैट्रिक्स|सममित आव्युह]] {{math|'''M'''}} है जो [[समय व्युत्पन्न]] के मध्य संबंध को व्यक्त करता है <math>\mathbf\dot q</math> [[सामान्यीकृत निर्देशांक]] | [[विश्लेषणात्मक यांत्रिकी]] में, '''द्रव्यमान आव्युह''' एक [[सममित मैट्रिक्स|सममित आव्युह]] {{math|'''M'''}} है जो [[समय व्युत्पन्न]] के मध्य संबंध को व्यक्त करता है <math>\mathbf\dot q</math> [[सामान्यीकृत निर्देशांक|सामान्यीकृत समन्वय]] सदिश {{math|'''q'''}} और उस प्रणाली की [[गतिज ऊर्जा]] {{mvar|T}} का असमीकरण द्वारा | ||
:<math>T = \frac{1}{2} \mathbf{\dot q}^\textsf{T} \mathbf{M} \mathbf{\dot q}</math> | :<math>T = \frac{1}{2} \mathbf{\dot q}^\textsf{T} \mathbf{M} \mathbf{\dot q}</math> | ||
कहाँ <math>\mathbf{\dot q}^\textsf{T}</math> सदिश के [[ मैट्रिक्स स्थानान्तरण |आव्युह स्थानान्तरण]] | कहाँ <math>\mathbf{\dot q}^\textsf{T}</math> सदिश के [[ मैट्रिक्स स्थानान्तरण |आव्युह स्थानान्तरण]] <math>\mathbf{\dot q}</math> को दर्शाता है<ref name=Riley/> इस प्रकार यह समीकरण द्रव्यमान {{mvar|m}} और वेग {{math|'''v'''}}, वाले कण की गतिज ऊर्जा के सूत्र के अनुरूप है अर्थात् | ||
:<math>T = \frac{1}{2} m|\mathbf{v}|^2 = \frac{1}{2} \mathbf{v} \cdot m\mathbf{v}</math> | :<math>T = \frac{1}{2} m|\mathbf{v}|^2 = \frac{1}{2} \mathbf{v} \cdot m\mathbf{v}</math> | ||
और | और इसे प्रणाली के प्रत्येक कण की स्थिति को {{math|'''q'''}} के रूप में व्यक्त करके प्राप्त किया जा सकता है . | ||
सामान्यतः, द्रव्यमान आव्युह {{math|'''M'''}} राज्य {{math|'''q'''}} पर निर्भर करता है, और इसलिए समय के साथ बदलता रहता है। | सामान्यतः, द्रव्यमान आव्युह {{math|'''M'''}} राज्य {{math|'''q'''}} पर निर्भर करता है, और इसलिए समय के साथ बदलता रहता है। | ||
[[लैग्रेंजियन यांत्रिकी]] [[साधारण अंतर समीकरण]] उत्पन्न करता है (वास्तव में, युग्मित अंतर समीकरणों की प्रणाली) जो सामान्यीकृत निर्देशांक के अनेैतिक रूप से सदिश के संदर्भ में प्रणाली के विकास का वर्णन करता है इस प्रकार जो सिस्टम में प्रत्येक कण की स्थिति को पूरी तरह से परिभाषित करता है। उपरोक्त गतिज ऊर्जा सूत्र उस समीकरण का पद है, जो सभी कणों की कुल गतिज ऊर्जा को दर्शाता है। | [[लैग्रेंजियन यांत्रिकी]] [[साधारण अंतर समीकरण]] उत्पन्न करता है इस प्रकार (वास्तव में, युग्मित अंतर समीकरणों की प्रणाली) जो सामान्यीकृत निर्देशांक के अनेैतिक रूप से सदिश के संदर्भ में प्रणाली के विकास का वर्णन करता है इस प्रकार जो सिस्टम में प्रत्येक कण की स्थिति को पूरी तरह से परिभाषित करता है। उपरोक्त गतिज ऊर्जा सूत्र उस समीकरण का पद है, जो सभी कणों की कुल गतिज ऊर्जा को दर्शाता है। | ||
=='''उदाहरण'''== | =='''उदाहरण'''== | ||
===दो-शरीर एकआयामी प्रणाली === | ===दो-शरीर एकआयामी प्रणाली === | ||
[[File:Mass matrix masses in 1d.svg|thumb|एक स्थानिक आयाम में द्रव्यमान की प्रणाली।]]उदाहरण के लिए, ऐसी प्रणाली पर विचार करें जिसमें दो बिंदु-जैसे द्रव्यमान सीधे ट्रैक तक सीमित हों। इस प्रकार उस सिस्टम की स्थिति को सदिश {{math|'''q'''}} द्वारा वर्णित किया जा सकता है | [[File:Mass matrix masses in 1d.svg|thumb|एक स्थानिक आयाम में द्रव्यमान की प्रणाली।]]उदाहरण के लिए, ऐसी प्रणाली पर विचार करें जिसमें दो बिंदु-जैसे द्रव्यमान सीधे ट्रैक तक सीमित हों। इस प्रकार उस सिस्टम की स्थिति को दो सामान्यीकृत निर्देशांक के सदिश {{math|'''q'''}} द्वारा वर्णित किया जा सकता है अर्थात् ट्रैक के साथ दो कणों की स्थिति। | ||
:<math>\mathbf q = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\textsf{T}</math> | :<math>\mathbf q = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\textsf{T}</math> | ||
मान लीजिए कि कणों में द्रव्यमान {{math|''m''{{sub|1}}, ''m''{{sub|2}}}} है, तब सिस्टम की गतिज ऊर्जा है | मान लीजिए कि कणों में द्रव्यमान {{math|''m''{{sub|1}}, ''m''{{sub|2}}}} है, तब सिस्टम की गतिज ऊर्जा है | ||
:<math>T = \sum_{i=1}^{2} \frac{1}{2} m_i \dot {x_i}^2</math> | :<math>T = \sum_{i=1}^{2} \frac{1}{2} m_i \dot {x_i}^2</math> | ||
इस सूत्र को इस प्रकार भी लिखा जा सकता है | इस प्रकार इस सूत्र को इस प्रकार भी लिखा जा सकता है | ||
:<math>T = \frac{1}{2} \dot \mathbf{q}^\textsf{T} \mathbf M \dot \mathbf{q}</math> | :<math>T = \frac{1}{2} \dot \mathbf{q}^\textsf{T} \mathbf M \dot \mathbf{q}</math> | ||
कहाँ | कहाँ | ||
Line 26: | Line 26: | ||
:<math>\mathbf M = \operatorname{diag}\left[ m_1 \mathbf{I}_{n_1},\, m_2 \mathbf{I}_{n_2},\, \ldots,\, m_N \mathbf{I}_{n_N} \right]</math> | :<math>\mathbf M = \operatorname{diag}\left[ m_1 \mathbf{I}_{n_1},\, m_2 \mathbf{I}_{n_2},\, \ldots,\, m_N \mathbf{I}_{n_N} \right]</math> | ||
जहां {{math|'''I'''''{{sub|n{{sub|i}}}}''}} है {{math|''n{{sub|i}}'' × ''n{{sub|i}}''}} पहचान आव्युह है, या अधिक पूर्णतः: | इस प्रकार जहां {{math|'''I'''''{{sub|n{{sub|i}}}}''}} है {{math|''n{{sub|i}}'' × ''n{{sub|i}}''}} पहचान आव्युह है, या अधिक पूर्णतः: | ||
: <math>\mathbf M = \begin{bmatrix} | : <math>\mathbf M = \begin{bmatrix} | ||
m_1 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ | m_1 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ | ||
Line 43: | Line 43: | ||
[[File:Mass matrix rotating dumbbell.svg|thumb|घूमता हुआ डम्बल.]]एक कम तुच्छ उदाहरण के लिए, द्रव्यमान {{math|''m''{{sub|1}}, ''m''{{sub|2}}}} के साथ दो बिंदु-जैसी वस्तुओं पर विचार करें, जो {{math|2''R''}} लंबाई के साथ एक कठोर द्रव्यमान रहित पट्टी के सिरों से जुड़ी हुई हैं, इस प्रकार असेंबली एक निश्चित विमान पर घूमने और स्लाइड करने के लिए स्वतंत्र है। सिस्टम की स्थिति को सामान्यीकृत समन्वय सदिश द्वारा वर्णित किया जा सकता है | [[File:Mass matrix rotating dumbbell.svg|thumb|घूमता हुआ डम्बल.]]एक कम तुच्छ उदाहरण के लिए, द्रव्यमान {{math|''m''{{sub|1}}, ''m''{{sub|2}}}} के साथ दो बिंदु-जैसी वस्तुओं पर विचार करें, जो {{math|2''R''}} लंबाई के साथ एक कठोर द्रव्यमान रहित पट्टी के सिरों से जुड़ी हुई हैं, इस प्रकार असेंबली एक निश्चित विमान पर घूमने और स्लाइड करने के लिए स्वतंत्र है। सिस्टम की स्थिति को सामान्यीकृत समन्वय सदिश द्वारा वर्णित किया जा सकता है | ||
:<math>\mathbf q = \begin{bmatrix} x & y & \alpha \end{bmatrix}</math> | :<math>\mathbf q = \begin{bmatrix} x & y & \alpha \end{bmatrix}</math> | ||
:जहां {{mvar|x, y}} बार के मध्यबिंदु के कार्टेशियन निर्देशांक हैं और {{mvar|α}} कुछ मनमानी संदर्भ दिशा से बार का कोण है। दो कणों की स्थिति और वेग हैं | :जहां {{mvar|x, y}} बार के मध्यबिंदु के कार्टेशियन निर्देशांक हैं और {{mvar|α}} कुछ मनमानी संदर्भ दिशा से बार का कोण है। इस प्रकार दो कणों की स्थिति और वेग हैं | ||
:<math>\begin{align} | :<math>\begin{align} | ||
x_1 &= (x, y) + R(\cos\alpha, \sin\alpha) & v_1 &= \left(\dot x, \dot y\right) + R\dot \alpha(-\sin\alpha, \cos\alpha) \\ | x_1 &= (x, y) + R(\cos\alpha, \sin\alpha) & v_1 &= \left(\dot x, \dot y\right) + R\dot \alpha(-\sin\alpha, \cos\alpha) \\ | ||
Line 50: | Line 50: | ||
और उनकी कुल गतिज ऊर्जा है | और उनकी कुल गतिज ऊर्जा है | ||
:<math>2T = m\dot x^2 + m\dot y^2 + mR^2\dot\alpha^2 - 2Rd\sin(\alpha) \dot x \dot\alpha + 2Rd\cos(\alpha) \dot y \dot\alpha</math> | :<math>2T = m\dot x^2 + m\dot y^2 + mR^2\dot\alpha^2 - 2Rd\sin(\alpha) \dot x \dot\alpha + 2Rd\cos(\alpha) \dot y \dot\alpha</math> | ||
कहाँ <math>m = m_1 + m_2</math> और <math>d = m_1 - m_2</math>. इस सूत्र को आव्युह रूप में इस प्रकार लिखा जा सकता है | इस प्रकार कहाँ <math>m = m_1 + m_2</math> और <math>d = m_1 - m_2</math>. इस सूत्र को आव्युह रूप में इस प्रकार लिखा जा सकता है | ||
:<math>T = \frac{1}{2} \dot \mathbf{q}^\textsf{T} \mathbf M \dot \mathbf q</math> | :<math>T = \frac{1}{2} \dot \mathbf{q}^\textsf{T} \mathbf M \dot \mathbf q</math> | ||
कहाँ | कहाँ | ||
Line 62: | Line 62: | ||
=='''सातत्य यांत्रिकी'''== | =='''सातत्य यांत्रिकी'''== | ||
परिमित तत्व विधि की तरह सातत्य यांत्रिकी के भिन्न-भिन्न अनुमानों के लिए, वांछित कम्प्यूटेशनल त्रुटिहीनता और प्रदर्शन के आधार पर, द्रव्यमान आव्युह के निर्माण के से अधिक तरीके हो सकते हैं। इस प्रकार उदाहरण के लिए, गांठ-द्रव्यमान विधि, जिसमें प्रत्येक तत्व के विरूपण को नजरअंदाज किया जाता है, एक विकर्ण द्रव्यमान आव्युह बनाता है और विकृत तत्व में द्रव्यमान को एकीकृत करने की आवश्यकता को नकार देता है। | परिमित तत्व विधि की तरह '''सातत्य यांत्रिकी''' के भिन्न-भिन्न अनुमानों के लिए, वांछित कम्प्यूटेशनल त्रुटिहीनता और प्रदर्शन के आधार पर, द्रव्यमान आव्युह के निर्माण के से अधिक तरीके हो सकते हैं। इस प्रकार उदाहरण के लिए, गांठ-द्रव्यमान विधि, जिसमें प्रत्येक तत्व के विरूपण को नजरअंदाज किया जाता है, एक विकर्ण द्रव्यमान आव्युह बनाता है और विकृत तत्व में द्रव्यमान को एकीकृत करने की आवश्यकता को नकार देता है। | ||
== '''यह भी देखें''' == | == '''यह भी देखें''' == | ||
Line 82: | Line 82: | ||
</ref> | </ref> | ||
</references> | </references> | ||
[[Category:Created On 24/07/2023]] | [[Category:Created On 24/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:कम्प्यूटेशनल विज्ञान]] |
Latest revision as of 10:26, 22 August 2023
विश्लेषणात्मक यांत्रिकी में, द्रव्यमान आव्युह एक सममित आव्युह M है जो समय व्युत्पन्न के मध्य संबंध को व्यक्त करता है सामान्यीकृत समन्वय सदिश q और उस प्रणाली की गतिज ऊर्जा T का असमीकरण द्वारा
कहाँ सदिश के आव्युह स्थानान्तरण को दर्शाता है[1] इस प्रकार यह समीकरण द्रव्यमान m और वेग v, वाले कण की गतिज ऊर्जा के सूत्र के अनुरूप है अर्थात्
और इसे प्रणाली के प्रत्येक कण की स्थिति को q के रूप में व्यक्त करके प्राप्त किया जा सकता है .
सामान्यतः, द्रव्यमान आव्युह M राज्य q पर निर्भर करता है, और इसलिए समय के साथ बदलता रहता है।
लैग्रेंजियन यांत्रिकी साधारण अंतर समीकरण उत्पन्न करता है इस प्रकार (वास्तव में, युग्मित अंतर समीकरणों की प्रणाली) जो सामान्यीकृत निर्देशांक के अनेैतिक रूप से सदिश के संदर्भ में प्रणाली के विकास का वर्णन करता है इस प्रकार जो सिस्टम में प्रत्येक कण की स्थिति को पूरी तरह से परिभाषित करता है। उपरोक्त गतिज ऊर्जा सूत्र उस समीकरण का पद है, जो सभी कणों की कुल गतिज ऊर्जा को दर्शाता है।
उदाहरण
दो-शरीर एकआयामी प्रणाली
उदाहरण के लिए, ऐसी प्रणाली पर विचार करें जिसमें दो बिंदु-जैसे द्रव्यमान सीधे ट्रैक तक सीमित हों। इस प्रकार उस सिस्टम की स्थिति को दो सामान्यीकृत निर्देशांक के सदिश q द्वारा वर्णित किया जा सकता है अर्थात् ट्रैक के साथ दो कणों की स्थिति।
मान लीजिए कि कणों में द्रव्यमान m1, m2 है, तब सिस्टम की गतिज ऊर्जा है
इस प्रकार इस सूत्र को इस प्रकार भी लिखा जा सकता है
कहाँ
एन-बॉडी सिस्टम
अधिक सामान्यतः, एक सूचकांक i = 1, 2, …, N द्वारा लेबल किए गए N कणों की एक प्रणाली पर विचार करें, जहां कण संख्या i की स्थिति ni मुक्त कार्टेशियन निर्देशांक (जहां ni = 1, 2, 3) द्वारा परिभाषित की जाती है। इस प्रकार मान लीजिए कि q उन सभी निर्देशांकों वाला स्तंभ सदिश है। द्रव्यमान आव्युह M विकर्ण आव्युह ब्लॉक आव्युह है जहां प्रत्येक ब्लॉक में विकर्ण तत्व संबंधित कण का द्रव्यमान होते हैं:[2]
इस प्रकार जहां Ini है ni × ni पहचान आव्युह है, या अधिक पूर्णतः:
घूमने वाला डम्बल
एक कम तुच्छ उदाहरण के लिए, द्रव्यमान m1, m2 के साथ दो बिंदु-जैसी वस्तुओं पर विचार करें, जो 2R लंबाई के साथ एक कठोर द्रव्यमान रहित पट्टी के सिरों से जुड़ी हुई हैं, इस प्रकार असेंबली एक निश्चित विमान पर घूमने और स्लाइड करने के लिए स्वतंत्र है। सिस्टम की स्थिति को सामान्यीकृत समन्वय सदिश द्वारा वर्णित किया जा सकता है
- जहां x, y बार के मध्यबिंदु के कार्टेशियन निर्देशांक हैं और α कुछ मनमानी संदर्भ दिशा से बार का कोण है। इस प्रकार दो कणों की स्थिति और वेग हैं
और उनकी कुल गतिज ऊर्जा है
इस प्रकार कहाँ और . इस सूत्र को आव्युह रूप में इस प्रकार लिखा जा सकता है
कहाँ
ध्यान दें कि आव्युह बार के वर्तमान कोण α पर निर्भर करता है
सातत्य यांत्रिकी
परिमित तत्व विधि की तरह सातत्य यांत्रिकी के भिन्न-भिन्न अनुमानों के लिए, वांछित कम्प्यूटेशनल त्रुटिहीनता और प्रदर्शन के आधार पर, द्रव्यमान आव्युह के निर्माण के से अधिक तरीके हो सकते हैं। इस प्रकार उदाहरण के लिए, गांठ-द्रव्यमान विधि, जिसमें प्रत्येक तत्व के विरूपण को नजरअंदाज किया जाता है, एक विकर्ण द्रव्यमान आव्युह बनाता है और विकृत तत्व में द्रव्यमान को एकीकृत करने की आवश्यकता को नकार देता है।
यह भी देखें
- निष्क्रियता के पल
- तनाव-ऊर्जा टेंसर
- कठोरता आव्युह
- स्क्लेरोनोमस
संदर्भ
- ↑ Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN 978-0-521-86153-3
- ↑ Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978 0 521 57572 0