आइटम प्रतिक्रिया सिद्धांत: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Paradigm for the design, analysis, and scoring of tests}} साइकोमेट्रिक्स में, आइटम प्रतिक्र...")
 
No edit summary
 
(25 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Paradigm for the design, analysis, and scoring of tests}}
{{Short description|Paradigm for the design, analysis, and scoring of tests}}
[[साइकोमेट्रिक्स]] में, आइटम प्रतिक्रिया सिद्धांत (आईआरटी) (अव्यक्त विशेषता सिद्धांत, मजबूत वास्तविक स्कोर सिद्धांत, या आधुनिक मानसिक परीक्षण सिद्धांत के रूप में भी जाना जाता है) टेस्ट (छात्र मूल्यांकन), [[प्रश्नावली]] और इसी तरह के डिजाइन, विश्लेषण और स्कोरिंग के लिए एक प्रतिमान है। उपकरण [[माप]] क्षमताएं, दृष्टिकोण, या अन्य चर। यह एक परीक्षण आइटम पर व्यक्तियों के प्रदर्शन और उस आइटम को मापने के लिए डिज़ाइन की गई क्षमता के समग्र माप पर परीक्षणकर्ताओं के प्रदर्शन के स्तर के बीच संबंधों पर आधारित परीक्षण का एक सिद्धांत है। आइटम और परीक्षार्थी दोनों की विशेषताओं का प्रतिनिधित्व करने के लिए कई अलग-अलग सांख्यिकीय मॉडल का उपयोग किया जाता है।<ref>{{cite web |title=महत्वपूर्ण मूल्यांकन और मापन शर्तों की शब्दावली|url=http://www.ncme.org/ncme/NCME/Resource_Center/Glossary/NCME/Resource_Center/Glossary1.aspx?hkey=4bb87415-44dc-4088-9ed9-e8515326a061#anchorI |website=National Council on Measurement in Education |archive-url=https://web.archive.org/web/20170722194028/http://www.ncme.org/ncme/NCME/Resource_Center/Glossary/NCME/Resource_Center/Glossary1.aspx?hkey=4bb87415-44dc-4088-9ed9-e8515326a061#anchorI |archive-date=2017-07-22}}</ref> पैमाने बनाने और प्रश्नावली प्रतिक्रियाओं का मूल्यांकन करने के लिए सरल विकल्पों के विपरीत, यह नहीं माना जाता है कि प्रत्येक आइटम समान रूप से कठिन है। उदाहरण के लिए, यह आईआरटी को [[लिकर्ट स्केलिंग]] से अलग करता है, जिसमें सभी वस्तुओं को एक-दूसरे की प्रतिकृति माना जाता है या दूसरे शब्दों में वस्तुओं को समानांतर उपकरण माना जाता है।<ref name="vanAlphen1994">A. van Alphen, R. Halfens, A. Hasman and T. Imbos. (1994). Likert or Rasch? Nothing is more applicable than good theory. ''Journal of Advanced Nursing''. '''20''', 196-201</ref> इसके विपरीत, आइटम प्रतिक्रिया सिद्धांत प्रत्येक आइटम (आइटम विशेषता वक्र, या #The_item_response_function) की कठिनाई को स्केलिंग आइटम में शामिल की जाने वाली जानकारी के रूप में मानता है।
[[साइकोमेट्रिक्स]] में, '''आइटम रिस्पांस थ्योरी''' (आईआरटी) (इसे '''अव्यक्त गुण सिद्धांत''', '''स्ट्रांग ट्रू स्कोर सिद्धांत''' अथवा '''आधुनिक मानसिक परीक्षण सिद्धांत''' के रूप में भी जाना जाता है) क्षमताओं, दृष्टिकोण अथवा अन्य चर को [[माप|मापने]] वाले परीक्षणों, [[प्रश्नावली]] और इसी प्रकार के उपकरणों के डिजाइन, विश्लेषण और स्कोरिंग के लिए प्रतिमान है। यह परीक्षण आइटम पर व्यक्तियों के प्रदर्शन और उस आइटम को मापने के लिए डिज़ाइन की गई क्षमता के समग्र माप पर परीक्षणकर्ताओं के प्रदर्शन के स्तर के मध्य संबंधों पर आधारित परीक्षण का सिद्धांत है। आइटम और परीक्षार्थी दोनों की विशेषताओं का प्रतिनिधित्व करने के लिए कई भिन्न-भिन्न सांख्यिकीय मॉडलों का उपयोग किया जाता है।<ref>{{cite web |title=महत्वपूर्ण मूल्यांकन और मापन शर्तों की शब्दावली|url=http://www.ncme.org/ncme/NCME/Resource_Center/Glossary/NCME/Resource_Center/Glossary1.aspx?hkey=4bb87415-44dc-4088-9ed9-e8515326a061#anchorI |website=National Council on Measurement in Education |archive-url=https://web.archive.org/web/20170722194028/http://www.ncme.org/ncme/NCME/Resource_Center/Glossary/NCME/Resource_Center/Glossary1.aspx?hkey=4bb87415-44dc-4088-9ed9-e8515326a061#anchorI |archive-date=2017-07-22}}</ref> स्केल बनाने और प्रश्नावली प्रतिक्रियाओं का मूल्यांकन करने के लिए सरल विकल्पों के विपरीत, यह नहीं माना जाता है कि प्रत्येक आइटम समान रूप से कठिन है। उदाहरण के लिए, यह आईआरटी को [[लिकर्ट स्केलिंग]] से पृथक करता है, जिसमें सभी वस्तुओं को एक-दूसरे की प्रतिकृति माना जाता है अथवा अन्य शब्दों में वस्तुओं को समानांतर उपकरण माना जाता है।<ref name="vanAlphen1994">A. van Alphen, R. Halfens, A. Hasman and T. Imbos. (1994). Likert or Rasch? Nothing is more applicable than good theory. ''Journal of Advanced Nursing''. '''20''', 196-201</ref> इसके विपरीत, आइटम प्रतिक्रिया सिद्धांत प्रत्येक आइटम (आइटम विशेषता वक्र, अथवा आईसीसी) की बाधा को स्केलिंग आइटम में सम्मिलित की जाने वाली सूचना के रूप में मानता है।


यह [[आंकड़े]] के परीक्षण के लिए संबंधित गणितीय मॉडल के अनुप्रयोग पर आधारित है। क्योंकि इसे अक्सर [[शास्त्रीय परीक्षण सिद्धांत]] से बेहतर माना जाता है,<ref>{{cite book |first1=Susan E. |last1=Embretson |first2=Steven P. |last2=Reise |title=मनोवैज्ञानिकों के लिए आइटम रिस्पांस थ्योरी|url=https://books.google.com/books?id=rYU7rsi53gQC |year=2000 |publisher=Psychology Press|isbn=9780805828191 }}</ref> संयुक्त राज्य अमेरिका में स्केल विकसित करने के लिए यह पसंदीदा तरीका है,{{citation needed|date=March 2016}} विशेष रूप से जब इष्टतम निर्णयों की मांग की जाती है, जैसे कि तथाकथित [[उच्च जोखिम परीक्षण]]|हाई-स्टेक टेस्ट, जैसे, [[स्नातक अभिलेख परीक्षा]] (जीआरई) और [[ स्नातक प्रबंधन नामांकन परीक्षा ]] (जीमैट)
यह [[आंकड़े|डेटा]] के परीक्षण के लिए संबंधित गणितीय मॉडल के अनुप्रयोग पर आधारित होता है। क्योंकि इसे अधिकांशतः [[शास्त्रीय परीक्षण सिद्धांत]] से श्रेष्ठ माना जाता है,<ref>{{cite book |first1=Susan E. |last1=Embretson |first2=Steven P. |last2=Reise |title=मनोवैज्ञानिकों के लिए आइटम रिस्पांस थ्योरी|url=https://books.google.com/books?id=rYU7rsi53gQC |year=2000 |publisher=Psychology Press|isbn=9780805828191 }}</ref> संयुक्त राज्य अमेरिका में स्केल विकसित करने के लिए यह रुचिकर विधि है, विशेष रूप से जब तथाकथित [[उच्च जोखिम परीक्षण|हाई-स्टेक परीक्षणों]] में इष्टतम निर्णयों का आग्रह किया जाता है, जिसमें [[स्नातक अभिलेख परीक्षा|ग्रेजुएट रिकॉर्ड परीक्षा]] (जीआरई) और [[ स्नातक प्रबंधन नामांकन परीक्षा |ग्रेजुएट]] [[ स्नातक प्रबंधन नामांकन परीक्षा |मैनेजमेंट एडमिशन टेस्ट]] (जीमैट) सम्मिलित हैं।


शास्त्रीय परीक्षण सिद्धांत के परीक्षण-स्तरीय फोकस के विपरीत, आइटम प्रतिक्रिया सिद्धांत का नाम आइटम पर सिद्धांत के फोकस के कारण है। इस प्रकार आईआरटी परीक्षण में प्रत्येक आइटम के लिए दी गई क्षमता के प्रत्येक परीक्षार्थी की प्रतिक्रिया को मॉडल करता है। आइटम शब्द सामान्य है, जिसमें सभी प्रकार की सूचनात्मक वस्तुएं शामिल हैं। वे [[बहुविकल्पी]]प्रश्न हो सकते हैं जिनमें गलत और सही उत्तर होते हैं, लेकिन आम तौर पर प्रश्नावली पर बयान भी होते हैं जो उत्तरदाताओं को सहमति के स्तर ([[ दर्ज़ा पैमाने ]] या [[ लाइकेर्ट स्केल ]]), या रोगी के लक्षणों को वर्तमान/अनुपस्थित, या नैदानिक ​​​​जानकारी के रूप में इंगित करने की अनुमति देते हैं। जटिल प्रणालियाँ.
आइटम प्रतिक्रिया सिद्धांत का नाम शास्त्रीय परीक्षण सिद्धांत के परीक्षण-स्तरीय फोकस के विपरीत आइटम पर सिद्धांत के फोकस के कारण है। इस प्रकार आईआरटी परीक्षण में प्रत्येक आइटम के लिए दी गई क्षमता के प्रत्येक परीक्षार्थी की प्रतिक्रिया को मॉडल करता है। आइटम शब्द सामान्य है, जिसमें सभी प्रकार की सूचनात्मक वस्तुएं सम्मिलित हैं। ये [[बहुविकल्पी|बहुविकल्पीय]] प्रश्न हो सकते हैं जिनमें उचित एवं अनुचित उत्तर होते हैं, किन्तु सामान्यतः प्रश्नावली पर कथन भी होते हैं जो उत्तरदाताओं को सहमति के स्तर ([[ दर्ज़ा पैमाने |रेटिंग]] अथवा [[ लाइकेर्ट स्केल |लाइकेर्ट स्केल]]), या रोगी के लक्षणों को उपस्थित/अनुपस्थित, या समष्टि प्रणालियों में नैदानिक ​​​​सूचना के रूप में दर्शाने की अनुमति प्रदान करते हैं।


आईआरटी इस विचार पर आधारित है कि किसी आइटम के लिए सही/कुंजीबद्ध प्रतिक्रिया की [[संभावना]] व्यक्ति और आइटम मापदंडों का एक [[गणितीय कार्य]] है। (व्यक्ति और वस्तु मापदंडों के गणितीय कार्य की अभिव्यक्ति लेविन के समीकरण, बी = एफ (पी, ) के अनुरूप है, जो दावा करता है कि व्यवहार उनके वातावरण में व्यक्ति का एक कार्य है।) व्यक्ति [[पैरामीटर]] को (आमतौर पर) माना जाता है एक अव्यक्त गुण या आयाम। उदाहरणों में सामान्य बुद्धि या दृष्टिकोण की ताकत शामिल है। जिन मापदंडों पर वस्तुओं की विशेषता होती है उनमें उनकी कठिनाई शामिल होती है (कठिनाई सीमा पर उनके स्थान के रूप में जाना जाता है); भेदभाव (ढलान या सहसंबंध), यह दर्शाता है कि व्यक्तियों की सफलता की दर उनकी क्षमता के साथ कितनी तेजी से भिन्न होती है; और एक छद्म अनुमान लगाने वाला पैरामीटर, (निचले) स्पर्शोन्मुख को चिह्नित करता है जिस पर सबसे कम सक्षम व्यक्ति भी अनुमान लगाने के कारण स्कोर करेंगे (उदाहरण के लिए, चार संभावित प्रतिक्रियाओं के साथ बहुविकल्पीय आइटम पर शुद्ध मौके के लिए 25%)।
आईआरटी इस विचार पर आधारित है कि किसी आइटम के लिए उचित/कुंजीबद्ध प्रतिक्रिया की [[संभावना|प्रायिकता]] व्यक्ति और आइटम पैरामीटर्स का [[गणितीय कार्य|गणितीय फलन]] होता है। (व्यक्ति और वस्तु पैरामीटर के गणितीय फलन की अभिव्यक्ति लेविन के समीकरण, ''B = f(P, E)'' के अनुरूप है, जिसका आशय है कि व्यवहार उनके वातावरण में व्यक्ति का कार्य है।) व्यक्ति [[पैरामीटर]] को (सामान्यतः) अव्यक्त गुण या आयाम के रूप में माना जाता है। उदाहरणों में सामान्य बुद्धि या दृष्टिकोण का बल सम्मिलित है। जिन पैरामीटरों पर वस्तुओं की विशेषता होती है उनमें उनकी कठिनाई सम्मिलित होती है (जिसे कठिनाई सीमा पर उनके स्थान के रूप में जाना जाता है); विभेदन (स्लोप या सहसंबंध) यह दर्शाता है कि व्यक्तियों की सफलता की दर उनकी क्षमता के साथ भिन्न होती है; और सूडोगेस्सिंग पैरामीटर, (निचले) स्पर्शोन्मुख को चिह्नित करता है जिस पर अनुमान लगाने के कारण सबसे कम सक्षम व्यक्ति भी स्कोर कर सकते हैं (उदाहरण के लिए, यह चार संभावित प्रतिक्रियाओं के साथ बहुविकल्पीय आइटम पर शुद्ध विकल्प के लिए 25% होता है)।


उसी तरह, आईआरटी का उपयोग ऑनलाइन सोशल नेटवर्क में मानव व्यवहार को मापने के लिए किया जा सकता है। विभिन्न लोगों द्वारा व्यक्त किए गए विचारों को एकत्रित करके आईआरटी का उपयोग करके अध्ययन किया जा सकता है। जानकारी को गलत सूचना या सच्ची जानकारी के रूप में वर्गीकृत करने में इसके उपयोग का भी मूल्यांकन किया गया है।
उसी प्रकार, आईआरटी का उपयोग ऑनलाइन सोशल नेटवर्क में मानव व्यवहार का परिमाण प्राप्त करने के लिए किया जा सकता है। विभिन्न व्यक्तियों द्वारा व्यक्त किए गए विचारों को एकत्रित करके तथा आईआरटी का उपयोग करके इसका अध्ययन किया जा सकता है। सूचना को अनुचित सूचना अथवा सत्य सूचना के रूप में वर्गीकृत करने में इसके उपयोग का भी मूल्यांकन किया गया है।


==अवलोकन==
==अवलोकन==
{{more citations needed section|date=December 2015}}
आइटम प्रतिक्रिया फ़ंक्शन की अवधारणा 1950 से पूर्व की थी। सिद्धांत के रूप में आईआरटी का अग्रणी कार्य 1950 और 1960 के दशक के समय हुआ था। तीन अन्वेषकों में [[शैक्षिक परीक्षण सेवा]] के मनोचिकित्सक फ्रेडरिक एम. लॉर्ड,<ref>[http://www.ets.org/portal/site/ets/menuitem.c988ba0e5dd572bada20bc47c3921509/?vgnextoid=26fdaf5e44df4010VgnVCM10000022f95190RCRD&vgnextchannel=ceb2be3a864f4010VgnVCM10000022f95190RCRD ETS Research Overview]</ref> डेनिश गणितज्ञ [[ जॉर्ज रश |जॉर्ज रश]] और ऑस्ट्रियाई समाजशास्त्री [[पॉल लाज़र्सफ़ेल्ड]] थे, जिन्होंने स्वतंत्र रूप से समानांतर अनुसंधान किया था। आईआरटी की प्रगति को अग्र विस्तारित करने वाले प्रमुख व्यक्तियों में [[बेंजामिन ड्रेक राइट]] और [[डेविड एंड्रीच]] सम्मिलित हैं। 1970 और 1980 के दशक के अंत तक आईआरटी का व्यापक रूप से उपयोग नहीं किया गया था, इस प्रकार चिकित्सकों को आईआरटी की उपयोगिता और लाभ बताए गए थे, और पर्सनल कंप्यूटर ने कई शोधकर्ताओं को आईआरटी के लिए आवश्यक कंप्यूटिंग पावर का एक्सेस भी प्रदान किया था।
आइटम प्रतिक्रिया फ़ंक्शन की अवधारणा 1950 से पहले की थी। एक सिद्धांत के रूप में आईआरटी का अग्रणी कार्य 1950 और 1960 के दशक के दौरान हुआ था। तीन अग्रदूतों में [[शैक्षिक परीक्षण सेवा]] के मनोचिकित्सक फ्रेडरिक एम. लॉर्ड थे,<ref>[http://www.ets.org/portal/site/ets/menuitem.c988ba0e5dd572bada20bc47c3921509/?vgnextoid=26fdaf5e44df4010VgnVCM10000022f95190RCRD&vgnextchannel=ceb2be3a864f4010VgnVCM10000022f95190RCRD ETS Research Overview]</ref> डेनिश गणितज्ञ [[ जॉर्ज रश ]] और ऑस्ट्रियाई समाजशास्त्री [[पॉल लाज़र्सफ़ेल्ड]], जिन्होंने स्वतंत्र रूप से समानांतर अनुसंधान किया। आईआरटी की प्रगति को आगे बढ़ाने वाले प्रमुख व्यक्तियों में [[बेंजामिन ड्रेक राइट]] और [[डेविड एंड्रीच]] शामिल हैं। 1970 और 1980 के दशक के अंत तक आईआरटी का व्यापक रूप से उपयोग नहीं किया गया था, जब एक ओर चिकित्सकों को आईआरटी की उपयोगिता और फायदे बताए गए थे, और दूसरी ओर व्यक्तिगत कंप्यूटर ने कई शोधकर्ताओं को आईआरटी के लिए आवश्यक कंप्यूटिंग शक्ति तक पहुंच प्रदान की थी।


अन्य बातों के अलावा, आईआरटी का उद्देश्य यह मूल्यांकन करने के लिए एक रूपरेखा प्रदान करना है कि मूल्यांकन कितनी अच्छी तरह काम करता है, और मूल्यांकन पर व्यक्तिगत आइटम कितनी अच्छी तरह काम करते हैं। आईआरटी का सबसे आम अनुप्रयोग शिक्षा में है, जहां मनोचिकित्सक इसका उपयोग परीक्षण (छात्र मूल्यांकन) को विकसित करने और डिजाइन करने, परीक्षाओं के लिए वस्तुओं के बैंक बनाए रखने और परीक्षाओं के क्रमिक संस्करणों के लिए वस्तुओं की कठिनाइयों को बराबर करने के लिए करते हैं (उदाहरण के लिए, बीच तुलना की अनुमति देने के लिए) समय के साथ परिणाम)।<ref>Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). ''Fundamentals of Item Response Theory''. Newbury Park, CA: Sage Press.</ref>
अन्य तथ्यों के अतिरिक्त, आईआरटी का उद्देश्य यह मूल्यांकन करने के लिए रूपरेखा प्रदान करना है कि मूल्यांकन कितना उचित रूप से कार्य करता है, और मूल्यांकन पर विशिष्ट आइटम उचित रूप से कार्य करते हैं। आईआरटी का सबसे सामान्य अनुप्रयोग शिक्षा के क्षेत्र में है, जहां मनोचिकित्सक इसका उपयोग परीक्षाओं (छात्र मूल्यांकन) को विकसित करने, डिजाइन करने, परीक्षाओं के लिए वस्तुओं के बैंक मेन्टेन करने और परीक्षाओं के क्रमिक संस्करणों (उदाहरण के लिए, समय के साथ परिणामों के मध्य अपेक्षा की अनुमति देने के लिए) तथा वस्तुओं की बाधाओं को समान करने के लिए करते हैं।<ref>Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). ''Fundamentals of Item Response Theory''. Newbury Park, CA: Sage Press.</ref>
आईआरटी मॉडल को अक्सर अव्यक्त विशेषता मॉडल के रूप में जाना जाता है। अव्यक्त शब्द का उपयोग इस बात पर जोर देने के लिए किया जाता है कि अलग-अलग आइटम प्रतिक्रियाओं को परिकल्पित लक्षणों, निर्माणों या विशेषताओं की अवलोकन योग्य अभिव्यक्तियों के रूप में लिया जाता है, जिन्हें सीधे तौर पर नहीं देखा जाता है, लेकिन जिन्हें प्रकट प्रतिक्रियाओं से अनुमान लगाया जाना चाहिए। अव्यक्त विशेषता मॉडल समाजशास्त्र के क्षेत्र में विकसित किए गए थे, लेकिन वे वस्तुतः आईआरटी मॉडल के समान हैं।


आईआरटी को आम तौर पर शास्त्रीय परीक्षण सिद्धांत (सीटीटी) पर सुधार के रूप में दावा किया जाता है। उन कार्यों के लिए जिन्हें सीटीटी का उपयोग करके पूरा किया जा सकता है, आईआरटी आम तौर पर अधिक लचीलापन लाता है और अधिक परिष्कृत जानकारी प्रदान करता है। कुछ अनुप्रयोग, जैसे [[कंप्यूटर-अनुकूली परीक्षण]], आईआरटी द्वारा सक्षम हैं और केवल शास्त्रीय परीक्षण सिद्धांत का उपयोग करके उचित रूप से निष्पादित नहीं किया जा सकता है। सीटीटी की तुलना में आईआरटी का एक अन्य लाभ यह है कि आईआरटी द्वारा प्रदान की जाने वाली अधिक परिष्कृत जानकारी एक शोधकर्ता को शैक्षिक मूल्यांकन की [[विश्वसनीयता (साइकोमेट्रिक)]] में सुधार करने की अनुमति देती है।
आईआरटी मॉडल को अधिकांशतः अव्यक्त विशेषता मॉडल के रूप में जाना जाता है। अव्यक्त शब्द का उपयोग इस तथ्य को महत्त्व देने के लिए किया जाता है कि भिन्न-भिन्न आइटम प्रतिक्रियाओं को परिकल्पित लक्षणों, निर्माणों अथवा विशेषताओं की अवलोकन योग्य अभिव्यक्तियों के रूप में लिया जाता है, जिन्हें प्रत्यक्ष रूप से देखा नहीं जा सकता है, किन्तु जिनका अनुमान प्रकट प्रतिक्रियाओं से लगाया जाता है। अव्यक्त विशेषता मॉडल समाजशास्त्र के क्षेत्र में विकसित किए गए थे, किन्तु वे वस्तुतः आईआरटी मॉडल के समान हैं।


आईआरटी में तीन धारणाएँ शामिल हैं:
आईआरटी का आशय सामान्यतः क्लासिकल टेस्ट सिद्धांत (सीटीटी) पर संशोधन के रूप में किया जाता है। आईआरटी सामान्यतः उन कार्यों के लिए अधिक नम्यता लाता है जिन्हें सीटीटी का उपयोग करके पूर्ण किया जा सकता है और इसके लिए अधिक परिष्कृत सूचना भी प्रदान करता है। [[कंप्यूटर-अनुकूली परीक्षण|कम्प्यूटरीकृत-अनुकूली परीक्षण]] जैसे कुछ अनुप्रयोग, आईआरटी द्वारा सक्षम होते हैं, जिन्हें केवल क्लासिकल टेस्ट सिद्धांत का उपयोग करके उचित रूप से निष्पादित नहीं किया जा सकता है। सीटीटी के सादृश्य में आईआरटी का अन्य लाभ यह है कि आईआरटी द्वारा प्रदान की जाने वाली अधिक परिष्कृत सूचना शोधकर्ता को शैक्षिक मूल्यांकन की [[विश्वसनीयता (साइकोमेट्रिक)]] में संशोधन करने की अनुमति प्रदान करती है।


# एक एकआयामी लक्षण द्वारा दर्शाया गया <math>{\theta}</math> ;
आईआरटी में तीन धारणाएँ सम्मिलित हैं:
 
# एकआयामी लक्षण जिसे <math>{\theta}</math> द्वारा दर्शाया जाता है;
# वस्तुओं की [[स्थानीय स्वतंत्रता]];
# वस्तुओं की [[स्थानीय स्वतंत्रता]];
# किसी आइटम पर किसी व्यक्ति की प्रतिक्रिया को गणितीय आइटम प्रतिक्रिया फ़ंक्शन (आईआरएफ) द्वारा मॉडल किया जा सकता है।
# किसी आइटम पर किसी व्यक्ति की प्रतिक्रिया को गणितीय आइटम प्रतिक्रिया फ़ंक्शन (आईआरएफ) द्वारा मॉडल किया जा सकता है।


विशेषता को एक पैमाने पर मापने योग्य माना जाता है (एक परीक्षण का अस्तित्व ही इसे मानता है), आमतौर पर 0.0 के माध्य और 1.0 के [[मानक विचलन]] के साथ एक मानक पैमाने पर सेट किया जाता है। एकआयामीता की व्याख्या एकरूपता के रूप में की जानी चाहिए, एक गुणवत्ता जिसे किसी दिए गए उद्देश्य या उपयोग के संबंध में परिभाषित या अनुभवजन्य रूप से प्रदर्शित किया जाना चाहिए, लेकिन ऐसी मात्रा नहीं जिसे मापा जा सके। 'स्थानीय स्वतंत्रता' का [[अर्थ]] है (ए) कि एक आइटम के उपयोग की संभावना किसी अन्य आइटम का उपयोग करने से संबंधित नहीं है और (बी) किसी आइटम पर प्रतिक्रिया प्रत्येक परीक्षार्थी का स्वतंत्र निर्णय है, अर्थात, इसमें कोई धोखाधड़ी या जोड़ी या समूह कार्य नहीं है। आयामीता के विषय की जांच अक्सर [[कारक विश्लेषण]] के साथ की जाती है, जबकि आईआरएफ आईआरटी का मूल निर्माण खंड है और अधिकांश अनुसंधान और साहित्य का केंद्र है।
विशेषता को स्केल पर मापने योग्य माना जाता है (परीक्षण का अस्तित्व इसे मानता है), जिसे सामान्यतः 0.0 के माध्य और 1.0 के [[मानक विचलन]] के साथ मानक स्केल पर सेट किया जाता है। एकआयामीता की व्याख्या एकरूपता के रूप में की जानी चाहिए, ऐसा गुण जिसे किसी दिए गए उद्देश्य या उपयोग के संबंध में परिभाषित या अनुभवजन्य रूप से प्रदर्शित किया जाना चाहिए, किन्तु ऐसी मात्रा नहीं होनी चाहिए जिसे मापा जा सके। 'स्थानीय स्वतंत्रता' का [[अर्थ]] है (ए) आइटम के उपयोग की संभावना किसी अन्य आइटम का उपयोग करने से संबंधित नहीं होती है और (बी) किसी आइटम पर प्रतिक्रिया प्रत्येक परीक्षार्थी का स्वतंत्र निर्णय होता है, अर्थात, इसमें कोई छल अथवा समूह कार्य नहीं होता है। आयामीता के विषय का परीक्षण अधिकांशतः [[कारक विश्लेषण]] के साथ किया जाता है, यद्यपि आईआरएफ आईआरटी का मूल निर्माण खंड है तथा अधिकांश अनुसंधान और साहित्य का केंद्र भी है।


==आइटम प्रतिक्रिया फ़ंक्शन==
==आइटम प्रतिक्रिया फ़ंक्शन==
आईआरएफ संभावना देता है कि किसी दिए गए योग्यता स्तर वाला व्यक्ति सही उत्तर देगा। कम क्षमता वाले व्यक्तियों के पास कम मौके होते हैं, जबकि उच्च क्षमता वाले व्यक्तियों के सही उत्तर देने की संभावना बहुत अधिक होती है; उदाहरण के लिए, उच्च गणित क्षमता वाले छात्रों को गणित का कोई आइटम सही मिलने की अधिक संभावना होती है। संभाव्यता का सटीक मान, क्षमता के अलावा, आईआरएफ के लिए आइटम मापदंडों के एक सेट पर निर्भर करता है।
आईआरएफ यह संभावना देता है कि किसी दिए गए योग्यता स्तर वाला व्यक्ति ही उचित उत्तर देगा। कम क्षमता वाले व्यक्तियों के निकट कम अवसर होते हैं, यद्यपि उच्च क्षमता वाले व्यक्तियों के उचित उत्तर देने की संभावना अत्यधिक होती है; उदाहरण के लिए, उच्च गणित क्षमता वाले छात्रों को गणित का कोई आइटम उचित प्राप्त होने की अधिक संभावना होती है। प्रायिकता का त्रुटिहीन मान, क्षमता के अतिरिक्त, आईआरएफ के लिए आइटम पैरामीटर्स के सेट पर निर्भर करता है।


===तीन पैरामीटर लॉजिस्टिक मॉडल===
===तीन पैरामीटर लॉजिस्टिक मॉडल===
[[File:3PL IRF.png|220x220px|चित्रा 1: 3पीएल आईआरएफ का उदाहरण, मापदंडों को प्रदर्शित करने के लिए बिंदीदार रेखाओं के साथ।|अंगूठा]]उदाहरण के लिए, तीन पैरामीटर लॉजिस्टिक मॉडल (3PL) में, एक द्विभाजन आइटम ''i'', जो आमतौर पर एक बहुविकल्पीय प्रश्न है, के लिए सही प्रतिक्रिया की संभावना है:
[[File:3PL IRF.png|220x220px|चित्रा 1: 3पीएल आईआरएफ का उदाहरण, मापदंडों को प्रदर्शित करने के लिए बिंदीदार रेखाओं के साथ।|अंगूठा]]
 
उदाहरण के लिए, तीन '''पैरामीटर लॉजिस्टिक मॉडल''' ('''3PL''') में, बहुविकल्पीय प्रश्न वाले द्विभाजित आइटम i के लिए उचित प्रतिक्रिया की संभावना है:


:<math>
:<math>
p_i({\theta})=c_i + \frac{1-c_i}{1+e^{-a_i({\theta}-b_i)}}
p_i({\theta})=c_i + \frac{1-c_i}{1+e^{-a_i({\theta}-b_i)}}
</math>
</math>
कहाँ <math>{\theta}</math> इंगित करता है कि आइटम मापदंडों का अनुमान लगाने के उद्देश्य से व्यक्ति की क्षमताओं को सामान्य वितरण से एक नमूने के रूप में तैयार किया गया है। आइटम मापदंडों का अनुमान लगाए जाने के बाद, रिपोर्टिंग उद्देश्यों के लिए व्यक्तिगत लोगों की क्षमताओं का अनुमान लगाया जाता है। <math>a_i</math>, <math>b_i</math>, और <math>c_i</math> आइटम पैरामीटर हैं. आइटम पैरामीटर आईआरएफ का आकार निर्धारित करते हैं। चित्र 1 एक आदर्श 3पीएल आईसीसी को दर्शाता है।
जहाँ <math>{\theta}</math> यह दर्शाता है कि आइटम पैरामीटर का अनुमान लगाने के उद्देश्य से व्यक्ति की क्षमताओं को सामान्य वितरण से प्रतिरूप के रूप में प्रस्तुत किया गया है। आइटम पैरामीटर का अनुमान लगाए जाने के पश्चात, रिपोर्टिंग उद्देश्यों के लिए व्यक्तिगत व्यक्तियों की क्षमताओं का अनुमान लगाया जाता है। <math>a_i</math>, <math>b_i</math>, और <math>c_i</math> आइटम पैरामीटर हैं। आइटम पैरामीटर आईआरएफ का आकार निर्धारित करते हैं। चित्र 1 आदर्श 3PL आईसीसी को दर्शाता है।


आइटम पैरामीटर की व्याख्या मानक [[लॉजिस्टिक फ़ंक्शन]] के आकार को बदलने के रूप में की जा सकती है:
आइटम पैरामीटर की व्याख्या मानक [[लॉजिस्टिक फ़ंक्शन|लॉजिस्टिक फलन]] के आकार को परिवर्तित करने के रूप में की जा सकती है:
:<math>P(t)=\frac{1}{1+e^{-t}}.</math>
:<math>P(t)=\frac{1}{1+e^{-t}}.</math>
संक्षेप में, मापदंडों की व्याख्या इस प्रकार की जाती है (सुपाठ्यता के लिए सबस्क्रिप्ट छोड़ना); b सबसे बुनियादी है, इसलिए पहले सूचीबद्ध किया गया है:
संक्षेप में, पैरामीटरों की व्याख्या इस प्रकार की जाती है (स्पष्टता के लिए सबस्क्रिप्ट को त्याग देना); b सबसे मूल है, इसलिए इसे प्रथम सूचीबद्ध किया गया है:
* बी - कठिनाई, आइटम स्थान: <math>p(b) = (1+c)/2,</math> बीच का आधा रास्ता बिंदु <math>c_i</math> (न्यूनतम) और 1 (अधिकतम), वह भी जहां ढलान अधिकतम है।
* b - कठिनाई, आइटम स्थान: <math>p(b) = (1+c)/2,</math> <math>c_i</math> (न्यूनतम) और 1 (अधिकतम) के मध्य का अर्ध बिंदु भी जहां स्लोप अधिकतम है।
* - भेदभाव, पैमाना, ढलान: अधिकतम ढलान <math>p'(b) = a \cdot (1-c)/4.</math>
* a - विभेदन, स्केल, स्लोप: अधिकतम स्लोप <math>p'(b) = a \cdot (1-c)/4.</math>
* सी - छद्म अनुमान, मौका, स्पर्शोन्मुख न्यूनतम <math>p(-\infty) = c.</math>
* c - सूडो-गेस्सिंग, अवसर, स्पर्शोन्मुख न्यूनतम <math>p(-\infty) = c.</math>
अगर <math>c = 0,</math> फिर ये सरल हो जाते हैं <math>p(b) = 1/2</math> और <math>p'(b) = a/4,</math> जिसका अर्थ है कि बी 50% सफलता स्तर (कठिनाई) के बराबर है, और (चार से विभाजित) अधिकतम ढलान (भेदभाव) है, जो 50% सफलता स्तर पर होता है। इसके अलावा, एक सही प्रतिक्रिया का [[लॉगिट]] (लॉग [[कठिनाइयाँ]]) है <math>a(\theta-b)</math> (मानते हुए <math>c=0</math>): विशेष रूप से यदि क्षमता θ कठिनाई बी के बराबर है, तो सही उत्तर के लिए सम संभावनाएं (1:1, इसलिए लॉगिट 0) हैं, जितनी अधिक क्षमता कठिनाई से ऊपर (या नीचे) होगी, सही उत्तर की संभावना उतनी ही अधिक (या कम) होगी प्रतिक्रिया, भेदभाव के साथ यह निर्धारित करती है कि क्षमता के साथ संभावनाएँ कितनी तेजी से बढ़ती या घटती हैं।
यदि <math>c = 0,</math> तो ये <math>p(b) = 1/2</math> और <math>p'(b) = a/4,</math> तक सरल हो जाते हैं, जिसका अर्थ है कि b 50% सफलता स्तर (कठिनाई) के समान है, और a (चार से विभाजित) अधिकतम स्लोप (विभेदन) है, जो 50% सफलता स्तर पर होता है। इसके अतिरिक्त, उचित प्रतिक्रिया का [[लॉगिट]] (लॉग [[कठिनाइयाँ|ऑड्स]]) <math>a(\theta-b)</math> है, (<math>c=0</math> मानते हुए): विशेष रूप से यदि क्षमता θ कठिनाई b के समान है, तो उचित उत्तर के लिए सम संभावनाएं (1:1, इसलिए लॉगिट 0) होती हैं, जितनी अधिक क्षमता कठिनाई से ऊपर (या नीचे) होगी, उचित प्रतिक्रिया की संभावना उतनी ही अधिक (या कम) होगी, और विभेदन के साथ यह निर्धारित होता है कि क्षमता के साथ संभावनाओं में कितनी तीव्रता से वृद्धि अथवा कमी होती हैं।  
 
दूसरे शब्दों में, मानक लॉजिस्टिक फ़ंक्शन में एसिम्प्टोटिक न्यूनतम 0 है (<math>c=0</math>), 0 के आसपास केंद्रित है (<math>b = 0</math>, <math>P(0) = 1/2</math>), और अधिकतम ढलान है <math>P'(0)=1/4.</math>  <math>a</math> h> पैरामीटर क्षैतिज पैमाने को फैलाता है <math>b</math> पैरामीटर क्षैतिज पैमाने को बदलता है, और <math>c</math> से ऊर्ध्वाधर पैमाने को संपीड़ित करता है <math>[0,1]</math> को <math>[c,1].</math> इसका विवरण नीचे दिया गया है।


पैरामीटर <math>b_i</math> आइटम स्थान का प्रतिनिधित्व करता है, जिसे प्राप्ति परीक्षण के मामले में, आइटम कठिनाई के रूप में जाना जाता है। बात यहीं पर है <math>{\theta}</math> जहां आईआरएफ का अधिकतम ढलान है, और जहां मूल्य न्यूनतम मूल्य के बीच आधा है <math>c_i</math> और 1 का अधिकतम मान। उदाहरण आइटम मध्यम कठिनाई का है <math>b_i</math>=0.0, जो वितरण के केंद्र के निकट है। ध्यान दें कि यह मॉडल आइटम की कठिनाई और व्यक्ति की विशेषता को एक ही सातत्य पर मापता है। इस प्रकार, किसी वस्तु के बारे में यह बात करना वैध है कि वह व्यक्ति ए के गुण स्तर के समान कठिन है या किसी व्यक्ति के गुण स्तर के बारे में वस्तु वाई की कठिनाई के समान है, इस अर्थ में कि किसी वस्तु से जुड़े कार्य का सफल प्रदर्शन एक विशिष्ट को दर्शाता है क्षमता का स्तर.
अन्य शब्दों में, मानक लॉजिस्टिक फलन में एसिम्प्टोटिक न्यूनतम 0 (<math>c=0</math>) होता है, यह 0 (<math>b = 0</math>, <math>P(0) = 1/2</math>) के निकट केंद्रित होता है, और अधिकतम स्लोप <math>P'(0)=1/4.</math> होता है। <math>a</math> पैरामीटर क्षैतिज स्तर को विस्तारित करता है, <math>b</math> पैरामीटर क्षैतिज स्तर को स्थानांतरित करता है, और <math>c</math> ऊर्ध्वाधर स्तर को <math>[0,1]</math> से <math>[c,1].</math> तक संपीड़ित करता है। इसका विवरण नीचे दिया गया है।


आइटम पैरामीटर <math>a_i</math> वस्तु के भेदभाव का प्रतिनिधित्व करता है: अर्थात्, वह डिग्री जिस तक वस्तु अव्यक्त सातत्य पर विभिन्न क्षेत्रों में व्यक्तियों के बीच भेदभाव करती है। यह पैरामीटर आईआरएफ के ढलान को दर्शाता है जहां ढलान अपने अधिकतम पर है। उदाहरण आइटम है <math>a_i</math>=1.0, जो काफी अच्छी तरह से भेदभाव करता है; कम क्षमता वाले व्यक्तियों के पास वास्तव में उच्च क्षमता वाले व्यक्तियों की तुलना में सही उत्तर देने की बहुत कम संभावना होती है। यह भेदभाव पैरामीटर एक मानक भारित रैखिक (साधारण न्यूनतम वर्ग, सामान्य न्यूनतम वर्ग) प्रतिगमन में संबंधित आइटम या संकेतक के भार गुणांक से मेल खाता है और इसलिए अंतर्निहित अव्यक्त अवधारणा के अप्रशिक्षित माप के लिए संकेतकों का भारित सूचकांक बनाने के लिए इसका उपयोग किया जा सकता है।
पैरामीटर <math>b_i</math> आइटम स्थान का प्रतिनिधित्व करता है, जिसे प्राप्ति परीक्षण की स्थिति में, आइटम कठिनाई के रूप में जाना जाता है। यह <math>{\theta}</math> पर वह बिंदु होता है, जहां आईआरएफ का अधिकतम स्लोप होता है, और जहां मान <math>c_i</math> के न्यूनतम मान और 1 के अधिकतम मान के मध्य अर्ध होता है। उदाहरण आइटम मध्यम कठिनाई का है क्योंकि <math>b_i</math>=0.0 है, जो वितरण के केंद्र के निकट है। ध्यान दें कि यह मॉडल आइटम की कठिनाई और व्यक्ति की विशेषता को ही सातत्य पर मापता है। इस प्रकार, किसी वस्तु के संबंध में यह तथ्य वैध है कि वह व्यक्ति A के गुण स्तर के समान कठिन है या किसी व्यक्ति के गुण स्तर के संबंध में वस्तु Y की कठिनाई के समान है, इस अर्थ में कि किसी वस्तु से संयोजित कार्य का सफल प्रदर्शन विशिष्ट क्षमता के स्तर को दर्शाता है।


बहुविकल्पीय आइटम जैसी वस्तुओं के लिए, पैरामीटर <math>c_i</math> इसका उपयोग सही प्रतिक्रिया की संभावना पर अनुमान लगाने के प्रभावों को ध्यान में रखने के प्रयास में किया जाता है। यह इस संभावना को इंगित करता है कि बहुत कम क्षमता वाले व्यक्तियों को यह आइटम संयोग से सही मिल जाएगा, गणितीय रूप से निम्न अनंतस्पर्शी के रूप में दर्शाया गया है। चार-विकल्प वाले बहुविकल्पी आइटम में उदाहरण आइटम की तरह आईआरएफ हो सकता है; अत्यंत कम क्षमता वाले उम्मीदवार द्वारा सही उत्तर का अनुमान लगाने की 1/4 संभावना है, इसलिए <math>c_i</math> लगभग 0.25 होगा. यह दृष्टिकोण मानता है कि सभी विकल्प समान रूप से प्रशंसनीय हैं, क्योंकि यदि एक विकल्प का कोई मतलब नहीं है, तो सबसे कम क्षमता वाला व्यक्ति भी इसे त्यागने में सक्षम होगा, इसलिए आईआरटी पैरामीटर अनुमान विधियां इसे ध्यान में रखती हैं और अनुमान लगाती हैं <math>c_i</math> देखे गए आंकड़ों के आधार पर।<ref>{{cite journal|last1=Bock|first1=R.D.|last2=Aitkin|first2=M.|author-link2=Murray Aitkin|year=1981|title=Marginal maximum likelihood estimation of item parameters: application of an EM algorithm|journal=Psychometrika|volume=46|issue=4|pages=443–459|doi=10.1007/BF02293801|s2cid=122123206}}</ref>
आइटम पैरामीटर <math>a_i</math> वस्तु के विभेदन का प्रतिनिधित्व करता है: अर्थात्, वह डिग्री जिस तक वस्तु अव्यक्त सातत्य पर विभिन्न क्षेत्रों में व्यक्तियों के मध्य विभेदन करती है। यह पैरामीटर आईआरएफ के स्लोप को दर्शाता है जहां स्लोप अपने अधिकतम पर होता है। उदाहरण आइटम <math>a_i</math>=1.0 है, जो उचित प्रकार से विभेदन करता है; कम क्षमता वाले व्यक्तियों के निकट वास्तव में उच्च क्षमता वाले व्यक्तियों के सादृश्य में उचित उत्तर देने की संभावना कम होती है। यह विभेदन पैरामीटर मानक भारित रैखिक (साधारण न्यूनतम वर्ग, सामान्य न्यूनतम वर्ग) प्रतिगमन में संबंधित आइटम या संकेतक के भार गुणांक से युग्मित होता है और इसलिए अंतर्निहित अव्यक्त अवधारणा के अप्रशिक्षित माप के संकेतकों का भारित सूचकांक बनाने के लिए इसका उपयोग किया जा सकता है।


बहुविकल्पीय आइटम जैसी वस्तुओं के लिए, उचित प्रतिक्रिया की संभावना पर अनुमान लगाने के प्रभावों को ध्यान में रखने के प्रयास में पैरामीटर <math>c_i</math> का उपयोग किया जाता है। यह इस संभावना को दर्शाता है कि कम क्षमता वाले व्यक्तियों को यह आइटम संयोग से उत्तम प्राप्त हो जाएगा, जिसे गणितीय रूप से निम्न अनंतस्पर्शी के रूप में दर्शाया गया है। चार-विकल्प वाले बहुविकल्पी आइटम में उदाहरण आइटम की भाँति आईआरएफ हो सकता है; अत्यंत कम क्षमता वाले प्रत्याशी द्वारा उचित उत्तर का अनुमान लगाने की 1/4 संभावना होती है, इसलिए <math>c_i</math> लगभग 0.25 होगा। यह दृष्टिकोण मानता है कि सभी विकल्प समान रूप से प्रशंसनीय हैं, क्योंकि यदि विकल्प का कोई अर्थ नहीं है, तो सबसे कम क्षमता वाला व्यक्ति भी इसे त्यागने में सक्षम होगा, इसलिए आईआरटी पैरामीटर अनुमान विधियां इसे ध्यान में रखती हैं और देखे गए डेटा के आधार पर <math>c_i</math> का अनुमान लगाती हैं।<ref>{{cite journal|last1=Bock|first1=R.D.|last2=Aitkin|first2=M.|author-link2=Murray Aitkin|year=1981|title=Marginal maximum likelihood estimation of item parameters: application of an EM algorithm|journal=Psychometrika|volume=46|issue=4|pages=443–459|doi=10.1007/BF02293801|s2cid=122123206}}</ref>


==आईआरटी मॉडल==
== आईआरटी मॉडल ==
मोटे तौर पर, आईआरटी मॉडल को दो परिवारों में विभाजित किया जा सकता है: एकआयामी और बहुआयामी। एकआयामी मॉडल के लिए एकल गुण (क्षमता) आयाम की आवश्यकता होती है <math>{\theta}</math>. बहुआयामी आईआरटी मॉडल मॉडल प्रतिक्रिया डेटा को कई लक्षणों से उत्पन्न होने की परिकल्पना की गई है। हालाँकि, अत्यधिक बढ़ी हुई जटिलता के कारण, अधिकांश आईआरटी अनुसंधान और अनुप्रयोग एक आयामी मॉडल का उपयोग करते हैं।
सामान्यतः, आईआरटी मॉडल को दो सदस्यों एकआयामी और बहुआयामी में विभाजित किया जा सकता है। एकआयामी मॉडल के लिए एकल गुण (क्षमता) आयाम <math>{\theta}</math> की आवश्यकता होती है। बहुआयामी आईआरटी मॉडल प्रतिक्रिया डेटा के कई लक्षणों से उत्पन्न होने की परिकल्पना की गई है। यद्यपि, समष्टिता में अत्यधिक वृद्धि के कारण, अधिकांश आईआरटी अनुसंधान और अनुप्रयोग आयामी मॉडल का उपयोग करते हैं।


आईआरटी मॉडल को प्राप्त प्रतिक्रियाओं की संख्या के आधार पर भी वर्गीकृत किया जा सकता है। विशिष्ट बहुविकल्पी वस्तु द्विभाजित होती है; भले ही चार या पांच विकल्प हों, फिर भी इसे सही/गलत (सही/गलत) के रूप में ही स्कोर किया जाता है। मॉडलों का एक अन्य वर्ग बहुपद परिणामों पर लागू होता है, जहां प्रत्येक प्रतिक्रिया का एक अलग स्कोर मान होता है।<ref>{{cite book |first1=Remo |last1=Ostini |first2=Michael L. |last2=Nering |title=पॉलीटोमस आइटम रिस्पांस थ्योरी मॉडल|url=https://books.google.com/books?id=wS8VEMtJ3UYC |year=2005 |publisher=SAGE| isbn=978-0-7619-3068-6 |series=Quantitative Applications in the Social Sciences |volume=144}}</ref><ref>{{cite book |editor1-first=Michael L. |editor1-last=Nering |editor2-first=Remo |editor2-last=Ostini |title=पॉलीटोमस आइटम प्रतिक्रिया सिद्धांत मॉडल की हैंडबुक|url=https://books.google.com/books?id=M2NYAAAAYAAJ |year=2010 |publisher=Taylor & Francis |isbn=978-0-8058-5992-8}}</ref> इसका एक सामान्य उदाहरण लिकर्ट स्केल-प्रकार की वस्तुएं हैं, उदाहरण के लिए, 1 से 5 के पैमाने पर दर।
आईआरटी मॉडल को प्राप्त प्रतिक्रियाओं की संख्या के आधार पर भी वर्गीकृत किया जा सकता है। विशिष्ट बहुविकल्पी वस्तु द्विभाजित होती है; चार या पांच विकल्प होने पर भी, इसे उचित/अनुचित (उचित/अनुचित) के रूप में ही स्कोर किया जाता है। मॉडलों का अन्य वर्ग बहुपद परिणामों पर प्रयुक्त होता है, जहां प्रत्येक प्रतिक्रिया का भिन्न स्कोर मान होता है।<ref>{{cite book |first1=Remo |last1=Ostini |first2=Michael L. |last2=Nering |title=पॉलीटोमस आइटम रिस्पांस थ्योरी मॉडल|url=https://books.google.com/books?id=wS8VEMtJ3UYC |year=2005 |publisher=SAGE| isbn=978-0-7619-3068-6 |series=Quantitative Applications in the Social Sciences |volume=144}}</ref><ref>{{cite book |editor1-first=Michael L. |editor1-last=Nering |editor2-first=Remo |editor2-last=Ostini |title=पॉलीटोमस आइटम प्रतिक्रिया सिद्धांत मॉडल की हैंडबुक|url=https://books.google.com/books?id=M2NYAAAAYAAJ |year=2010 |publisher=Taylor & Francis |isbn=978-0-8058-5992-8}}</ref> इस प्रकार इसका सामान्य उदाहरण लिकर्ट स्केल-प्रकार की वस्तुएं हैं, जिनका 1 से 5 के स्केल पर मूल्यांकन किया जा सकता है।


===आईआरटी मापदंडों की संख्या===
===आईआरटी पैरामीटरों की संख्या===
द्विभाजित आईआरटी मॉडल का वर्णन उनके द्वारा उपयोग किए जाने वाले मापदंडों की संख्या के आधार पर किया जाता है।<ref>Thissen, D. & Orlando, M. (2001).  Item response theory for items scored in two categories.  In D. Thissen & Wainer, H. (Eds.), ''Test Scoring'' (pp. 73–140).  Mahwah, NJ: Lawrence Erlbaum Associates, Inc.</ref> 3PL का नाम इसलिए रखा गया है क्योंकि यह तीन आइटम मापदंडों को नियोजित करता है। दो-पैरामीटर मॉडल (2PL) मानता है कि डेटा का कोई अनुमान नहीं है, लेकिन आइटम स्थान के संदर्भ में भिन्न हो सकते हैं (<math>b_i</math>) और भेदभाव (<math>a_i</math>). एक-पैरामीटर मॉडल (1PL) मानता है कि अनुमान लगाना क्षमता का एक हिस्सा है और मॉडल में फिट होने वाली सभी वस्तुओं में समान भेदभाव होते हैं, ताकि वस्तुओं को केवल एक ही पैरामीटर द्वारा वर्णित किया जा सके (<math>b_i</math>). इसके परिणामस्वरूप एक-पैरामीटर मॉडल में विशिष्ट वस्तुनिष्ठता का गुण होता है, जिसका अर्थ है कि आइटम की कठिनाई की रैंक क्षमता से स्वतंत्र सभी उत्तरदाताओं के लिए समान है, और व्यक्ति की क्षमता की रैंक कठिनाई से स्वतंत्र रूप से आइटम के लिए समान है। इस प्रकार, 1 पैरामीटर मॉडल नमूना स्वतंत्र हैं, एक संपत्ति जो दो-पैरामीटर और तीन-पैरामीटर मॉडल के लिए मान्य नहीं है। इसके अतिरिक्त, सैद्धांतिक रूप से एक चार-पैरामीटर मॉडल (4PL) है, जिसमें एक ऊपरी अनंतस्पर्शी है, जिसे द्वारा दर्शाया गया है <math>d_i,</math> कहाँ <math>1-c_i</math> 3PL में द्वारा प्रतिस्थापित किया गया है <math>d_i-c_i</math>. हालाँकि, इसका उपयोग बहुत कम किया जाता है। ध्यान दें कि आइटम मापदंडों का वर्णमाला क्रम उनके व्यावहारिक या साइकोमेट्रिक महत्व से मेल नहीं खाता है; स्थान/कठिनाई (<math>b_i</math>) पैरामीटर स्पष्ट रूप से सबसे महत्वपूर्ण है क्योंकि यह तीनों मॉडलों में शामिल है। 1PL केवल उपयोग करता है <math>b_i</math>, 2PL का उपयोग करता है <math>b_i</math> और <math>a_i</math>, 3PL जोड़ता है <math>c_i</math>, और 4PL जोड़ता है <math>d_i</math>.
द्विभाजित आईआरटी मॉडल का वर्णन उनके द्वारा उपयोग किए जाने वाले पैरामीटरों की संख्या के आधार पर किया जाता है।<ref>Thissen, D. & Orlando, M. (2001).  Item response theory for items scored in two categories.  In D. Thissen & Wainer, H. (Eds.), ''Test Scoring'' (pp. 73–140).  Mahwah, NJ: Lawrence Erlbaum Associates, Inc.</ref> 3PL का नाम इसलिए रखा गया है क्योंकि यह तीन आइटम पैरामीटर्स को नियोजित करता है। दो-पैरामीटर मॉडल (2PL) मानता है कि डेटा का कोई अनुमान नहीं है, किन्तु आइटम स्थान (<math>b_i</math>) और विभेदन (<math>a_i</math>) के संदर्भ में भिन्न हो सकते हैं। पैरामीटर मॉडल (1PL) मानता है कि अनुमान लगाना क्षमता का भाग होता है और मॉडल में फिट होने वाली सभी वस्तुओं में समान विभेदन होते हैं, जिससे वस्तुओं को केवल पैरामीटर (<math>b_i</math>) द्वारा वर्णित किया जा सकता है। इसके परिणामस्वरूप 1-पैरामीटर मॉडल में विशिष्ट वस्तुनिष्ठता का गुण होता है, जिसका अर्थ है कि आइटम की कठिनाई की रैंक क्षमता से स्वतंत्र सभी उत्तरदाताओं के लिए समान होती है, और व्यक्ति की क्षमता की रैंक कठिनाई से स्वतंत्र रूप से आइटम के लिए समान होती है। इस प्रकार, 1-पैरामीटर मॉडल का प्रारूप स्वतंत्र हैं, उस गुण से जो दो-पैरामीटर और तीन-पैरामीटर मॉडल के लिए मान्य नहीं है। इसके अतिरिक्त, सैद्धांतिक रूप से चार-पैरामीटर मॉडल (4PL) होते है, जिसमें ऊपरी अनंतस्पर्शी होते है, जिसे <math>d_i,</math> द्वारा दर्शाया गया है जहाँ 3PL में <math>1-c_i</math> को <math>d_i-c_i</math> द्वारा प्रतिस्थापित किया गया है। यद्यपि, इसका उपयोग कम किया जाता है। ध्यान दें कि आइटम पैरामीटर का वर्णमाला क्रम उनके व्यावहारिक या साइकोमेट्रिक महत्व से युग्मित नहीं होता है; स्थान/कठिनाई (<math>b_i</math>) पैरामीटर स्पष्ट रूप से सबसे महत्वपूर्ण होता है क्योंकि यह तीनों मॉडलों में सम्मिलित है। 1PL केवल <math>b_i</math> का उपयोग करता है, 2PL <math>b_i</math> और <math>a_i</math> का उपयोग करता है, 3PL, <math>c_i</math> जोड़ता है, और 4PL, <math>d_i</math> जोड़ता है।


2PL, 3PL मॉडल के बराबर है <math>c_i = 0</math>, और उन वस्तुओं के परीक्षण के लिए उपयुक्त है जहां सही उत्तर का अनुमान लगाना अत्यधिक असंभव है, जैसे कि रिक्त वस्तुओं को भरना (121 का वर्गमूल क्या है?), या जहां अनुमान लगाने की अवधारणा लागू नहीं होती है, जैसे व्यक्तित्व , रवैया, या रुचि वाले आइटम (उदाहरण के लिए, मुझे ब्रॉडवे संगीत पसंद है। सहमत/असहमत)
2PL, <math>c_i = 0</math> के साथ 3PL मॉडल के समतुल्य है, और उन वस्तुओं के परीक्षण के लिए उपयुक्त है जहां उचित उत्तर का अनुमान लगाना पूणर्तः असंभव होता है, जैसे कि रिक्त आइटम को फिल करना (121 का वर्गमूल क्या है?), अथवा जहां अनुमान लगाने की अवधारणा प्रयुक्त नहीं होती है, जिसमें व्यक्तित्व, दृष्टिकोण, अथवा रुचिकर आइटम (उदाहरण के लिए, मुझे ब्रॉडवे संगीत में रूचि है। सहमत/असहमत) आदि सम्मिलित हैं।


1PL न केवल यह मानता है कि अनुमान लगाना मौजूद नहीं है (या अप्रासंगिक), बल्कि सभी आइटम भेदभाव के संदर्भ में समान हैं, सभी आइटमों के लिए समान लोडिंग के साथ एक सामान्य कारक विश्लेषण के अनुरूप। व्यक्तिगत वस्तुओं या व्यक्तियों में द्वितीयक कारक हो सकते हैं लेकिन इन्हें परस्पर स्वतंत्र और सामूहिक रूप से रूढ़िवादी माना जाता है।
1PL न केवल यह मानता है कि अनुमान लगाना उपस्थित नहीं है (अथवा अप्रासंगिक), अपितु यह भी मानता है कि सभी आइटम सभी वस्तुओं के लिए समान लोडिंग के साथ सामान्य कारक विश्लेषण के अनुरूप विभेदन के संदर्भ में समान होते हैं। विशिष्ट वस्तुओं या व्यक्तियों में द्वितीयक कारक हो सकते हैं किन्तु इन्हें परस्पर स्वतंत्र और सामूहिक रूप से ऑर्थोगोनल माना जाता है।


===लॉजिस्टिक और सामान्य आईआरटी मॉडल===
===लॉजिस्टिक और सामान्य आईआरटी मॉडल===
एक वैकल्पिक सूत्रीकरण सामान्य संभाव्यता वितरण के आधार पर आईआरएफ का निर्माण करता है; इन्हें कभी-कभी सामान्य ऑगिव (सांख्यिकी) मॉडल कहा जाता है। उदाहरण के लिए, दो-पैरामीटर सामान्य-ओगिव आईआरएफ का सूत्र है:
वैकल्पिक सूत्रीकरण सामान्य संभाव्यता वितरण के आधार पर आईआरएफ का निर्माण करता है; इन्हें कभी-कभी सामान्य ऑगिव (सांख्यिकी) मॉडल कहा जाता है। उदाहरण के लिए, दो-पैरामीटर सामान्य-ओगिव आईआरएफ का सूत्र है:


:<math>
:<math>
p_i(\theta)= \Phi \left( \frac{\theta-b_i}{\sigma_i} \right)
p_i(\theta)= \Phi \left( \frac{\theta-b_i}{\sigma_i} \right)
</math>
</math>
जहां Φ मानक सामान्य वितरण का संचयी वितरण फ़ंक्शन (सीडीएफ) है।
जहां Φ मानक सामान्य वितरण का संचयी वितरण फलन (सीडीएफ) है।
 
नॉर्मल-ओगाइव मॉडल सामान्य रूप से वितरित माप त्रुटि की धारणा से निकला है और उस आधार पर सैद्धांतिक रूप से आकर्षक है। यहाँ <math>b_i</math> फिर से, कठिनाई पैरामीटर है। भेदभाव पैरामीटर है <math>{\sigma}_i</math>, आइटम i के लिए माप त्रुटि का मानक विचलन, और 1/ के तुलनीय<math>a_i</math>.


वस्तुओं के बीच टेट्राकोरिक सहसंबंधों के मैट्रिक्स का कारक-विश्लेषण करके कोई सामान्य-ओगिव अव्यक्त विशेषता मॉडल का अनुमान लगा सकता है।<ref>[[Karl Gustav Jöreskog|K. G. Jöreskog]] and D. Sörbom(1988). ''PRELIS 1 user's manual, version 1''.  Chicago: Scientific Software, Inc.</ref> इसका मतलब यह है कि सामान्य प्रयोजन सांख्यिकीय सॉफ्टवेयर का उपयोग करके एक सरल आईआरटी मॉडल का अनुमान लगाना तकनीकी रूप से संभव है।
सामान्य-ऑगिव मॉडल सामान्य रूप से वितरित माप त्रुटि की धारणा से प्राप्त होता है और उस आधार पर यह सैद्धांतिक रूप से आकर्षक है। यहाँ <math>b_i</math> पुनः, कठिनाई पैरामीटर है। विभेदन पैरामीटर <math>{\sigma}_i</math> है, जो आइटम i के लिए माप त्रुटि का मानक विचलन है, और 1/<math>a_i</math> के समतुल्य है।


क्षमता पैरामीटर के पुनर्स्केलिंग के साथ, 2PL लॉजिस्टिक मॉडल को [[संचयी सामान्य]] तोरण के करीब लाना संभव है।<ref>{{cite journal |first=Gregory |last=Camilli |title=Origin of the Scaling Constant d = 1.7 in Item Response Theory |journal=Journal of Educational and Behavioral Statistics |volume=19 |issue=3 |year=1994 |pages=293–295 |doi=10.3102/10769986019003293 |s2cid=122401679 }}</ref> आमतौर पर, 2PL लॉजिस्टिक और नॉर्मल-ओगिव आईआरएफ की संभावना फ़ंक्शन की सीमा में 0.01 से अधिक नहीं होती है। हालाँकि, अंतर वितरण पूंछ में सबसे बड़ा है, जिसका परिणामों पर अधिक प्रभाव पड़ता है।
वस्तुओं के मध्य टेट्राकोरिक सहसंबंधों के आव्यूह का कारक-विश्लेषण करके कोई सामान्य-ऑगिव अव्यक्त विशेषता मॉडल का अनुमान लगा सकता है।<ref>[[Karl Gustav Jöreskog|K. G. Jöreskog]] and D. Sörbom(1988). ''PRELIS 1 user's manual, version 1''. Chicago: Scientific Software, Inc.</ref> इसका तात्पर्य यह है कि सामान्य प्रयोजन सांख्यिकीय सॉफ्टवेयर का उपयोग करके सरल आईआरटी मॉडल का अनुमान लगाना प्रौद्योगिकी रूप से संभव है।


अव्यक्त विशेषता/आईआरटी मॉडल मूल रूप से सामान्य तोरण का उपयोग करके विकसित किया गया था, लेकिन उस समय (1960 के दशक) कंप्यूटरों के लिए इसे कम्प्यूटेशनल रूप से बहुत अधिक मांग वाला माना जाता था। लॉजिस्टिक मॉडल को एक सरल विकल्प के रूप में प्रस्तावित किया गया था, और तब से इसका व्यापक उपयोग हुआ है। हालाँकि, हाल ही में, यह प्रदर्शित किया गया कि, सामान्य सीडीएफ के लिए मानक बहुपद सन्निकटन का उपयोग करते हुए,<ref>Abramowitz M., Stegun I.A. (1972). ''Handbook of Mathematical Functions''. Washington DC: U. S. Government Printing Office.</ref> नॉर्मल-ओगिव मॉडल लॉजिस्टिक मॉडल की तुलना में अधिक कम्प्यूटेशनल रूप से मांग वाला नहीं है।<ref>{{cite journal |last=Uebersax |first=J.S. |title=Probit latent class analysis with dichotomous or ordered category measures: conditional independence/dependence models |journal=Applied Psychological Measurement |volume=23 |issue=4 |pages=283–297 |date=December 1999 |doi=10.1177/01466219922031400 |s2cid=120497324 }}</ref>
क्षमता पैरामीटर के पुनर्स्केलिंग के साथ, 2PL लॉजिस्टिक मॉडल को [[संचयी सामान्य]] ऑगिव के निकट लाना संभव है।<ref>{{cite journal |first=Gregory |last=Camilli |title=Origin of the Scaling Constant d = 1.7 in Item Response Theory |journal=Journal of Educational and Behavioral Statistics |volume=19 |issue=3 |year=1994 |pages=293–295 |doi=10.3102/10769986019003293 |s2cid=122401679 }}</ref> सामान्यतः, 2PL लॉजिस्टिक और सामान्य-ऑगिव आईआरएफ की संभावना फलन की सीमा में 0.01 से अधिक नहीं होती है। यद्यपि, अंतर वितरण टेल्स में सबसे बड़ा है, जिसका परिणामों पर अधिक प्रभाव होता है।


अव्यक्त विशेषता/आईआरटी मॉडल मूल रूप से सामान्य ऑगिव का उपयोग करके विकसित किया गया था, किन्तु उस समय (1960 के दशक) कंप्यूटरों के लिए इसे कम्प्यूटेशनल रूप से अधिक डिमांड वाला माना जाता था। लॉजिस्टिक मॉडल को सरल विकल्प के रूप में प्रस्तावित किया गया था, और तब से इसका व्यापक उपयोग हुआ है। यद्यपि, कुछ वर्ष पूर्व, यह प्रदर्शित किया गया कि, सामान्य सीडीएफ के लिए मानक बहुपद सन्निकटन का उपयोग करते हुए,<ref>Abramowitz M., Stegun I.A. (1972). ''Handbook of Mathematical Functions''. Washington DC: U. S. Government Printing Office.</ref> सामान्य-ऑगिव मॉडल लॉजिस्टिक मॉडल की अपेक्षा में कम्प्यूटेशनल रूप से अधिक डिमांड वाला नहीं है।<ref>{{cite journal |last=Uebersax |first=J.S. |title=Probit latent class analysis with dichotomous or ordered category measures: conditional independence/dependence models |journal=Applied Psychological Measurement |volume=23 |issue=4 |pages=283–297 |date=December 1999 |doi=10.1177/01466219922031400 |s2cid=120497324 }}</ref>


===[[ तीव्र मॉडल ]]===
[[ तीव्र मॉडल |'''रैश मॉडल''']]
रैश मॉडल को अक्सर 1PL IRT मॉडल माना जाता है। हालाँकि, रैश मॉडलिंग के समर्थक इसे डेटा और सिद्धांत के बीच संबंधों की अवधारणा के लिए एक पूरी तरह से अलग दृष्टिकोण के रूप में देखना पसंद करते हैं।<ref>Andrich, D (1989), Distinctions between assumptions and requirements in measurement in the Social sciences", in Keats, J.A, Taft, R., Heath, R.A, Lovibond, S (Eds), ''Mathematical and Theoretical Systems'', Elsevier Science Publishers, North Holland, Amsterdam, pp.7-16.</ref> अन्य सांख्यिकीय मॉडलिंग दृष्टिकोणों की तरह, आईआरटी प्रेक्षित डेटा के लिए एक मॉडल के फिट होने की प्रधानता पर जोर देता है,<ref>Steinberg, J. (2000). Frederic Lord, Who Devised Testing Yardstick, Dies at 87.  New York Times, February 10, 2000</ref> जबकि रैश मॉडल मौलिक माप के लिए आवश्यकताओं की प्रधानता पर जोर देता है, पर्याप्त डेटा-मॉडल फिट एक महत्वपूर्ण लेकिन माध्यमिक आवश्यकता है जिसे किसी परीक्षण या अनुसंधान उपकरण से पहले पूरा किया जाना चाहिए ताकि किसी विशेषता को मापने का दावा किया जा सके।<ref>{{cite journal |last=Andrich |first=D. |title=Controversy and the Rasch model: a characteristic of incompatible paradigms? |journal=Medical Care |volume=42 |issue=1 |pages=I–7 |date=January 2004 |pmid=14707751 |doi=10.1097/01.mlr.0000103528.48582.7c|s2cid=23087904 }}</ref> परिचालनात्मक रूप से, इसका मतलब यह है कि आईआरटी दृष्टिकोण में डेटा में देखे गए पैटर्न को प्रतिबिंबित करने के लिए अतिरिक्त मॉडल पैरामीटर शामिल हैं (उदाहरण के लिए, वस्तुओं को अव्यक्त विशेषता के साथ उनके सहसंबंध में भिन्नता की अनुमति देना), जबकि राश दृष्टिकोण में, एक अव्यक्त विशेषता की उपस्थिति के बारे में दावे केवल तभी वैध माना जा सकता है जब दोनों (ए) डेटा रैश मॉडल में फिट होते हैं, और (बी) परीक्षण आइटम और परीक्षार्थी मॉडल के अनुरूप होते हैं। इसलिए, रैश मॉडल के तहत, मिसफिटिंग प्रतिक्रियाओं के लिए मिसफिट के कारण के निदान की आवश्यकता होती है, और यदि कोई पर्याप्त रूप से समझा सकता है कि वे अव्यक्त विशेषता को संबोधित क्यों नहीं करते हैं, तो उन्हें डेटा सेट से बाहर रखा जा सकता है।<ref>{{cite journal |last=Smith |first=R.M. |title=फिट का सिद्धांत और अभ्यास|journal=Rasch Measurement Transactions |volume=3 |issue=4 |pages=78 |year=1990 |url=http://rasch.org/rmt/rmt34b.htm}}</ref> इस प्रकार, रश दृष्टिकोण को एक पुष्टिकरण दृष्टिकोण के रूप में देखा जा सकता है, जो खोजपूर्ण दृष्टिकोण के विपरीत है जो देखे गए डेटा को मॉडल करने का प्रयास करता है।


अनुमान लगाने या छद्म-मौका पैरामीटर की उपस्थिति या अनुपस्थिति एक प्रमुख और कभी-कभी विवादास्पद अंतर है। आईआरटी दृष्टिकोण में बहुविकल्पीय परीक्षाओं में अनुमान लगाने के लिए एक बायाँ स्पर्शोन्मुख पैरामीटर शामिल है, जबकि रैश मॉडल में ऐसा नहीं है क्योंकि यह माना जाता है कि अनुमान लगाने से डेटा में यादृच्छिक रूप से वितरित शोर जुड़ जाता है। चूँकि शोर को बेतरतीब ढंग से वितरित किया जाता है, यह माना जाता है कि, बशर्ते पर्याप्त वस्तुओं का परीक्षण किया जाए, कच्चे स्कोर द्वारा अव्यक्त विशेषता के साथ व्यक्तियों का रैंक-क्रम नहीं बदलेगा, बल्कि बस एक रैखिक पुनर्मूल्यांकन से गुजरना होगा। इसके विपरीत, तीन-पैरामीटर आईआरटी डेटा को फिट करने वाले मॉडल का चयन करके डेटा-मॉडल फिट प्राप्त करता है,<ref>{{cite journal |last1=Zwick |first1=R. |last2=Thayer |first2=D.T. |last3=Wingersky |first3=M. |title=कंप्यूटर-अनुकूली परीक्षणों में क्षमता और डीआईएफ अनुमान पर रश अंशांकन का प्रभाव|journal=Journal of Educational Measurement |volume=32 |issue=4 |pages=341–363 |date=December 1995 |doi=10.1111/j.1745-3984.1995.tb00471.x }}</ref> विशिष्ट वस्तुनिष्ठता का त्याग करने की कीमत पर।
रैश मॉडल को अधिकांशतः 1PL आईआरटी मॉडल माना जाता है। यद्यपि, रैश मॉडलिंग के समर्थक इसे डेटा और सिद्धांत के मध्य संबंधों की अवधारणा के लिए पूर्ण रूप से भिन्न दृष्टिकोण के रूप में देखना स्वीकार करते हैं।<ref>Andrich, D (1989), Distinctions between assumptions and requirements in measurement in the Social sciences", in Keats, J.A, Taft, R., Heath, R.A, Lovibond, S (Eds), ''Mathematical and Theoretical Systems'', Elsevier Science Publishers, North Holland, Amsterdam, pp.7-16.</ref> अन्य सांख्यिकीय मॉडलिंग दृष्टिकोणों की भाँति, आईआरटी प्रेक्षित डेटा के लिए मॉडल के फिट होने की प्रधानता पर ध्यान देता है,<ref>Steinberg, J. (2000). Frederic Lord, Who Devised Testing Yardstick, Dies at 87.  New York Times, February 10, 2000</ref> यद्यपि रैश मॉडल मूल माप के लिए आवश्यकताओं की प्रधानता पर ध्यान देता है, पर्याप्त डेटा-मॉडल फिट महत्वपूर्ण किन्तु माध्यमिक आवश्यकता है जिसे किसी परीक्षण या अनुसंधान उपकरण से पूर्व पूर्ण किया जाना चाहिए जिससे किसी विशेषता को मापने का आशय किया जा सके।<ref>{{cite journal |last=Andrich |first=D. |title=Controversy and the Rasch model: a characteristic of incompatible paradigms? |journal=Medical Care |volume=42 |issue=1 |pages=I–7 |date=January 2004 |pmid=14707751 |doi=10.1097/01.mlr.0000103528.48582.7c|s2cid=23087904 }}</ref> ऑपरेशनल रूप से, इसका अर्थ यह है कि आईआरटी दृष्टिकोण में डेटा में देखे गए पैटर्न को प्रतिबिंबित करने के लिए अतिरिक्त मॉडल पैरामीटर सम्मिलित हैं (उदाहरण के लिए, वस्तुओं को अव्यक्त विशेषता के साथ उनके सहसंबंध में भिन्नता की अनुमति देना), यद्यपि रैश दृष्टिकोण में, अव्यक्त विशेषता की उपस्थिति के संबंध में आशय केवल तभी वैध माना जा सकता है जब दोनों (ए) डेटा रैश मॉडल में फिट होते हैं, और (बी) परीक्षण आइटम और परीक्षार्थी मॉडल के अनुरूप होते हैं। इसलिए, रैश मॉडल के अंतर्गत, मिसफिटिंग प्रतिक्रियाओं के लिए मिसफिट के कारण के निदान की आवश्यकता होती है, और यदि कोई पर्याप्त रूप से यह समझा सकता है कि वे अव्यक्त विशेषता को संबोधित क्यों नहीं करते हैं, तो उन्हें डेटा सेट से बाहर रखा जा सकता है।<ref>{{cite journal |last=Smith |first=R.M. |title=फिट का सिद्धांत और अभ्यास|journal=Rasch Measurement Transactions |volume=3 |issue=4 |pages=78 |year=1990 |url=http://rasch.org/rmt/rmt34b.htm}}</ref> इस प्रकार, रैश दृष्टिकोण को पुष्टिकरण दृष्टिकोण के रूप में देखा जा सकता है, जो शोधपूर्ण दृष्टिकोण के विपरीत है और देखे गए डेटा को मॉडल करने का प्रयास करता है।


व्यवहार में, आईआरटी दृष्टिकोण की तुलना में रैश मॉडल के कम से कम दो प्रमुख फायदे हैं। पहला लाभ रश की विशिष्ट आवश्यकताओं की प्रधानता है,<ref>Rasch, G. (1960/1980).  ''Probabilistic models for some intelligence and attainment tests''. (Copenhagen, Danish Institute for Educational Research), expanded edition (1980) with foreword and afterword by B.D. Wright.  Chicago: The University of Chicago Press.</ref> जो (मिलने पर) मौलिक व्यक्ति-मुक्त माप प्रदान करता है (जहां व्यक्तियों और वस्तुओं को एक ही अपरिवर्तनीय पैमाने पर मैप किया जा सकता है)।<ref>{{cite journal |last=Wright |first=B.D. |title=IRT in the 1990s: Which Models Work Best? |journal=Rasch Measurement Transactions |volume=6 |issue=1 |pages=196–200 |year=1992 }}</ref> रैश दृष्टिकोण का एक अन्य लाभ यह है कि पर्याप्त आँकड़ों की उपस्थिति के कारण रैश मॉडल में मापदंडों का अनुमान अधिक सरल है, जिसका अर्थ इस एप्लिकेशन में रैश के लिए कच्चे नंबर-सही स्कोर की एक-से-एक मैपिंग है। <math>{\theta}</math> अनुमान।<ref>Fischer, G.H. & Molenaar, I.W. (1995). ''Rasch Models: Foundations, Recent Developments, and Applications''.  New York: Springer.</ref>
गेस्सिंग अथवा सूडो-चांस पैरामीटर की उपस्थिति या अनुपस्थिति प्रमुख और कभी-कभी विवादास्पद विशिष्टता होती है। आईआरटी दृष्टिकोण में बहुविकल्पीय परीक्षाओं में अनुमान लगाने के लिए बायाँ स्पर्शोन्मुख पैरामीटर सम्मिलित होता है, यद्यपि रैश मॉडल में ऐसा नहीं है क्योंकि यह माना जाता है कि अनुमान लगाने से डेटा में यादृच्छिक रूप से वितरित नॉइज़ संयोजित हो जाती है। यद्यपि नॉइज़ को यादृच्छिक रूप से वितरित किया जाता है, तथा यह माना जाता है कि, पर्याप्त वस्तुओं का परीक्षण किया जाए, रॉ स्कोर द्वारा अव्यक्त विशेषता के साथ व्यक्तियों का रैंक-क्रम परिवर्तित नहीं होता है, अपितु बस रैखिक पुनर्मूल्यांकन करना होता है। इसके विपरीत, तीन-पैरामीटर आईआरटी विशिष्ट निष्पक्षता का त्याग करने के मूल्य पर, डेटा को फिट करने वाले मॉडल का चयन करके डेटा-मॉडल फिट प्राप्त करता है।<ref>{{cite journal |last1=Zwick |first1=R. |last2=Thayer |first2=D.T. |last3=Wingersky |first3=M. |title=कंप्यूटर-अनुकूली परीक्षणों में क्षमता और डीआईएफ अनुमान पर रश अंशांकन का प्रभाव|journal=Journal of Educational Measurement |volume=32 |issue=4 |pages=341–363 |date=December 1995 |doi=10.1111/j.1745-3984.1995.tb00471.x }}</ref>  


व्यवहार में, आईआरटी दृष्टिकोण की अपेक्षा में रैश मॉडल के कम से कम दो प्रमुख लाभ हैं। प्रथम लाभ रैश की विशिष्ट आवश्यकताओं की प्रधानता है,<ref>Rasch, G. (1960/1980).  ''Probabilistic models for some intelligence and attainment tests''. (Copenhagen, Danish Institute for Educational Research), expanded edition (1980) with foreword and afterword by B.D. Wright.  Chicago: The University of Chicago Press.</ref> जो (प्राप्त होने पर) मूल व्यक्ति-मुक्त माप प्रदान करता है (जहां व्यक्तियों और वस्तुओं को ही अपरिवर्तनीय स्तर पर मैप किया जा सकता है)।<ref>{{cite journal |last=Wright |first=B.D. |title=IRT in the 1990s: Which Models Work Best? |journal=Rasch Measurement Transactions |volume=6 |issue=1 |pages=196–200 |year=1992 }}</ref> रैश दृष्टिकोण का अन्य लाभ यह है कि पर्याप्त तथ्यांकों की उपस्थिति के कारण रैश मॉडल में पैरामीटर्स का अनुमान अधिक सरल होता है, जिसका अर्थ इस एप्लिकेशन में रैश <math>{\theta}</math> अनुमानों के लिए रॉ नंबर-उचित स्कोर मैपिंग है।<ref>Fischer, G.H. & Molenaar, I.W. (1995).  ''Rasch Models: Foundations, Recent Developments, and Applications''.  New York: Springer.</ref>


==मॉडल फिट का विश्लेषण==
== मॉडल फिट का विश्लेषण ==
{{unreferenced section|date=July 2014}}
गणितीय मॉडल के किसी भी उपयोग की भाँति, मॉडल में डेटा के फिट होने का आकलन करना महत्वपूर्ण होता है। यदि किसी मॉडल के साथ आइटम मिसफिट का निदान निकृष्ट आइटम गुणवत्ता के कारण किया जाता है, उदाहरण के लिए बहुविकल्पीय परीक्षण में भ्रमित करने वाले आइटम को उस परीक्षण फॉर्म से विस्थापित कर दिया जा सकता है और भविष्य के परीक्षण फॉर्म में पुनः अंकित अथवा प्रतिस्थापित किया जा सकता है। यद्यपि, मिसफिटिंग का कोई स्पष्ट कारण नहीं होने पर बड़ी संख्या में मिसफिटिंग आइटम होते हैं, तो परीक्षण की निर्माण वैधता पर पुनर्विचार करने की आवश्यकता होगी और परीक्षण विनिर्देशों को पुनः अंकित करने की आवश्यकता हो सकती है। इस प्रकार, मिसफ़िट परीक्षण डेवलपर्स के लिए अमूल्य नैदानिक ​​उपकरण प्रदान करता है, जिससे उन परिकल्पनाओं को डेटा के विरुद्ध अनुभवजन्य रूप से परीक्षण करने की अनुमति प्राप्त होती है जिन पर परीक्षण विनिर्देश आधारित होते हैं।
गणितीय मॉडल के किसी भी उपयोग की तरह, मॉडल में डेटा के फिट होने का आकलन करना महत्वपूर्ण है। यदि किसी मॉडल के साथ आइटम मिसफिट का निदान खराब आइटम गुणवत्ता के कारण किया जाता है, उदाहरण के लिए बहुविकल्पीय परीक्षण में भ्रमित करने वाले ध्यान भटकाने वाले, तो आइटम को उस परीक्षण फॉर्म से हटा दिया जा सकता है और भविष्य के परीक्षण फॉर्म में फिर से लिखा या प्रतिस्थापित किया जा सकता है। यदि, हालांकि, मिसफिटिंग का कोई स्पष्ट कारण नहीं होने पर बड़ी संख्या में मिसफिटिंग आइटम होते हैं, तो परीक्षण की निर्माण वैधता पर पुनर्विचार करने की आवश्यकता होगी और परीक्षण विनिर्देशों को फिर से लिखने की आवश्यकता हो सकती है। इस प्रकार, मिसफ़िट परीक्षण डेवलपर्स के लिए अमूल्य नैदानिक ​​उपकरण प्रदान करता है, जिससे उन परिकल्पनाओं को डेटा के विरुद्ध अनुभवजन्य रूप से परीक्षण करने की अनुमति मिलती है जिन पर परीक्षण विनिर्देश आधारित होते हैं।


फिट का आकलन करने के लिए कई तरीके हैं, जैसे [[ची-स्क्वायर आँकड़ा]], या इसका एक मानकीकृत संस्करण। दो और तीन-पैरामीटर आईआरटी मॉडल बेहतर डेटा-मॉडल फिट सुनिश्चित करते हुए आइटम भेदभाव को समायोजित करते हैं, इसलिए फिट आँकड़ों में एक-पैरामीटर मॉडल में पाए जाने वाले पुष्टिकरण निदान मूल्य का अभाव होता है, जहां आदर्श मॉडल पहले से निर्दिष्ट होता है।
फिट का आकलन करने के लिए कई विधियाँ होती हैं, जिसमें [[ची-स्क्वायर आँकड़ा|ची-स्क्वायर सांख्यिकीय]], या इसका मानकीकृत संस्करण सम्मिलित है। दो और तीन-पैरामीटर आईआरटी मॉडल श्रेष्ठ डेटा-मॉडल फिट सुनिश्चित करते हुए आइटम विभेदन को समायोजित करते हैं, इसलिए फिट सांख्यिकीय में 1-पैरामीटर मॉडल में पाए जाने वाले पुष्टिकरण निदान मान का अभाव होता है, जहां आदर्श मॉडल पहले से निर्दिष्ट होता है।


डेटा को मॉडल के अनुपयुक्त होने के आधार पर नहीं हटाया जाना चाहिए, बल्कि इसलिए कि अनुपयुक्त होने का एक ठोस प्रासंगिक कारण का निदान किया गया है, जैसे कि अंग्रेजी का एक गैर-देशी वक्ता अंग्रेजी में लिखित विज्ञान परीक्षा दे रहा है। इस तरह के उम्मीदवार के बारे में तर्क दिया जा सकता है कि वह परीक्षण की आयामता के आधार पर व्यक्तियों की समान आबादी से संबंधित नहीं है, और, हालांकि एक पैरामीटर आईआरटी उपायों को नमूना-स्वतंत्र होने का तर्क दिया जाता है, वे आबादी से स्वतंत्र नहीं हैं, इसलिए यह अनुपयुक्त है निर्माण प्रासंगिक है और परीक्षण या मॉडल को अमान्य नहीं करता है। उपकरण सत्यापन में ऐसा दृष्टिकोण एक आवश्यक उपकरण है। दो और तीन-पैरामीटर मॉडल में, जहां साइकोमेट्रिक मॉडल को डेटा को फिट करने के लिए समायोजित किया जाता है, परीक्षण के भविष्य के प्रशासन को प्रारंभिक सत्यापन में उपयोग किए गए उसी मॉडल के लिए फिट होने के लिए जांचना चाहिए ताकि प्रत्येक प्रशासन से स्कोर को सामान्य बनाने वाली परिकल्पना की पुष्टि की जा सके। अन्य प्रशासनों के लिए. यदि डेटा-मॉडल फिट प्राप्त करने के लिए प्रत्येक प्रशासन के लिए एक अलग मॉडल निर्दिष्ट किया गया है, तो एक अलग अव्यक्त विशेषता को मापा जा रहा है और परीक्षण स्कोर को प्रशासनों के बीच तुलनीय होने का तर्क नहीं दिया जा सकता है।
डेटा को मॉडल के अनुपयुक्त होने के आधार पर विस्थापित नहीं किया जाना चाहिए, अपितु इसलिए कि अनुपयुक्त होने के स्थिर प्रासंगिक कारण का निदान किया गया है, जैसे कि अंग्रेजी का विदेशी वक्ता अंग्रेजी में लिखित विज्ञान परीक्षा दे रहा है। इस प्रकार के प्रार्थी के संबंध में आर्गूमेंट दिया जा सकता है कि वह परीक्षण की आयामता के आधार पर व्यक्तियों की समान जनसँख्या से संबंधित नहीं है, और, यद्यपि पैरामीटर आईआरटी उपायों को प्रारूप-स्वतंत्र होने का आर्गूमेंट दिया जाता है, वे जनसँख्या से स्वतंत्र नहीं हैं, इसलिए यह अनुपयुक्त है तथा इसका निर्माण प्रासंगिक है और परीक्षण या मॉडल को अमान्य नहीं करता है। उपकरण सत्यापन में ऐसा दृष्टिकोण आवश्यक उपकरण है। दो और तीन-पैरामीटर मॉडलों में, जहां साइकोमेट्रिक मॉडल को डेटा में फिट करने के लिए समायोजित किया जाता है, परीक्षण के भविष्य के प्रशासन को उस परिकल्पना की पुष्टि करने के लिए प्रारंभिक सत्यापन में उपयोग किए गए उसी मॉडल में फिट होने के लिए इसका परीक्षण किया जाना चाहिए जो प्रत्येक प्रशासन के स्कोर को अन्य प्रशासन के लिए सामान्यीकृत करता है। यदि डेटा-मॉडल फिट प्राप्त करने के लिए प्रत्येक प्रशासन को भिन्न मॉडल निर्दिष्ट किया गया है, तो भिन्न अव्यक्त विशेषता को मापा जा सकता है और परीक्षण स्कोर को प्रशासनों के मध्य सादृश्य होने का आर्गूमेंट नहीं दिया जा सकता है।


==जानकारी==
==इनफार्मेशन==
आइटम प्रतिक्रिया सिद्धांत का एक प्रमुख योगदान [[विश्वसनीयता (सांख्यिकी)]] की अवधारणा का विस्तार है। परंपरागत रूप से, विश्वसनीयता माप की सटीकता को संदर्भित करती है (यानी, वह डिग्री जिस तक माप त्रुटि मुक्त है)। परंपरागत रूप से, इसे विभिन्न तरीकों से परिभाषित एकल सूचकांक का उपयोग करके मापा जाता है, जैसे कि सही और देखे गए स्कोर भिन्नता का अनुपात। यह सूचकांक किसी परीक्षण की औसत विश्वसनीयता को दर्शाने में सहायक है, उदाहरण के लिए दो परीक्षणों की तुलना करने के लिए। लेकिन आईआरटी यह स्पष्ट करता है कि परीक्षण स्कोर की संपूर्ण श्रृंखला में सटीकता एक समान नहीं है। उदाहरण के लिए, परीक्षण की सीमा के किनारों पर प्राप्त अंकों में आम तौर पर सीमा के मध्य के करीब के अंकों की तुलना में अधिक त्रुटियाँ जुड़ी होती हैं।
आइटम रिस्पांस थ्योरी का प्रमुख योगदान [[विश्वसनीयता (सांख्यिकी)]] की अवधारणा का विस्तार है। परंपरागत रूप से, विश्वसनीयता माप की त्रुटिहीनता को संदर्भित करती है (अर्थात, वह डिग्री जिस तक माप त्रुटि मुक्त है)। परंपरागत रूप से, इसे विभिन्न विधियों द्वारा परिभाषित एकल सूचकांक का उपयोग करके मापा जाता है, जैसे उचित और देखे गए स्कोर भिन्नता का अनुपात मापा जाता है। यह सूचकांक किसी परीक्षण की औसत विश्वसनीयता जैसे दो परीक्षणों की उपमा को दर्शाने में सहायक है। किन्तु आईआरटी यह स्पष्ट करता है कि परीक्षण स्कोर की संपूर्ण श्रृंखला में त्रुटिहीनता समान नहीं होती है। उदाहरण के लिए, परीक्षण की सीमा के कोरों पर प्राप्त अंकों में सामान्यतः सीमा के मध्य के निकट के अंकों की उपमा में अधिक त्रुटियाँ संयोजित होती हैं।


आइटम प्रतिक्रिया सिद्धांत विश्वसनीयता को बदलने के लिए आइटम और परीक्षण जानकारी की अवधारणा को आगे बढ़ाता है। सूचना भी मॉडल मापदंडों का एक कार्य है। उदाहरण के लिए, फिशर सूचना सिद्धांत के अनुसार, द्विभाजित प्रतिक्रिया डेटा के लिए 1PL के मामले में प्रदान की गई आइटम जानकारी केवल एक सही प्रतिक्रिया की संभावना को गलत प्रतिक्रिया की संभावना से गुणा करती है, या,
आइटम प्रतिक्रिया सिद्धांत विश्वसनीयता को परिवर्तित करने के लिए आइटम और परीक्षण सूचना की अवधारणा को अग्र विस्तारित करता है। इनफार्मेशन भी मॉडल पैरामीटर्स का फंक्शन है। उदाहरण के लिए, फिशर सूचना सिद्धांत के अनुसार, द्विभाजित प्रतिक्रिया डेटा के लिए 1PL की स्थिति में प्रदान की गई आइटम सूचना केवल उचित प्रतिक्रिया की संभावना को अनुचित प्रतिक्रिया की संभावना से गुणा करती है, या,


:<math>
:<math>
I(\theta)=p_i(\theta) q_i(\theta).\,
I(\theta)=p_i(\theta) q_i(\theta).\,
</math>
</math>
[[अनुमान की मानक त्रुटि]] (एसई) किसी दिए गए विशेषता स्तर पर परीक्षण जानकारी का पारस्परिक है, है
[[अनुमान की मानक त्रुटि]] (एसई) किसी दिए गए विशेषता स्तर पर परीक्षण सूचना की पारस्परिक है,


:<math>
:<math>
\text{SE}(\theta) = \frac{1}{\sqrt{I(\theta)}}.
\text{SE}(\theta) = \frac{1}{\sqrt{I(\theta)}}.
</math>
</math>
इस प्रकार अधिक जानकारी से माप में कम त्रुटि का पता चलता है।
इस प्रकार अधिक सूचना से माप में कम त्रुटि का बोध होता है।


अन्य मॉडलों के लिए, जैसे कि दो और तीन पैरामीटर मॉडल, भेदभाव पैरामीटर फ़ंक्शन में एक महत्वपूर्ण भूमिका निभाता है। दो पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है
अन्य मॉडलों के लिए, जैसे कि दो और तीन पैरामीटर मॉडल, विभेदन पैरामीटर फ़ंक्शन में महत्वपूर्ण भूमिका निभाता है। दो पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है-


:<math>
:<math>
I(\theta)=a_i^2 p_i(\theta) q_i(\theta).\,
I(\theta)=a_i^2 p_i(\theta) q_i(\theta).\,
</math>
</math>
तीन पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है
तीन पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है-


:<math>
:<math>
Line 127: Line 126:
de Ayala, R.J. (2009). ''The Theory and Practice of Item Response Theory'', New York, NY: The Guilford Press. (6.12), p.144
de Ayala, R.J. (2009). ''The Theory and Practice of Item Response Theory'', New York, NY: The Guilford Press. (6.12), p.144
</ref>
</ref>
सामान्य तौर पर, आइटम सूचना फ़ंक्शन घंटी के आकार के दिखते हैं। अत्यधिक विभेदकारी वस्तुओं में लंबे, संकीर्ण सूचना कार्य होते हैं; वे बहुत योगदान देते हैं लेकिन एक सीमित दायरे में। कम विभेदकारी आइटम कम जानकारी प्रदान करते हैं लेकिन व्यापक दायरे में।
सामान्यतः, आइटम सूचना फ़ंक्शन बेल के आकार के दिखते हैं। अत्यधिक विभेदकारी वस्तुओं में बड़े, संकीर्ण इनफार्मेशन फंक्शन होते हैं; जो सीमित सीमा में अधिक योगदान देते हैं। कम विभेदकारी आइटम व्यापक सीमा में कम सूचना प्रदान करते हैं।


आइटम जानकारी के प्लॉट का उपयोग यह देखने के लिए किया जा सकता है कि कोई आइटम कितनी जानकारी का योगदान देता है और स्केल स्कोर रेंज के किस हिस्से में योगदान देता है। स्थानीय स्वतंत्रता के कारण, आइटम सूचना फ़ंक्शन [[योगात्मक मानचित्र]] हैं। इस प्रकार, परीक्षण सूचना फ़ंक्शन केवल परीक्षा में आइटमों के सूचना कार्यों का योग है। एक बड़े आइटम बैंक के साथ इस संपत्ति का उपयोग करके, [[माप त्रुटि]] को बहुत सटीक रूप से नियंत्रित करने के लिए परीक्षण सूचना कार्यों को आकार दिया जा सकता है।
आइटम सूचना के प्लॉट का उपयोग यह देखने के लिए किया जा सकता है कि कोई आइटम कितनी सूचना का योगदान देता है और स्केल स्कोर सीमा के किस भाग में योगदान देता है। स्थानीय स्वतंत्रता के कारण, आइटम सूचना फ़ंक्शन [[योगात्मक मानचित्र]] होते हैं। इस प्रकार, परीक्षण सूचना फ़ंक्शन केवल परीक्षा में आइटमों के इनफार्मेशन फंक्शन का योग है। बड़े आइटम बैंक के साथ इस गुण का उपयोग करके, [[माप त्रुटि]] को अधिक त्रुटिहीन रूप से नियंत्रित करने के लिए परीक्षण सूचना फंक्शन्स को आकार दिया जा सकता है।


परीक्षण स्कोर की सटीकता की विशेषता शायद साइकोमेट्रिक सिद्धांत में केंद्रीय मुद्दा है और आईआरटी और सीटीटी के बीच मुख्य अंतर है। आईआरटी के निष्कर्षों से पता चलता है कि विश्वसनीयता की सीटीटी अवधारणा एक सरलीकरण है। विश्वसनीयता के स्थान पर, आईआरटी परीक्षण सूचना फ़ंक्शन प्रदान करता है जो थीटा, θ के विभिन्न मूल्यों पर सटीकता की डिग्री दिखाता है।
परीक्षण स्कोर की त्रुटिहीनता की विशेषता संभवतः साइकोमेट्रिक सिद्धांत में केंद्रीय अभिप्राय है और आईआरटी और सीटीटी के मध्य मुख्य अंतर है। आईआरटी के निष्कर्षों से ज्ञात होता है कि विश्वसनीयता की सीटीटी अवधारणा सरलीकरण है। विश्वसनीयता के स्थान पर, आईआरटी परीक्षण सूचना फ़ंक्शन प्रदान करता है जो थीटा, θ के विभिन्न मानों पर त्रुटिहीनता की डिग्री दर्शाता है।


ये परिणाम मनोचिकित्सकों को (संभावित रूप से) सावधानीपूर्वक चुनी गई वस्तुओं को शामिल करके क्षमता की विभिन्न श्रेणियों के लिए विश्वसनीयता के स्तर को सावधानीपूर्वक आकार देने की अनुमति देते हैं। उदाहरण के लिए, एक [[प्रमाणीकरण]] स्थिति में जहां एक परीक्षा केवल उत्तीर्ण या असफल हो सकती है, जहां केवल एक कटस्कोर होता है, और जहां वास्तविक उत्तीर्ण स्कोर महत्वहीन होता है, केवल उच्च जानकारी वाले आइटम का चयन करके एक बहुत ही कुशल परीक्षण विकसित किया जा सकता है कटस्कोर के पास. ये आइटम आम तौर पर उन आइटमों से मेल खाते हैं जिनकी कठिनाई कटस्कोर के समान ही होती है।
ये परिणाम मनोचिकित्सकों को (संभावित रूप से) सावधानीपूर्वक चयनित वस्तुओं को सम्मिलित करके क्षमता की विभिन्न श्रेणियों के लिए विश्वसनीयता के स्तर को सावधानीपूर्वक आकार देने की अनुमति प्रदान करते हैं। उदाहरण के लिए, [[प्रमाणीकरण]] स्थिति में जहां परीक्षा केवल उत्तीर्ण या असफल हो सकती है, जहां केवल कटस्कोर होता है, और जहां वास्तविक उत्तीर्ण स्कोर महत्वहीन होता है, केवल उन वस्तुओं का चयन करके अधिक कुशल परीक्षण विकसित किया जा सकता है जिनके निकट कटस्कोर की उच्च सूचना होती है। आइटम सामान्यतः उन आइटमों से युग्मित होते हैं जिनकी बाधा कटस्कोर के समान ही होती है।


==स्कोरिंग==
==स्कोरिंग==
व्यक्ति पैरामीटर <math>{\theta}</math> व्यक्ति के अव्यक्त गुण के परिमाण को दर्शाता है, जो परीक्षण द्वारा मापी गई मानवीय क्षमता या विशेषता है।<ref>Lazarsfeld P.F, & Henry N.W. (1968). ''Latent Structure Analysis''. Boston: Houghton Mifflin.</ref> यह एक संज्ञानात्मक क्षमता, शारीरिक क्षमता, कौशल, ज्ञान, दृष्टिकोण, व्यक्तित्व विशेषता आदि हो सकती है।
व्यक्ति पैरामीटर <math>{\theta}</math> व्यक्ति के अव्यक्त गुण के परिमाण को दर्शाता है, जो परीक्षण द्वारा मापी गई मानवीय क्षमता अथवा विशेषता होती है।<ref>Lazarsfeld P.F, & Henry N.W. (1968). ''Latent Structure Analysis''. Boston: Houghton Mifflin.</ref> यह संज्ञानात्मक क्षमता, शारीरिक क्षमता, कौशल, ज्ञान, दृष्टिकोण, व्यक्तित्व विशेषता आदि हो सकती है।


व्यक्ति पैरामीटर का अनुमान - आईआरटी के साथ एक परीक्षण पर स्कोर - संख्या या प्रतिशत सही जैसे पारंपरिक स्कोर की तुलना में बहुत अलग तरीके से गणना और व्याख्या की जाती है। व्यक्ति का कुल संख्या-सही स्कोर वास्तविक स्कोर नहीं है, बल्कि आईआरएफ पर आधारित है, जिससे मॉडल में आइटम भेदभाव पैरामीटर शामिल होने पर एक भारित स्कोर प्राप्त होता है। यह वास्तव में संभावना फ़ंक्शन प्राप्त करने के लिए प्रत्येक आइटम के लिए आइटम प्रतिक्रिया फ़ंक्शन को गुणा करके प्राप्त किया जाता है, जिसका उच्चतम बिंदु अधिकतम संभावना अनुमान है <math>{\theta}</math>. इस उच्चतम बिंदु का अनुमान आमतौर पर न्यूटन-रैपसन पद्धति का उपयोग करके आईआरटी सॉफ्टवेयर से लगाया जाता है।<ref>{{cite web | url=http://www.assess.com/docs/Thompson_(2009)_-_Ability_estimation_with_IRT.pdf | title=आईआरटी के साथ क्षमता का आकलन|last=Thompson |first=N.A. |year=2009}}</ref> जबकि आईआरटी के साथ स्कोरिंग बहुत अधिक परिष्कृत है, अधिकांश परीक्षणों के लिए, थीटा अनुमान और पारंपरिक स्कोर के बीच संबंध बहुत अधिक है; अक्सर यह 0.95 या इससे अधिक होता है। पारंपरिक स्कोर के मुकाबले आईआरटी स्कोर का एक ग्राफ एक तोरण आकार दिखाता है जिसका अर्थ है कि आईआरटी बीच की तुलना में सीमा की सीमाओं पर अलग-अलग व्यक्तियों का अनुमान लगाता है।
व्यक्ति पैरामीटर का अनुमान - आईआरटी के साथ परीक्षण पर "स्कोर" की गणना और व्याख्या संख्या अथवा उचित प्रतिशत जैसे पारंपरिक स्कोर की अपेक्षा भिन्न प्रकार से की जाती है। व्यक्ति का कुल संख्या-उचित स्कोर वास्तविक स्कोर नहीं होता है, अपितु यह आईआरएफ पर आधारित होता है, जिससे मॉडल में आइटम विभेदन पैरामीटर सम्मिलित होने पर वेटेड स्कोर प्राप्त होता है। यह वास्तव में संभावना फ़ंक्शन प्राप्त करने के लिए प्रत्येक आइटम के लिए आइटम प्रतिक्रिया फ़ंक्शन को गुणा करके प्राप्त किया जाता है, जिसका उच्चतम बिंदु θ की अधिकतम संभावना अनुमान होता है। इस उच्चतम बिंदु का अनुमान सामान्यतः न्यूटन-रैपसन पद्धति का उपयोग करके आईआरटी सॉफ्टवेयर द्वारा लगाया जाता है।<ref>{{cite web | url=http://www.assess.com/docs/Thompson_(2009)_-_Ability_estimation_with_IRT.pdf | title=आईआरटी के साथ क्षमता का आकलन|last=Thompson |first=N.A. |year=2009}}</ref> यद्यपि आईआरटी के साथ स्कोरिंग अधिक परिष्कृत है, अधिकांश परीक्षणों के लिए, थीटा अनुमान और पारंपरिक स्कोर के मध्य संबंध अधिक है; अधिकांशतः यह 0.95 या इससे अधिक होता है। पारंपरिक स्कोर के सादृश्य में आईआरटी स्कोर का ग्राफ ऑगिव आकार को दर्शाता है जिसका अर्थ है कि यह आईआरटी मध्य के सादृश्य में सीमा की सीमाओं पर भिन्न-भिन्न व्यक्तियों का अनुमान लगाता है।


सीटीटी और आईआरटी के बीच एक महत्वपूर्ण अंतर माप त्रुटि का उपचार है, जिसे [[माप की मानक त्रुटि]] द्वारा अनुक्रमित किया जाता है। सभी परीक्षण, प्रश्नावली और सूचीएं सटीक उपकरण नहीं हैं; हम कभी भी किसी व्यक्ति का वास्तविक स्कोर नहीं जान सकते, बल्कि केवल एक अनुमान रखते हैं, देखा गया स्कोर। कुछ मात्रा में यादृच्छिक त्रुटि है जो देखे गए स्कोर को वास्तविक स्कोर से अधिक या कम कर सकती है। सीटीटी मानता है कि प्रत्येक परीक्षार्थी के लिए त्रुटि की मात्रा समान है, लेकिन आईआरटी इसे अलग-अलग करने की अनुमति देता है।<ref>{{cite journal |last1=Kolen |first1=Michael J. |last2=Zeng |first2=Lingjia |last3=Hanson |first3=Bradley A. |title=आईआरटी का उपयोग करके स्केल स्कोर के लिए माप की सशर्त मानक त्रुटियां|journal=Journal of Educational Measurement |volume=33 |issue=2 |pages=129–140 |date=June 1996 |doi=10.1111/j.1745-3984.1996.tb00485.x }}</ref>
सीटीटी और आईआरटी के मध्य महत्वपूर्ण अंतर माप त्रुटि का उपचार है, जिसे [[माप की मानक त्रुटि]] द्वारा अनुक्रमित किया जाता है। सभी परीक्षण, प्रश्नावली और अन्वेषक त्रुटिहीन उपकरण नहीं हैं; हम कभी भी किसी व्यक्ति के वास्तविक स्कोर को ज्ञात नहीं कर सकते, अपितु केवल देखे गए स्कोर का अनुमान लगा सकते हैं। इस प्रकार कुछ मात्रा में यादृच्छिक त्रुटि होती है जो देखे गए स्कोर को वास्तविक स्कोर से अधिक या कम कर सकती है। सीटीटी मानता है कि प्रत्येक परीक्षार्थी के लिए त्रुटि की मात्रा समान होती है, किन्तु आईआरटी इसे पृथक करने की अनुमति प्रदान करता है।<ref>{{cite journal |last1=Kolen |first1=Michael J. |last2=Zeng |first2=Lingjia |last3=Hanson |first3=Bradley A. |title=आईआरटी का उपयोग करके स्केल स्कोर के लिए माप की सशर्त मानक त्रुटियां|journal=Journal of Educational Measurement |volume=33 |issue=2 |pages=129–140 |date=June 1996 |doi=10.1111/j.1745-3984.1996.tb00485.x }}</ref>
इसके अलावा, आईआरटी के बारे में कुछ भी मानव विकास या सुधार का खंडन नहीं करता है या यह मानता है कि गुण स्तर निश्चित है। एक व्यक्ति कौशल, ज्ञान या यहां तक ​​कि तथाकथित परीक्षण लेने के कौशल सीख सकता है जो उच्च वास्तविक-स्कोर में तब्दील हो सकता है। वास्तव में, आईआरटी अनुसंधान का एक हिस्सा विशेषता स्तर में परिवर्तन के मापन पर केंद्रित है।<ref>Hall, L.A., & McDonald, J.L. (2000). ''[http://eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED441789&ERICExtSearch_SearchType_0=no&accno=ED441789 Measuring Change in Teachers' Perceptions of the Impact that Staff Development Has on Teaching.]'' Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24–28, 2000).</ref>


इसके अतिरिक्त, आईआरटी के संबंध में कुछ भी मानव विकास या संशोधन का खंडन नहीं करता है अथवा यह मानता है कि गुण स्तर निश्चित है। व्यक्ति कौशल, ज्ञान या यहां तक ​​कि तथाकथित "परीक्षा लेने का कौशल" भी सीख सकता है, जो उच्च वास्तविक-स्कोर में परिवर्तित हो सकता है। वास्तव में, आईआरटी अनुसंधान का अंश विशेषता स्तर में परिवर्तन के मापन पर केंद्रित है।<ref>Hall, L.A., & McDonald, J.L. (2000). ''[http://eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED441789&ERICExtSearch_SearchType_0=no&accno=ED441789 Measuring Change in Teachers' Perceptions of the Impact that Staff Development Has on Teaching.]'' Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24–28, 2000).</ref>


==शास्त्रीय और आइटम प्रतिक्रिया सिद्धांतों की तुलना==
== शास्त्रीय और आइटम प्रतिक्रिया सिद्धांतों की उपमा ==
शास्त्रीय परीक्षण सिद्धांत (सीटीटी) और आईआरटी काफी हद तक समान समस्याओं से संबंधित हैं, लेकिन सिद्धांत के अलग-अलग निकाय हैं और अलग-अलग तरीकों की आवश्यकता है। हालाँकि दोनों प्रतिमान आम तौर पर सुसंगत और पूरक हैं, फिर भी कई बिंदुओं में अंतर है:
शास्त्रीय परीक्षण सिद्धांत (सीटीटी) और आईआरटी समान समस्याओं से संबंधित हैं, किन्तु सिद्धांत के भिन्न-भिन्न समूह होते हैं और इसे भिन्न-भिन्न विधियों की आवश्यकता होती है। यद्यपि दोनों प्रतिमान सामान्यतः सुसंगत और पूरक हैं, इसके पश्चात भी इनके कई बिंदुओं में अंतर होता है:


*आईआरटी सीटीटी की तुलना में अधिक मजबूत धारणाएं बनाता है और कई मामलों में तदनुसार मजबूत निष्कर्ष प्रदान करता है; प्राथमिक रूप से, त्रुटि के लक्षण। बेशक, ये परिणाम तभी मान्य होते हैं जब आईआरटी मॉडल की धारणाएं वास्तव में पूरी होती हैं।
*आईआरटी सीटीटी की अपेक्षा में अधिक प्रबल धारणाएं बनाता है और कई स्थितियों में प्राथमिक रूप से त्रुटि के लक्षण वर्णन के अनुरूप उचित निष्कर्ष प्रदान करता है। निःसंदेह, ये परिणाम तभी मान्य होते हैं जब आईआरटी मॉडल की धारणाएं वास्तव में पूर्ण होती हैं।
*हालांकि सीटीटी परिणामों ने महत्वपूर्ण व्यावहारिक परिणामों की अनुमति दी है, आईआरटी की मॉडल-आधारित प्रकृति अनुरूप सीटीटी निष्कर्षों पर कई फायदे प्रदान करती है।
*यद्यपि सीटीटी परिणामों ने महत्वपूर्ण व्यावहारिक परिणामों की अनुमति प्रदान की है तथा आईआरटी की मॉडल-आधारित प्रकृति अनुरूप सीटीटी निष्कर्षों पर कई लाभ प्रदान करती है।
*सीटीटी परीक्षण स्कोरिंग प्रक्रियाओं का लाभ यह है कि गणना करना (और समझाना) आसान है, जबकि आईआरटी स्कोरिंग के लिए आम तौर पर अपेक्षाकृत जटिल अनुमान प्रक्रियाओं की आवश्यकता होती है।
*सीटीटी परीक्षण स्कोरिंग प्रक्रियाओं का लाभ यह है कि गणना करना (और अध्ययन करना) सरल होता है, यद्यपि आईआरटी स्कोरिंग के लिए सामान्यतः अपेक्षाकृत समष्टि अनुमान प्रक्रियाओं की आवश्यकता होती है।
*आईआरटी वस्तुओं और लोगों को स्केल करने में कई सुधार प्रदान करता है। विशिष्टताएं आईआरटी मॉडल पर निर्भर करती हैं, लेकिन अधिकांश मॉडल वस्तुओं की कठिनाई और लोगों की क्षमता को एक ही मीट्रिक पर मापते हैं। इस प्रकार किसी वस्तु की कठिनाई और व्यक्ति की क्षमता की सार्थक तुलना की जा सकती है।
*आईआरटी वस्तुओं और व्यक्तियों को स्केल करने में कई संशोधन प्रदान करता है। विशिष्टताएं आईआरटी मॉडल पर निर्भर करती हैं, किन्तु अधिकांश मॉडल वस्तुओं की कठिनाई और व्यक्तियों की क्षमता को ही मीट्रिक पर मापते हैं। इस प्रकार किसी वस्तु की कठिनाई और व्यक्ति की क्षमता की सार्थक उपमा की जा सकती है।
*आईआरटी द्वारा प्रदान किया गया एक और सुधार यह है कि आईआरटी मॉडल के पैरामीटर आम तौर पर नमूना- या परीक्षण-निर्भर नहीं होते हैं जबकि ट्रू-स्कोर को एक विशिष्ट परीक्षण के संदर्भ में सीटीटी में परिभाषित किया जाता है। इस प्रकार आईआरटी उन स्थितियों में काफी अधिक लचीलापन प्रदान करता है जहां विभिन्न नमूनों या परीक्षण रूपों का उपयोग किया जाता है। ये आईआरटी निष्कर्ष कम्प्यूटरीकृत अनुकूली परीक्षण के लिए मूलभूत हैं।
*आईआरटी द्वारा प्रदान किया गया और संशोधन यह है कि आईआरटी मॉडल के पैरामीटर सामान्यतः प्रारूप- या परीक्षण पर निर्भर नहीं होते हैं यद्यपि ट्रू-स्कोर को विशिष्ट परीक्षण के संदर्भ में सीटीटी में परिभाषित किया जाता है। इस प्रकार आईआरटी उन स्थितियों में अधिक नम्यता प्रदान करता है जहां विभिन्न प्रारूपों या परीक्षण रूपों का उपयोग किया जाता है। ये आईआरटी निष्कर्ष कम्प्यूटरीकृत अनुकूली परीक्षण के लिए मूलभूत हैं।


सीटीटी और आईआरटी के बीच कुछ विशिष्ट समानताओं का उल्लेख करना भी उचित है जो अवधारणाओं के बीच पत्राचार को समझने में मदद करते हैं। सबसे पहले, भगवान<ref>Lord, F.M. (1980). ''Applications of item response theory to practical testing problems''. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.</ref> इस धारणा के तहत दिखाया गया है कि <math>\theta</math> सामान्य रूप से वितरित किया जाता है, 2PL मॉडल में भेदभाव लगभग [[बिंदु-द्विक्रमिक सहसंबंध गुणांक]] का एक [[मोनोटोनिक फ़ंक्शन]] है। विशेष रूप से:
सीटीटी और आईआरटी के मध्य कुछ विशिष्ट समानताओं का उल्लेख करना भी उचित है जो अवधारणाओं के मध्य सामंजस्य का अध्ययन करने में सहायता करते हैं। सर्वप्रथम, लार्ड<ref>Lord, F.M. (1980). ''Applications of item response theory to practical testing problems''. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.</ref> ने दर्शाया कि इस धारणा के अंतर्गत <math>\theta</math> सामान्य रूप से वितरित किया जाता है, 2PL मॉडल में विभेदन लगभग [[बिंदु-द्विक्रमिक सहसंबंध गुणांक|बिंदु-द्विक्रमिक सहसंबंध]] का [[मोनोटोनिक फ़ंक्शन]] है। विशेष रूप से:


:<math>
:<math>
a_i \cong \frac{\rho_{it}}{\sqrt{1-\rho_{it}^2}}
a_i \cong \frac{\rho_{it}}{\sqrt{1-\rho_{it}^2}}
</math>
</math>
कहाँ <math>\rho_{it}</math> आइटम i का बिंदु द्विक्रमिक सहसंबंध है। इस प्रकार, यदि धारणा सही है, तो जहां अधिक भेदभाव है वहां आम तौर पर उच्च बिंदु-द्विक्रमिक सहसंबंध होगा।
जहाँ <math>\rho_{it}</math> आइटम i का बिंदु द्विक्रमिक सहसंबंध है। इस प्रकार, यदि धारणा उचित है, तो जहां अधिक विभेदन है वहां सामान्यतः उच्च बिंदु-द्विक्रमिक सहसंबंध होगा।


एक और समानता यह है कि जबकि आईआरटी प्रत्येक अनुमान और एक सूचना फ़ंक्शन की एक मानक त्रुटि प्रदान करता है, समग्र रूप से परीक्षण के लिए एक सूचकांक प्राप्त करना भी संभव है जो सीधे क्रोनबैक के अल्फा के अनुरूप है, जिसे पृथक्करण सूचकांक कहा जाता है। ऐसा करने के लिए, किसी आईआरटी अनुमान को सही स्थान और त्रुटि में विघटित करना शुरू करना आवश्यक है, जो किसी देखे गए स्कोर के वास्तविक स्कोर और सीटीटी में त्रुटि के अपघटन के समान है। होने देना
अन्य समानता यह है कि यद्यपि आईआरटी प्रत्येक अनुमान और सूचना फ़ंक्शन की मानक त्रुटि प्रदान करता है, समग्र रूप से परीक्षण के लिए सूचकांक प्राप्त करना भी संभव है जो प्रत्यक्ष क्रोनबैक के अल्फा के अनुरूप है, जिसे पृथक्करण सूचकांक कहा जाता है। ऐसा करने के लिए, किसी आईआरटी अनुमान को उचित स्थान और त्रुटि में विघटन प्रारम्भ करना आवश्यक है, जो किसी देखे गए स्कोर के वास्तविक स्कोर और सीटीटी में त्रुटि के अपघटन के समान है। मान लीजिए


:<math>\hat{\theta} = \theta + \epsilon</math>
:<math>\hat{\theta} = \theta + \epsilon</math>
कहाँ <math>\theta</math> सही स्थान है, और <math>\epsilon</math> एक अनुमान के साथ त्रुटि संबद्धता है। तब <math>\mbox{SE}({\theta})</math> के मानक विचलन का एक अनुमान है <math>\epsilon</math> किसी दिए गए भारित स्कोर वाले व्यक्ति के लिए और पृथक्करण सूचकांक निम्नानुसार प्राप्त किया जाता है
जहाँ <math>\theta</math> उचित स्थान है, और <math>\epsilon</math> अनुमान के साथ त्रुटि संबद्धता है। तब <math>\mbox{SE}({\theta})</math> के मानक विचलन का अनुमान <math>\epsilon</math> है किसी दिए गए वेटेड स्कोर वाले व्यक्ति के लिए और पृथक्करण सूचकांक निम्नानुसार प्राप्त किया जाता है-


:<math>
:<math>
R_\theta = \frac{\text{var}[\theta]}{\text{var}[\hat{\theta}]} = \frac{\text{var} [\hat{\theta}] - \text{var}[\epsilon]}{\text{var}[\hat{\theta}]}
R_\theta = \frac{\text{var}[\theta]}{\text{var}[\hat{\theta}]} = \frac{\text{var} [\hat{\theta}] - \text{var}[\epsilon]}{\text{var}[\hat{\theta}]}
</math>
</math>
जहां व्यक्ति अनुमान की माध्य वर्ग मानक त्रुटि त्रुटियों के विचरण का अनुमान देती है, <math>\epsilon_n</math>, व्यक्तियों के पार। मानक त्रुटियाँ आम तौर पर अनुमान प्रक्रिया के उप-उत्पाद के रूप में उत्पन्न होती हैं। पृथक्करण सूचकांक आमतौर पर क्रोनबैक के अल्फा के मूल्य के बहुत करीब है।<ref>{{cite journal |last=Andrich |first=D. |title=An index of person separation in latent trait theory, the traditional KR.20 index, and the Guttman scale response pattern |journal=Education Research and Perspectives |volume=9 |pages=95–104 |year=1982 }}</ref>
जहां व्यक्ति अनुमान की माध्य वर्ग मानक त्रुटि व्यक्तियों के मध्य त्रुटियों <math>\epsilon_n</math> के विचरण का अनुमान देती है। मानक त्रुटियाँ सामान्यतः अनुमान प्रक्रिया के उपोत्पाद के रूप में उत्पन्न होती हैं। पृथक्करण सूचकांक सामान्यतः क्रोनबैक के अल्फा के मान के अत्यंत निकट है।<ref>{{cite journal |last=Andrich |first=D. |title=An index of person separation in latent trait theory, the traditional KR.20 index, and the Guttman scale response pattern |journal=Education Research and Perspectives |volume=9 |pages=95–104 |year=1982 }}</ref>
आईआरटी को कभी-कभी मजबूत सच्चा स्कोर सिद्धांत या आधुनिक मानसिक परीक्षण सिद्धांत कहा जाता है क्योंकि यह सिद्धांत का नवीनतम निकाय है और सीटीटी के भीतर निहित परिकल्पनाओं को और अधिक स्पष्ट करता है।
 
आईआरटी को कभी-कभी स्ट्रांग ट्रू स्कोर सिद्धांत अथवा आधुनिक मानसिक परीक्षण सिद्धांत कहा जाता है क्योंकि यह सिद्धांत का नवीनतम समूह है और सीटीटी के अंदर निहित परिकल्पनाओं को और अधिक स्पष्ट करता है।


==यह भी देखें==
==यह भी देखें==
Line 175: Line 175:
|-
|-
|
|
*[[Classical test theory]]
*[[Classical test theory|शास्त्रीय परीक्षण सिद्धांत]]
*[[Concept inventory]]
*[[Concept inventory|संकल्पना सारिणी]]
*[[Differential item functioning]]
*[[Differential item functioning|डिफरेंशियल आइटम फंक्शनिंग]]
*[[Generalizability theory]]
*[[Generalizability theory|सामान्यीकरण सिद्धांत]]
*[[Person-fit analysis]]
*[[Person-fit analysis|व्यक्ति-फिट विश्लेषण]]
|
|
*[[Psychometrics]]
*[[Psychometrics|साइकोमेट्रिक्स]]
*[[Scale (social sciences)]]
*[[Scale (social sciences)|स्केल (सामाजिक विज्ञान)]]
*[[Standardized test]]
*[[Standardized test|मानकीकृत परीक्षण]]
*[[Stata]]
*[[Stata|स्टाटा]]
|}
|}


 
== संदर्भ ==
==संदर्भ==
{{Reflist|30em}}
{{Reflist|30em}}




==अग्रिम पठन==
==अग्रिम पठन==
Many books have been written that address item response theory or contain IRT or IRT-like models. This is a partial list, focusing on texts that provide more depth.
Many books have been written that address item response theory or contain IRT or IRT-like models. This is a partial list, focusing on texts that provide more depth.


*Lord, F.M. (1980). ''Applications of item response theory to practical testing problems.'' Mahwah, NJ: Erlbaum.
*Lord, F.M. (1980). ''Applications of item response theory to practical testing problems.'' Mahwah, NJ: Erlbaum.
: This book summaries much of Lord's IRT work, including chapters on the relationship between IRT and classical methods, fundamentals of IRT, estimation, and several advanced topics. Its estimation chapter is now dated in that it primarily discusses joint maximum likelihood method rather than the [[marginal maximum likelihood]] method implemented by Darrell Bock and his colleagues.
: This book summaries much of Lord's IRT work, including chapters on the relationship between IRT and classical methods, fundamentals of IRT, estimation, and several advanced topics. Its estimation chapter is now dated in that it primarily discusses joint maximum likelihood method rather than the [[marginal maximum likelihood]] method implemented by Darrell Bock and his colleagues.
*{{cite book |first1=Susan E. |last1=Embretson |first2=Steven P. |last2=Reise |title=Item Response Theory for Psychologists |url=https://books.google.com/books?id=rYU7rsi53gQC |year=2000 |publisher=Psychology Press |isbn=978-0-8058-2819-1}}
*{{cite book |first1=Susan E. |last1=Embretson |first2=Steven P. |last2=Reise |title=Item Response Theory for Psychologists |url=https://books.google.com/books?id=rYU7rsi53gQC |year=2000 |publisher=Psychology Press |isbn=978-0-8058-2819-1}}
: This book is an accessible introduction to IRT, aimed, as the title says, at psychologists.
: This book is an accessible introduction to IRT, aimed, as the title says, at psychologists.
Line 202: Line 201:
: This introductory book is by one of the pioneers in the field, and is available online at [http://edres.org/irt/baker/]
: This introductory book is by one of the pioneers in the field, and is available online at [http://edres.org/irt/baker/]
*{{cite book |first1=Frank B. |last1=Baker |first2=Seock-Ho |last2=Kim |title=Item Response Theory: Parameter Estimation Techniques |edition=2nd |url=https://archive.org/details/itemresponsetheo0000bake |url-access=registration |year=2004 |publisher=Marcel Dekker |isbn=978-0-8247-5825-7}}
*{{cite book |first1=Frank B. |last1=Baker |first2=Seock-Ho |last2=Kim |title=Item Response Theory: Parameter Estimation Techniques |edition=2nd |url=https://archive.org/details/itemresponsetheo0000bake |url-access=registration |year=2004 |publisher=Marcel Dekker |isbn=978-0-8247-5825-7}}
: This book describes various item response theory models and furnishes detailed explanations of algorithms that can be used to estimate the item and ability parameters. Portions of the book are available online as limited preview at [[Google Books]].
: This book describes various item response theory models and furnishes detailed explanations of algorithms that can be used to estimate the item and ability parameters. Portions of the book are available online as limited preview at [[Google Books]].
*{{cite book |editor1-first=Wim J. |editor1-last=van der Linden |editor2-first=Ronald K. |editor2-last=Hambleton |title=Handbook of Modern Item Response Theory |url=https://books.google.com/books?id=aytUuwl4ku0C |year=1996 |publisher=Springer |isbn=978-0-387-94661-0}}
*{{cite book |editor1-first=Wim J. |editor1-last=van der Linden |editor2-first=Ronald K. |editor2-last=Hambleton |title=Handbook of Modern Item Response Theory |url=https://books.google.com/books?id=aytUuwl4ku0C |year=1996 |publisher=Springer |isbn=978-0-387-94661-0}}
: This book provides a comprehensive overview regarding various popular IRT models. It is well suited for persons who already have gained basic understanding of IRT.
: This book provides a comprehensive overview regarding various popular IRT models. It is well suited for persons who already have gained basic understanding of IRT.
Line 231: Line 230:


{{Authority control}}
{{Authority control}}
[[Category: साइकोमेट्रिक्स]] [[Category: अव्यक्त चर मॉडल]] [[Category: आकलन की तुलना]] [[Category: सांख्यिकीय विश्वसनीयता]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/08/2023]]
[[Category:Created On 08/08/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अव्यक्त चर मॉडल]]
[[Category:आकलन की तुलना]]
[[Category:सांख्यिकीय विश्वसनीयता]]
[[Category:साइकोमेट्रिक्स]]

Latest revision as of 09:36, 22 August 2023

साइकोमेट्रिक्स में, आइटम रिस्पांस थ्योरी (आईआरटी) (इसे अव्यक्त गुण सिद्धांत, स्ट्रांग ट्रू स्कोर सिद्धांत अथवा आधुनिक मानसिक परीक्षण सिद्धांत के रूप में भी जाना जाता है) क्षमताओं, दृष्टिकोण अथवा अन्य चर को मापने वाले परीक्षणों, प्रश्नावली और इसी प्रकार के उपकरणों के डिजाइन, विश्लेषण और स्कोरिंग के लिए प्रतिमान है। यह परीक्षण आइटम पर व्यक्तियों के प्रदर्शन और उस आइटम को मापने के लिए डिज़ाइन की गई क्षमता के समग्र माप पर परीक्षणकर्ताओं के प्रदर्शन के स्तर के मध्य संबंधों पर आधारित परीक्षण का सिद्धांत है। आइटम और परीक्षार्थी दोनों की विशेषताओं का प्रतिनिधित्व करने के लिए कई भिन्न-भिन्न सांख्यिकीय मॉडलों का उपयोग किया जाता है।[1] स्केल बनाने और प्रश्नावली प्रतिक्रियाओं का मूल्यांकन करने के लिए सरल विकल्पों के विपरीत, यह नहीं माना जाता है कि प्रत्येक आइटम समान रूप से कठिन है। उदाहरण के लिए, यह आईआरटी को लिकर्ट स्केलिंग से पृथक करता है, जिसमें सभी वस्तुओं को एक-दूसरे की प्रतिकृति माना जाता है अथवा अन्य शब्दों में वस्तुओं को समानांतर उपकरण माना जाता है।[2] इसके विपरीत, आइटम प्रतिक्रिया सिद्धांत प्रत्येक आइटम (आइटम विशेषता वक्र, अथवा आईसीसी) की बाधा को स्केलिंग आइटम में सम्मिलित की जाने वाली सूचना के रूप में मानता है।

यह डेटा के परीक्षण के लिए संबंधित गणितीय मॉडल के अनुप्रयोग पर आधारित होता है। क्योंकि इसे अधिकांशतः शास्त्रीय परीक्षण सिद्धांत से श्रेष्ठ माना जाता है,[3] संयुक्त राज्य अमेरिका में स्केल विकसित करने के लिए यह रुचिकर विधि है, विशेष रूप से जब तथाकथित हाई-स्टेक परीक्षणों में इष्टतम निर्णयों का आग्रह किया जाता है, जिसमें ग्रेजुएट रिकॉर्ड परीक्षा (जीआरई) और ग्रेजुएट मैनेजमेंट एडमिशन टेस्ट (जीमैट) सम्मिलित हैं।

आइटम प्रतिक्रिया सिद्धांत का नाम शास्त्रीय परीक्षण सिद्धांत के परीक्षण-स्तरीय फोकस के विपरीत आइटम पर सिद्धांत के फोकस के कारण है। इस प्रकार आईआरटी परीक्षण में प्रत्येक आइटम के लिए दी गई क्षमता के प्रत्येक परीक्षार्थी की प्रतिक्रिया को मॉडल करता है। आइटम शब्द सामान्य है, जिसमें सभी प्रकार की सूचनात्मक वस्तुएं सम्मिलित हैं। ये बहुविकल्पीय प्रश्न हो सकते हैं जिनमें उचित एवं अनुचित उत्तर होते हैं, किन्तु सामान्यतः प्रश्नावली पर कथन भी होते हैं जो उत्तरदाताओं को सहमति के स्तर (रेटिंग अथवा लाइकेर्ट स्केल), या रोगी के लक्षणों को उपस्थित/अनुपस्थित, या समष्टि प्रणालियों में नैदानिक ​​​​सूचना के रूप में दर्शाने की अनुमति प्रदान करते हैं।

आईआरटी इस विचार पर आधारित है कि किसी आइटम के लिए उचित/कुंजीबद्ध प्रतिक्रिया की प्रायिकता व्यक्ति और आइटम पैरामीटर्स का गणितीय फलन होता है। (व्यक्ति और वस्तु पैरामीटर के गणितीय फलन की अभिव्यक्ति लेविन के समीकरण, B = f(P, E) के अनुरूप है, जिसका आशय है कि व्यवहार उनके वातावरण में व्यक्ति का कार्य है।) व्यक्ति पैरामीटर को (सामान्यतः) अव्यक्त गुण या आयाम के रूप में माना जाता है। उदाहरणों में सामान्य बुद्धि या दृष्टिकोण का बल सम्मिलित है। जिन पैरामीटरों पर वस्तुओं की विशेषता होती है उनमें उनकी कठिनाई सम्मिलित होती है (जिसे कठिनाई सीमा पर उनके स्थान के रूप में जाना जाता है); विभेदन (स्लोप या सहसंबंध) यह दर्शाता है कि व्यक्तियों की सफलता की दर उनकी क्षमता के साथ भिन्न होती है; और सूडोगेस्सिंग पैरामीटर, (निचले) स्पर्शोन्मुख को चिह्नित करता है जिस पर अनुमान लगाने के कारण सबसे कम सक्षम व्यक्ति भी स्कोर कर सकते हैं (उदाहरण के लिए, यह चार संभावित प्रतिक्रियाओं के साथ बहुविकल्पीय आइटम पर शुद्ध विकल्प के लिए 25% होता है)।

उसी प्रकार, आईआरटी का उपयोग ऑनलाइन सोशल नेटवर्क में मानव व्यवहार का परिमाण प्राप्त करने के लिए किया जा सकता है। विभिन्न व्यक्तियों द्वारा व्यक्त किए गए विचारों को एकत्रित करके तथा आईआरटी का उपयोग करके इसका अध्ययन किया जा सकता है। सूचना को अनुचित सूचना अथवा सत्य सूचना के रूप में वर्गीकृत करने में इसके उपयोग का भी मूल्यांकन किया गया है।

अवलोकन

आइटम प्रतिक्रिया फ़ंक्शन की अवधारणा 1950 से पूर्व की थी। सिद्धांत के रूप में आईआरटी का अग्रणी कार्य 1950 और 1960 के दशक के समय हुआ था। तीन अन्वेषकों में शैक्षिक परीक्षण सेवा के मनोचिकित्सक फ्रेडरिक एम. लॉर्ड,[4] डेनिश गणितज्ञ जॉर्ज रश और ऑस्ट्रियाई समाजशास्त्री पॉल लाज़र्सफ़ेल्ड थे, जिन्होंने स्वतंत्र रूप से समानांतर अनुसंधान किया था। आईआरटी की प्रगति को अग्र विस्तारित करने वाले प्रमुख व्यक्तियों में बेंजामिन ड्रेक राइट और डेविड एंड्रीच सम्मिलित हैं। 1970 और 1980 के दशक के अंत तक आईआरटी का व्यापक रूप से उपयोग नहीं किया गया था, इस प्रकार चिकित्सकों को आईआरटी की उपयोगिता और लाभ बताए गए थे, और पर्सनल कंप्यूटर ने कई शोधकर्ताओं को आईआरटी के लिए आवश्यक कंप्यूटिंग पावर का एक्सेस भी प्रदान किया था।

अन्य तथ्यों के अतिरिक्त, आईआरटी का उद्देश्य यह मूल्यांकन करने के लिए रूपरेखा प्रदान करना है कि मूल्यांकन कितना उचित रूप से कार्य करता है, और मूल्यांकन पर विशिष्ट आइटम उचित रूप से कार्य करते हैं। आईआरटी का सबसे सामान्य अनुप्रयोग शिक्षा के क्षेत्र में है, जहां मनोचिकित्सक इसका उपयोग परीक्षाओं (छात्र मूल्यांकन) को विकसित करने, डिजाइन करने, परीक्षाओं के लिए वस्तुओं के बैंक मेन्टेन करने और परीक्षाओं के क्रमिक संस्करणों (उदाहरण के लिए, समय के साथ परिणामों के मध्य अपेक्षा की अनुमति देने के लिए) तथा वस्तुओं की बाधाओं को समान करने के लिए करते हैं।[5]

आईआरटी मॉडल को अधिकांशतः अव्यक्त विशेषता मॉडल के रूप में जाना जाता है। अव्यक्त शब्द का उपयोग इस तथ्य को महत्त्व देने के लिए किया जाता है कि भिन्न-भिन्न आइटम प्रतिक्रियाओं को परिकल्पित लक्षणों, निर्माणों अथवा विशेषताओं की अवलोकन योग्य अभिव्यक्तियों के रूप में लिया जाता है, जिन्हें प्रत्यक्ष रूप से देखा नहीं जा सकता है, किन्तु जिनका अनुमान प्रकट प्रतिक्रियाओं से लगाया जाता है। अव्यक्त विशेषता मॉडल समाजशास्त्र के क्षेत्र में विकसित किए गए थे, किन्तु वे वस्तुतः आईआरटी मॉडल के समान हैं।

आईआरटी का आशय सामान्यतः क्लासिकल टेस्ट सिद्धांत (सीटीटी) पर संशोधन के रूप में किया जाता है। आईआरटी सामान्यतः उन कार्यों के लिए अधिक नम्यता लाता है जिन्हें सीटीटी का उपयोग करके पूर्ण किया जा सकता है और इसके लिए अधिक परिष्कृत सूचना भी प्रदान करता है। कम्प्यूटरीकृत-अनुकूली परीक्षण जैसे कुछ अनुप्रयोग, आईआरटी द्वारा सक्षम होते हैं, जिन्हें केवल क्लासिकल टेस्ट सिद्धांत का उपयोग करके उचित रूप से निष्पादित नहीं किया जा सकता है। सीटीटी के सादृश्य में आईआरटी का अन्य लाभ यह है कि आईआरटी द्वारा प्रदान की जाने वाली अधिक परिष्कृत सूचना शोधकर्ता को शैक्षिक मूल्यांकन की विश्वसनीयता (साइकोमेट्रिक) में संशोधन करने की अनुमति प्रदान करती है।

आईआरटी में तीन धारणाएँ सम्मिलित हैं:

  1. एकआयामी लक्षण जिसे द्वारा दर्शाया जाता है;
  2. वस्तुओं की स्थानीय स्वतंत्रता;
  3. किसी आइटम पर किसी व्यक्ति की प्रतिक्रिया को गणितीय आइटम प्रतिक्रिया फ़ंक्शन (आईआरएफ) द्वारा मॉडल किया जा सकता है।

विशेषता को स्केल पर मापने योग्य माना जाता है (परीक्षण का अस्तित्व इसे मानता है), जिसे सामान्यतः 0.0 के माध्य और 1.0 के मानक विचलन के साथ मानक स्केल पर सेट किया जाता है। एकआयामीता की व्याख्या एकरूपता के रूप में की जानी चाहिए, ऐसा गुण जिसे किसी दिए गए उद्देश्य या उपयोग के संबंध में परिभाषित या अनुभवजन्य रूप से प्रदर्शित किया जाना चाहिए, किन्तु ऐसी मात्रा नहीं होनी चाहिए जिसे मापा जा सके। 'स्थानीय स्वतंत्रता' का अर्थ है (ए) आइटम के उपयोग की संभावना किसी अन्य आइटम का उपयोग करने से संबंधित नहीं होती है और (बी) किसी आइटम पर प्रतिक्रिया प्रत्येक परीक्षार्थी का स्वतंत्र निर्णय होता है, अर्थात, इसमें कोई छल अथवा समूह कार्य नहीं होता है। आयामीता के विषय का परीक्षण अधिकांशतः कारक विश्लेषण के साथ किया जाता है, यद्यपि आईआरएफ आईआरटी का मूल निर्माण खंड है तथा अधिकांश अनुसंधान और साहित्य का केंद्र भी है।

आइटम प्रतिक्रिया फ़ंक्शन

आईआरएफ यह संभावना देता है कि किसी दिए गए योग्यता स्तर वाला व्यक्ति ही उचित उत्तर देगा। कम क्षमता वाले व्यक्तियों के निकट कम अवसर होते हैं, यद्यपि उच्च क्षमता वाले व्यक्तियों के उचित उत्तर देने की संभावना अत्यधिक होती है; उदाहरण के लिए, उच्च गणित क्षमता वाले छात्रों को गणित का कोई आइटम उचित प्राप्त होने की अधिक संभावना होती है। प्रायिकता का त्रुटिहीन मान, क्षमता के अतिरिक्त, आईआरएफ के लिए आइटम पैरामीटर्स के सेट पर निर्भर करता है।

तीन पैरामीटर लॉजिस्टिक मॉडल

अंगूठा

उदाहरण के लिए, तीन पैरामीटर लॉजिस्टिक मॉडल (3PL) में, बहुविकल्पीय प्रश्न वाले द्विभाजित आइटम i के लिए उचित प्रतिक्रिया की संभावना है:

जहाँ यह दर्शाता है कि आइटम पैरामीटर का अनुमान लगाने के उद्देश्य से व्यक्ति की क्षमताओं को सामान्य वितरण से प्रतिरूप के रूप में प्रस्तुत किया गया है। आइटम पैरामीटर का अनुमान लगाए जाने के पश्चात, रिपोर्टिंग उद्देश्यों के लिए व्यक्तिगत व्यक्तियों की क्षमताओं का अनुमान लगाया जाता है। , , और आइटम पैरामीटर हैं। आइटम पैरामीटर आईआरएफ का आकार निर्धारित करते हैं। चित्र 1 आदर्श 3PL आईसीसी को दर्शाता है।

आइटम पैरामीटर की व्याख्या मानक लॉजिस्टिक फलन के आकार को परिवर्तित करने के रूप में की जा सकती है:

संक्षेप में, पैरामीटरों की व्याख्या इस प्रकार की जाती है (स्पष्टता के लिए सबस्क्रिप्ट को त्याग देना); b सबसे मूल है, इसलिए इसे प्रथम सूचीबद्ध किया गया है:

  • b - कठिनाई, आइटम स्थान: (न्यूनतम) और 1 (अधिकतम) के मध्य का अर्ध बिंदु भी जहां स्लोप अधिकतम है।
  • a - विभेदन, स्केल, स्लोप: अधिकतम स्लोप
  • c - सूडो-गेस्सिंग, अवसर, स्पर्शोन्मुख न्यूनतम

यदि तो ये और तक सरल हो जाते हैं, जिसका अर्थ है कि b 50% सफलता स्तर (कठिनाई) के समान है, और a (चार से विभाजित) अधिकतम स्लोप (विभेदन) है, जो 50% सफलता स्तर पर होता है। इसके अतिरिक्त, उचित प्रतिक्रिया का लॉगिट (लॉग ऑड्स) है, ( मानते हुए): विशेष रूप से यदि क्षमता θ कठिनाई b के समान है, तो उचित उत्तर के लिए सम संभावनाएं (1:1, इसलिए लॉगिट 0) होती हैं, जितनी अधिक क्षमता कठिनाई से ऊपर (या नीचे) होगी, उचित प्रतिक्रिया की संभावना उतनी ही अधिक (या कम) होगी, और विभेदन के साथ यह निर्धारित होता है कि क्षमता के साथ संभावनाओं में कितनी तीव्रता से वृद्धि अथवा कमी होती हैं।

अन्य शब्दों में, मानक लॉजिस्टिक फलन में एसिम्प्टोटिक न्यूनतम 0 () होता है, यह 0 (, ) के निकट केंद्रित होता है, और अधिकतम स्लोप होता है। पैरामीटर क्षैतिज स्तर को विस्तारित करता है, पैरामीटर क्षैतिज स्तर को स्थानांतरित करता है, और ऊर्ध्वाधर स्तर को से तक संपीड़ित करता है। इसका विवरण नीचे दिया गया है।

पैरामीटर आइटम स्थान का प्रतिनिधित्व करता है, जिसे प्राप्ति परीक्षण की स्थिति में, आइटम कठिनाई के रूप में जाना जाता है। यह पर वह बिंदु होता है, जहां आईआरएफ का अधिकतम स्लोप होता है, और जहां मान के न्यूनतम मान और 1 के अधिकतम मान के मध्य अर्ध होता है। उदाहरण आइटम मध्यम कठिनाई का है क्योंकि =0.0 है, जो वितरण के केंद्र के निकट है। ध्यान दें कि यह मॉडल आइटम की कठिनाई और व्यक्ति की विशेषता को ही सातत्य पर मापता है। इस प्रकार, किसी वस्तु के संबंध में यह तथ्य वैध है कि वह व्यक्ति A के गुण स्तर के समान कठिन है या किसी व्यक्ति के गुण स्तर के संबंध में वस्तु Y की कठिनाई के समान है, इस अर्थ में कि किसी वस्तु से संयोजित कार्य का सफल प्रदर्शन विशिष्ट क्षमता के स्तर को दर्शाता है।

आइटम पैरामीटर वस्तु के विभेदन का प्रतिनिधित्व करता है: अर्थात्, वह डिग्री जिस तक वस्तु अव्यक्त सातत्य पर विभिन्न क्षेत्रों में व्यक्तियों के मध्य विभेदन करती है। यह पैरामीटर आईआरएफ के स्लोप को दर्शाता है जहां स्लोप अपने अधिकतम पर होता है। उदाहरण आइटम =1.0 है, जो उचित प्रकार से विभेदन करता है; कम क्षमता वाले व्यक्तियों के निकट वास्तव में उच्च क्षमता वाले व्यक्तियों के सादृश्य में उचित उत्तर देने की संभावना कम होती है। यह विभेदन पैरामीटर मानक भारित रैखिक (साधारण न्यूनतम वर्ग, सामान्य न्यूनतम वर्ग) प्रतिगमन में संबंधित आइटम या संकेतक के भार गुणांक से युग्मित होता है और इसलिए अंतर्निहित अव्यक्त अवधारणा के अप्रशिक्षित माप के संकेतकों का भारित सूचकांक बनाने के लिए इसका उपयोग किया जा सकता है।

बहुविकल्पीय आइटम जैसी वस्तुओं के लिए, उचित प्रतिक्रिया की संभावना पर अनुमान लगाने के प्रभावों को ध्यान में रखने के प्रयास में पैरामीटर का उपयोग किया जाता है। यह इस संभावना को दर्शाता है कि कम क्षमता वाले व्यक्तियों को यह आइटम संयोग से उत्तम प्राप्त हो जाएगा, जिसे गणितीय रूप से निम्न अनंतस्पर्शी के रूप में दर्शाया गया है। चार-विकल्प वाले बहुविकल्पी आइटम में उदाहरण आइटम की भाँति आईआरएफ हो सकता है; अत्यंत कम क्षमता वाले प्रत्याशी द्वारा उचित उत्तर का अनुमान लगाने की 1/4 संभावना होती है, इसलिए लगभग 0.25 होगा। यह दृष्टिकोण मानता है कि सभी विकल्प समान रूप से प्रशंसनीय हैं, क्योंकि यदि विकल्प का कोई अर्थ नहीं है, तो सबसे कम क्षमता वाला व्यक्ति भी इसे त्यागने में सक्षम होगा, इसलिए आईआरटी पैरामीटर अनुमान विधियां इसे ध्यान में रखती हैं और देखे गए डेटा के आधार पर का अनुमान लगाती हैं।[6]

आईआरटी मॉडल

सामान्यतः, आईआरटी मॉडल को दो सदस्यों एकआयामी और बहुआयामी में विभाजित किया जा सकता है। एकआयामी मॉडल के लिए एकल गुण (क्षमता) आयाम की आवश्यकता होती है। बहुआयामी आईआरटी मॉडल प्रतिक्रिया डेटा के कई लक्षणों से उत्पन्न होने की परिकल्पना की गई है। यद्यपि, समष्टिता में अत्यधिक वृद्धि के कारण, अधिकांश आईआरटी अनुसंधान और अनुप्रयोग आयामी मॉडल का उपयोग करते हैं।

आईआरटी मॉडल को प्राप्त प्रतिक्रियाओं की संख्या के आधार पर भी वर्गीकृत किया जा सकता है। विशिष्ट बहुविकल्पी वस्तु द्विभाजित होती है; चार या पांच विकल्प होने पर भी, इसे उचित/अनुचित (उचित/अनुचित) के रूप में ही स्कोर किया जाता है। मॉडलों का अन्य वर्ग बहुपद परिणामों पर प्रयुक्त होता है, जहां प्रत्येक प्रतिक्रिया का भिन्न स्कोर मान होता है।[7][8] इस प्रकार इसका सामान्य उदाहरण लिकर्ट स्केल-प्रकार की वस्तुएं हैं, जिनका 1 से 5 के स्केल पर मूल्यांकन किया जा सकता है।

आईआरटी पैरामीटरों की संख्या

द्विभाजित आईआरटी मॉडल का वर्णन उनके द्वारा उपयोग किए जाने वाले पैरामीटरों की संख्या के आधार पर किया जाता है।[9] 3PL का नाम इसलिए रखा गया है क्योंकि यह तीन आइटम पैरामीटर्स को नियोजित करता है। दो-पैरामीटर मॉडल (2PL) मानता है कि डेटा का कोई अनुमान नहीं है, किन्तु आइटम स्थान () और विभेदन () के संदर्भ में भिन्न हो सकते हैं। पैरामीटर मॉडल (1PL) मानता है कि अनुमान लगाना क्षमता का भाग होता है और मॉडल में फिट होने वाली सभी वस्तुओं में समान विभेदन होते हैं, जिससे वस्तुओं को केवल पैरामीटर () द्वारा वर्णित किया जा सकता है। इसके परिणामस्वरूप 1-पैरामीटर मॉडल में विशिष्ट वस्तुनिष्ठता का गुण होता है, जिसका अर्थ है कि आइटम की कठिनाई की रैंक क्षमता से स्वतंत्र सभी उत्तरदाताओं के लिए समान होती है, और व्यक्ति की क्षमता की रैंक कठिनाई से स्वतंत्र रूप से आइटम के लिए समान होती है। इस प्रकार, 1-पैरामीटर मॉडल का प्रारूप स्वतंत्र हैं, उस गुण से जो दो-पैरामीटर और तीन-पैरामीटर मॉडल के लिए मान्य नहीं है। इसके अतिरिक्त, सैद्धांतिक रूप से चार-पैरामीटर मॉडल (4PL) होते है, जिसमें ऊपरी अनंतस्पर्शी होते है, जिसे द्वारा दर्शाया गया है जहाँ 3PL में को द्वारा प्रतिस्थापित किया गया है। यद्यपि, इसका उपयोग कम किया जाता है। ध्यान दें कि आइटम पैरामीटर का वर्णमाला क्रम उनके व्यावहारिक या साइकोमेट्रिक महत्व से युग्मित नहीं होता है; स्थान/कठिनाई () पैरामीटर स्पष्ट रूप से सबसे महत्वपूर्ण होता है क्योंकि यह तीनों मॉडलों में सम्मिलित है। 1PL केवल का उपयोग करता है, 2PL और का उपयोग करता है, 3PL, जोड़ता है, और 4PL, जोड़ता है।

2PL, के साथ 3PL मॉडल के समतुल्य है, और उन वस्तुओं के परीक्षण के लिए उपयुक्त है जहां उचित उत्तर का अनुमान लगाना पूणर्तः असंभव होता है, जैसे कि रिक्त आइटम को फिल करना (121 का वर्गमूल क्या है?), अथवा जहां अनुमान लगाने की अवधारणा प्रयुक्त नहीं होती है, जिसमें व्यक्तित्व, दृष्टिकोण, अथवा रुचिकर आइटम (उदाहरण के लिए, मुझे ब्रॉडवे संगीत में रूचि है। सहमत/असहमत) आदि सम्मिलित हैं।

1PL न केवल यह मानता है कि अनुमान लगाना उपस्थित नहीं है (अथवा अप्रासंगिक), अपितु यह भी मानता है कि सभी आइटम सभी वस्तुओं के लिए समान लोडिंग के साथ सामान्य कारक विश्लेषण के अनुरूप विभेदन के संदर्भ में समान होते हैं। विशिष्ट वस्तुओं या व्यक्तियों में द्वितीयक कारक हो सकते हैं किन्तु इन्हें परस्पर स्वतंत्र और सामूहिक रूप से ऑर्थोगोनल माना जाता है।

लॉजिस्टिक और सामान्य आईआरटी मॉडल

वैकल्पिक सूत्रीकरण सामान्य संभाव्यता वितरण के आधार पर आईआरएफ का निर्माण करता है; इन्हें कभी-कभी सामान्य ऑगिव (सांख्यिकी) मॉडल कहा जाता है। उदाहरण के लिए, दो-पैरामीटर सामान्य-ओगिव आईआरएफ का सूत्र है:

जहां Φ मानक सामान्य वितरण का संचयी वितरण फलन (सीडीएफ) है।

सामान्य-ऑगिव मॉडल सामान्य रूप से वितरित माप त्रुटि की धारणा से प्राप्त होता है और उस आधार पर यह सैद्धांतिक रूप से आकर्षक है। यहाँ पुनः, कठिनाई पैरामीटर है। विभेदन पैरामीटर है, जो आइटम i के लिए माप त्रुटि का मानक विचलन है, और 1/ के समतुल्य है।

वस्तुओं के मध्य टेट्राकोरिक सहसंबंधों के आव्यूह का कारक-विश्लेषण करके कोई सामान्य-ऑगिव अव्यक्त विशेषता मॉडल का अनुमान लगा सकता है।[10] इसका तात्पर्य यह है कि सामान्य प्रयोजन सांख्यिकीय सॉफ्टवेयर का उपयोग करके सरल आईआरटी मॉडल का अनुमान लगाना प्रौद्योगिकी रूप से संभव है।

क्षमता पैरामीटर के पुनर्स्केलिंग के साथ, 2PL लॉजिस्टिक मॉडल को संचयी सामान्य ऑगिव के निकट लाना संभव है।[11] सामान्यतः, 2PL लॉजिस्टिक और सामान्य-ऑगिव आईआरएफ की संभावना फलन की सीमा में 0.01 से अधिक नहीं होती है। यद्यपि, अंतर वितरण टेल्स में सबसे बड़ा है, जिसका परिणामों पर अधिक प्रभाव होता है।

अव्यक्त विशेषता/आईआरटी मॉडल मूल रूप से सामान्य ऑगिव का उपयोग करके विकसित किया गया था, किन्तु उस समय (1960 के दशक) कंप्यूटरों के लिए इसे कम्प्यूटेशनल रूप से अधिक डिमांड वाला माना जाता था। लॉजिस्टिक मॉडल को सरल विकल्प के रूप में प्रस्तावित किया गया था, और तब से इसका व्यापक उपयोग हुआ है। यद्यपि, कुछ वर्ष पूर्व, यह प्रदर्शित किया गया कि, सामान्य सीडीएफ के लिए मानक बहुपद सन्निकटन का उपयोग करते हुए,[12] सामान्य-ऑगिव मॉडल लॉजिस्टिक मॉडल की अपेक्षा में कम्प्यूटेशनल रूप से अधिक डिमांड वाला नहीं है।[13]

रैश मॉडल

रैश मॉडल को अधिकांशतः 1PL आईआरटी मॉडल माना जाता है। यद्यपि, रैश मॉडलिंग के समर्थक इसे डेटा और सिद्धांत के मध्य संबंधों की अवधारणा के लिए पूर्ण रूप से भिन्न दृष्टिकोण के रूप में देखना स्वीकार करते हैं।[14] अन्य सांख्यिकीय मॉडलिंग दृष्टिकोणों की भाँति, आईआरटी प्रेक्षित डेटा के लिए मॉडल के फिट होने की प्रधानता पर ध्यान देता है,[15] यद्यपि रैश मॉडल मूल माप के लिए आवश्यकताओं की प्रधानता पर ध्यान देता है, पर्याप्त डेटा-मॉडल फिट महत्वपूर्ण किन्तु माध्यमिक आवश्यकता है जिसे किसी परीक्षण या अनुसंधान उपकरण से पूर्व पूर्ण किया जाना चाहिए जिससे किसी विशेषता को मापने का आशय किया जा सके।[16] ऑपरेशनल रूप से, इसका अर्थ यह है कि आईआरटी दृष्टिकोण में डेटा में देखे गए पैटर्न को प्रतिबिंबित करने के लिए अतिरिक्त मॉडल पैरामीटर सम्मिलित हैं (उदाहरण के लिए, वस्तुओं को अव्यक्त विशेषता के साथ उनके सहसंबंध में भिन्नता की अनुमति देना), यद्यपि रैश दृष्टिकोण में, अव्यक्त विशेषता की उपस्थिति के संबंध में आशय केवल तभी वैध माना जा सकता है जब दोनों (ए) डेटा रैश मॉडल में फिट होते हैं, और (बी) परीक्षण आइटम और परीक्षार्थी मॉडल के अनुरूप होते हैं। इसलिए, रैश मॉडल के अंतर्गत, मिसफिटिंग प्रतिक्रियाओं के लिए मिसफिट के कारण के निदान की आवश्यकता होती है, और यदि कोई पर्याप्त रूप से यह समझा सकता है कि वे अव्यक्त विशेषता को संबोधित क्यों नहीं करते हैं, तो उन्हें डेटा सेट से बाहर रखा जा सकता है।[17] इस प्रकार, रैश दृष्टिकोण को पुष्टिकरण दृष्टिकोण के रूप में देखा जा सकता है, जो शोधपूर्ण दृष्टिकोण के विपरीत है और देखे गए डेटा को मॉडल करने का प्रयास करता है।

गेस्सिंग अथवा सूडो-चांस पैरामीटर की उपस्थिति या अनुपस्थिति प्रमुख और कभी-कभी विवादास्पद विशिष्टता होती है। आईआरटी दृष्टिकोण में बहुविकल्पीय परीक्षाओं में अनुमान लगाने के लिए बायाँ स्पर्शोन्मुख पैरामीटर सम्मिलित होता है, यद्यपि रैश मॉडल में ऐसा नहीं है क्योंकि यह माना जाता है कि अनुमान लगाने से डेटा में यादृच्छिक रूप से वितरित नॉइज़ संयोजित हो जाती है। यद्यपि नॉइज़ को यादृच्छिक रूप से वितरित किया जाता है, तथा यह माना जाता है कि, पर्याप्त वस्तुओं का परीक्षण किया जाए, रॉ स्कोर द्वारा अव्यक्त विशेषता के साथ व्यक्तियों का रैंक-क्रम परिवर्तित नहीं होता है, अपितु बस रैखिक पुनर्मूल्यांकन करना होता है। इसके विपरीत, तीन-पैरामीटर आईआरटी विशिष्ट निष्पक्षता का त्याग करने के मूल्य पर, डेटा को फिट करने वाले मॉडल का चयन करके डेटा-मॉडल फिट प्राप्त करता है।[18]

व्यवहार में, आईआरटी दृष्टिकोण की अपेक्षा में रैश मॉडल के कम से कम दो प्रमुख लाभ हैं। प्रथम लाभ रैश की विशिष्ट आवश्यकताओं की प्रधानता है,[19] जो (प्राप्त होने पर) मूल व्यक्ति-मुक्त माप प्रदान करता है (जहां व्यक्तियों और वस्तुओं को ही अपरिवर्तनीय स्तर पर मैप किया जा सकता है)।[20] रैश दृष्टिकोण का अन्य लाभ यह है कि पर्याप्त तथ्यांकों की उपस्थिति के कारण रैश मॉडल में पैरामीटर्स का अनुमान अधिक सरल होता है, जिसका अर्थ इस एप्लिकेशन में रैश अनुमानों के लिए रॉ नंबर-उचित स्कोर मैपिंग है।[21]

मॉडल फिट का विश्लेषण

गणितीय मॉडल के किसी भी उपयोग की भाँति, मॉडल में डेटा के फिट होने का आकलन करना महत्वपूर्ण होता है। यदि किसी मॉडल के साथ आइटम मिसफिट का निदान निकृष्ट आइटम गुणवत्ता के कारण किया जाता है, उदाहरण के लिए बहुविकल्पीय परीक्षण में भ्रमित करने वाले आइटम को उस परीक्षण फॉर्म से विस्थापित कर दिया जा सकता है और भविष्य के परीक्षण फॉर्म में पुनः अंकित अथवा प्रतिस्थापित किया जा सकता है। यद्यपि, मिसफिटिंग का कोई स्पष्ट कारण नहीं होने पर बड़ी संख्या में मिसफिटिंग आइटम होते हैं, तो परीक्षण की निर्माण वैधता पर पुनर्विचार करने की आवश्यकता होगी और परीक्षण विनिर्देशों को पुनः अंकित करने की आवश्यकता हो सकती है। इस प्रकार, मिसफ़िट परीक्षण डेवलपर्स के लिए अमूल्य नैदानिक ​​उपकरण प्रदान करता है, जिससे उन परिकल्पनाओं को डेटा के विरुद्ध अनुभवजन्य रूप से परीक्षण करने की अनुमति प्राप्त होती है जिन पर परीक्षण विनिर्देश आधारित होते हैं।

फिट का आकलन करने के लिए कई विधियाँ होती हैं, जिसमें ची-स्क्वायर सांख्यिकीय, या इसका मानकीकृत संस्करण सम्मिलित है। दो और तीन-पैरामीटर आईआरटी मॉडल श्रेष्ठ डेटा-मॉडल फिट सुनिश्चित करते हुए आइटम विभेदन को समायोजित करते हैं, इसलिए फिट सांख्यिकीय में 1-पैरामीटर मॉडल में पाए जाने वाले पुष्टिकरण निदान मान का अभाव होता है, जहां आदर्श मॉडल पहले से निर्दिष्ट होता है।

डेटा को मॉडल के अनुपयुक्त होने के आधार पर विस्थापित नहीं किया जाना चाहिए, अपितु इसलिए कि अनुपयुक्त होने के स्थिर प्रासंगिक कारण का निदान किया गया है, जैसे कि अंग्रेजी का विदेशी वक्ता अंग्रेजी में लिखित विज्ञान परीक्षा दे रहा है। इस प्रकार के प्रार्थी के संबंध में आर्गूमेंट दिया जा सकता है कि वह परीक्षण की आयामता के आधार पर व्यक्तियों की समान जनसँख्या से संबंधित नहीं है, और, यद्यपि पैरामीटर आईआरटी उपायों को प्रारूप-स्वतंत्र होने का आर्गूमेंट दिया जाता है, वे जनसँख्या से स्वतंत्र नहीं हैं, इसलिए यह अनुपयुक्त है तथा इसका निर्माण प्रासंगिक है और परीक्षण या मॉडल को अमान्य नहीं करता है। उपकरण सत्यापन में ऐसा दृष्टिकोण आवश्यक उपकरण है। दो और तीन-पैरामीटर मॉडलों में, जहां साइकोमेट्रिक मॉडल को डेटा में फिट करने के लिए समायोजित किया जाता है, परीक्षण के भविष्य के प्रशासन को उस परिकल्पना की पुष्टि करने के लिए प्रारंभिक सत्यापन में उपयोग किए गए उसी मॉडल में फिट होने के लिए इसका परीक्षण किया जाना चाहिए जो प्रत्येक प्रशासन के स्कोर को अन्य प्रशासन के लिए सामान्यीकृत करता है। यदि डेटा-मॉडल फिट प्राप्त करने के लिए प्रत्येक प्रशासन को भिन्न मॉडल निर्दिष्ट किया गया है, तो भिन्न अव्यक्त विशेषता को मापा जा सकता है और परीक्षण स्कोर को प्रशासनों के मध्य सादृश्य होने का आर्गूमेंट नहीं दिया जा सकता है।

इनफार्मेशन

आइटम रिस्पांस थ्योरी का प्रमुख योगदान विश्वसनीयता (सांख्यिकी) की अवधारणा का विस्तार है। परंपरागत रूप से, विश्वसनीयता माप की त्रुटिहीनता को संदर्भित करती है (अर्थात, वह डिग्री जिस तक माप त्रुटि मुक्त है)। परंपरागत रूप से, इसे विभिन्न विधियों द्वारा परिभाषित एकल सूचकांक का उपयोग करके मापा जाता है, जैसे उचित और देखे गए स्कोर भिन्नता का अनुपात मापा जाता है। यह सूचकांक किसी परीक्षण की औसत विश्वसनीयता जैसे दो परीक्षणों की उपमा को दर्शाने में सहायक है। किन्तु आईआरटी यह स्पष्ट करता है कि परीक्षण स्कोर की संपूर्ण श्रृंखला में त्रुटिहीनता समान नहीं होती है। उदाहरण के लिए, परीक्षण की सीमा के कोरों पर प्राप्त अंकों में सामान्यतः सीमा के मध्य के निकट के अंकों की उपमा में अधिक त्रुटियाँ संयोजित होती हैं।

आइटम प्रतिक्रिया सिद्धांत विश्वसनीयता को परिवर्तित करने के लिए आइटम और परीक्षण सूचना की अवधारणा को अग्र विस्तारित करता है। इनफार्मेशन भी मॉडल पैरामीटर्स का फंक्शन है। उदाहरण के लिए, फिशर सूचना सिद्धांत के अनुसार, द्विभाजित प्रतिक्रिया डेटा के लिए 1PL की स्थिति में प्रदान की गई आइटम सूचना केवल उचित प्रतिक्रिया की संभावना को अनुचित प्रतिक्रिया की संभावना से गुणा करती है, या,

अनुमान की मानक त्रुटि (एसई) किसी दिए गए विशेषता स्तर पर परीक्षण सूचना की पारस्परिक है,

इस प्रकार अधिक सूचना से माप में कम त्रुटि का बोध होता है।

अन्य मॉडलों के लिए, जैसे कि दो और तीन पैरामीटर मॉडल, विभेदन पैरामीटर फ़ंक्शन में महत्वपूर्ण भूमिका निभाता है। दो पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है-

तीन पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है-

[22]

सामान्यतः, आइटम सूचना फ़ंक्शन बेल के आकार के दिखते हैं। अत्यधिक विभेदकारी वस्तुओं में बड़े, संकीर्ण इनफार्मेशन फंक्शन होते हैं; जो सीमित सीमा में अधिक योगदान देते हैं। कम विभेदकारी आइटम व्यापक सीमा में कम सूचना प्रदान करते हैं।

आइटम सूचना के प्लॉट का उपयोग यह देखने के लिए किया जा सकता है कि कोई आइटम कितनी सूचना का योगदान देता है और स्केल स्कोर सीमा के किस भाग में योगदान देता है। स्थानीय स्वतंत्रता के कारण, आइटम सूचना फ़ंक्शन योगात्मक मानचित्र होते हैं। इस प्रकार, परीक्षण सूचना फ़ंक्शन केवल परीक्षा में आइटमों के इनफार्मेशन फंक्शन का योग है। बड़े आइटम बैंक के साथ इस गुण का उपयोग करके, माप त्रुटि को अधिक त्रुटिहीन रूप से नियंत्रित करने के लिए परीक्षण सूचना फंक्शन्स को आकार दिया जा सकता है।

परीक्षण स्कोर की त्रुटिहीनता की विशेषता संभवतः साइकोमेट्रिक सिद्धांत में केंद्रीय अभिप्राय है और आईआरटी और सीटीटी के मध्य मुख्य अंतर है। आईआरटी के निष्कर्षों से ज्ञात होता है कि विश्वसनीयता की सीटीटी अवधारणा सरलीकरण है। विश्वसनीयता के स्थान पर, आईआरटी परीक्षण सूचना फ़ंक्शन प्रदान करता है जो थीटा, θ के विभिन्न मानों पर त्रुटिहीनता की डिग्री दर्शाता है।

ये परिणाम मनोचिकित्सकों को (संभावित रूप से) सावधानीपूर्वक चयनित वस्तुओं को सम्मिलित करके क्षमता की विभिन्न श्रेणियों के लिए विश्वसनीयता के स्तर को सावधानीपूर्वक आकार देने की अनुमति प्रदान करते हैं। उदाहरण के लिए, प्रमाणीकरण स्थिति में जहां परीक्षा केवल उत्तीर्ण या असफल हो सकती है, जहां केवल कटस्कोर होता है, और जहां वास्तविक उत्तीर्ण स्कोर महत्वहीन होता है, केवल उन वस्तुओं का चयन करके अधिक कुशल परीक्षण विकसित किया जा सकता है जिनके निकट कटस्कोर की उच्च सूचना होती है। आइटम सामान्यतः उन आइटमों से युग्मित होते हैं जिनकी बाधा कटस्कोर के समान ही होती है।

स्कोरिंग

व्यक्ति पैरामीटर व्यक्ति के अव्यक्त गुण के परिमाण को दर्शाता है, जो परीक्षण द्वारा मापी गई मानवीय क्षमता अथवा विशेषता होती है।[23] यह संज्ञानात्मक क्षमता, शारीरिक क्षमता, कौशल, ज्ञान, दृष्टिकोण, व्यक्तित्व विशेषता आदि हो सकती है।

व्यक्ति पैरामीटर का अनुमान - आईआरटी के साथ परीक्षण पर "स्कोर" की गणना और व्याख्या संख्या अथवा उचित प्रतिशत जैसे पारंपरिक स्कोर की अपेक्षा भिन्न प्रकार से की जाती है। व्यक्ति का कुल संख्या-उचित स्कोर वास्तविक स्कोर नहीं होता है, अपितु यह आईआरएफ पर आधारित होता है, जिससे मॉडल में आइटम विभेदन पैरामीटर सम्मिलित होने पर वेटेड स्कोर प्राप्त होता है। यह वास्तव में संभावना फ़ंक्शन प्राप्त करने के लिए प्रत्येक आइटम के लिए आइटम प्रतिक्रिया फ़ंक्शन को गुणा करके प्राप्त किया जाता है, जिसका उच्चतम बिंदु θ की अधिकतम संभावना अनुमान होता है। इस उच्चतम बिंदु का अनुमान सामान्यतः न्यूटन-रैपसन पद्धति का उपयोग करके आईआरटी सॉफ्टवेयर द्वारा लगाया जाता है।[24] यद्यपि आईआरटी के साथ स्कोरिंग अधिक परिष्कृत है, अधिकांश परीक्षणों के लिए, थीटा अनुमान और पारंपरिक स्कोर के मध्य संबंध अधिक है; अधिकांशतः यह 0.95 या इससे अधिक होता है। पारंपरिक स्कोर के सादृश्य में आईआरटी स्कोर का ग्राफ ऑगिव आकार को दर्शाता है जिसका अर्थ है कि यह आईआरटी मध्य के सादृश्य में सीमा की सीमाओं पर भिन्न-भिन्न व्यक्तियों का अनुमान लगाता है।

सीटीटी और आईआरटी के मध्य महत्वपूर्ण अंतर माप त्रुटि का उपचार है, जिसे माप की मानक त्रुटि द्वारा अनुक्रमित किया जाता है। सभी परीक्षण, प्रश्नावली और अन्वेषक त्रुटिहीन उपकरण नहीं हैं; हम कभी भी किसी व्यक्ति के वास्तविक स्कोर को ज्ञात नहीं कर सकते, अपितु केवल देखे गए स्कोर का अनुमान लगा सकते हैं। इस प्रकार कुछ मात्रा में यादृच्छिक त्रुटि होती है जो देखे गए स्कोर को वास्तविक स्कोर से अधिक या कम कर सकती है। सीटीटी मानता है कि प्रत्येक परीक्षार्थी के लिए त्रुटि की मात्रा समान होती है, किन्तु आईआरटी इसे पृथक करने की अनुमति प्रदान करता है।[25]

इसके अतिरिक्त, आईआरटी के संबंध में कुछ भी मानव विकास या संशोधन का खंडन नहीं करता है अथवा यह मानता है कि गुण स्तर निश्चित है। व्यक्ति कौशल, ज्ञान या यहां तक ​​कि तथाकथित "परीक्षा लेने का कौशल" भी सीख सकता है, जो उच्च वास्तविक-स्कोर में परिवर्तित हो सकता है। वास्तव में, आईआरटी अनुसंधान का अंश विशेषता स्तर में परिवर्तन के मापन पर केंद्रित है।[26]

शास्त्रीय और आइटम प्रतिक्रिया सिद्धांतों की उपमा

शास्त्रीय परीक्षण सिद्धांत (सीटीटी) और आईआरटी समान समस्याओं से संबंधित हैं, किन्तु सिद्धांत के भिन्न-भिन्न समूह होते हैं और इसे भिन्न-भिन्न विधियों की आवश्यकता होती है। यद्यपि दोनों प्रतिमान सामान्यतः सुसंगत और पूरक हैं, इसके पश्चात भी इनके कई बिंदुओं में अंतर होता है:

  • आईआरटी सीटीटी की अपेक्षा में अधिक प्रबल धारणाएं बनाता है और कई स्थितियों में प्राथमिक रूप से त्रुटि के लक्षण वर्णन के अनुरूप उचित निष्कर्ष प्रदान करता है। निःसंदेह, ये परिणाम तभी मान्य होते हैं जब आईआरटी मॉडल की धारणाएं वास्तव में पूर्ण होती हैं।
  • यद्यपि सीटीटी परिणामों ने महत्वपूर्ण व्यावहारिक परिणामों की अनुमति प्रदान की है तथा आईआरटी की मॉडल-आधारित प्रकृति अनुरूप सीटीटी निष्कर्षों पर कई लाभ प्रदान करती है।
  • सीटीटी परीक्षण स्कोरिंग प्रक्रियाओं का लाभ यह है कि गणना करना (और अध्ययन करना) सरल होता है, यद्यपि आईआरटी स्कोरिंग के लिए सामान्यतः अपेक्षाकृत समष्टि अनुमान प्रक्रियाओं की आवश्यकता होती है।
  • आईआरटी वस्तुओं और व्यक्तियों को स्केल करने में कई संशोधन प्रदान करता है। विशिष्टताएं आईआरटी मॉडल पर निर्भर करती हैं, किन्तु अधिकांश मॉडल वस्तुओं की कठिनाई और व्यक्तियों की क्षमता को ही मीट्रिक पर मापते हैं। इस प्रकार किसी वस्तु की कठिनाई और व्यक्ति की क्षमता की सार्थक उपमा की जा सकती है।
  • आईआरटी द्वारा प्रदान किया गया और संशोधन यह है कि आईआरटी मॉडल के पैरामीटर सामान्यतः प्रारूप- या परीक्षण पर निर्भर नहीं होते हैं यद्यपि ट्रू-स्कोर को विशिष्ट परीक्षण के संदर्भ में सीटीटी में परिभाषित किया जाता है। इस प्रकार आईआरटी उन स्थितियों में अधिक नम्यता प्रदान करता है जहां विभिन्न प्रारूपों या परीक्षण रूपों का उपयोग किया जाता है। ये आईआरटी निष्कर्ष कम्प्यूटरीकृत अनुकूली परीक्षण के लिए मूलभूत हैं।

सीटीटी और आईआरटी के मध्य कुछ विशिष्ट समानताओं का उल्लेख करना भी उचित है जो अवधारणाओं के मध्य सामंजस्य का अध्ययन करने में सहायता करते हैं। सर्वप्रथम, लार्ड[27] ने दर्शाया कि इस धारणा के अंतर्गत सामान्य रूप से वितरित किया जाता है, 2PL मॉडल में विभेदन लगभग बिंदु-द्विक्रमिक सहसंबंध का मोनोटोनिक फ़ंक्शन है। विशेष रूप से:

जहाँ आइटम i का बिंदु द्विक्रमिक सहसंबंध है। इस प्रकार, यदि धारणा उचित है, तो जहां अधिक विभेदन है वहां सामान्यतः उच्च बिंदु-द्विक्रमिक सहसंबंध होगा।

अन्य समानता यह है कि यद्यपि आईआरटी प्रत्येक अनुमान और सूचना फ़ंक्शन की मानक त्रुटि प्रदान करता है, समग्र रूप से परीक्षण के लिए सूचकांक प्राप्त करना भी संभव है जो प्रत्यक्ष क्रोनबैक के अल्फा के अनुरूप है, जिसे पृथक्करण सूचकांक कहा जाता है। ऐसा करने के लिए, किसी आईआरटी अनुमान को उचित स्थान और त्रुटि में विघटन प्रारम्भ करना आवश्यक है, जो किसी देखे गए स्कोर के वास्तविक स्कोर और सीटीटी में त्रुटि के अपघटन के समान है। मान लीजिए

जहाँ उचित स्थान है, और अनुमान के साथ त्रुटि संबद्धता है। तब के मानक विचलन का अनुमान है किसी दिए गए वेटेड स्कोर वाले व्यक्ति के लिए और पृथक्करण सूचकांक निम्नानुसार प्राप्त किया जाता है-

जहां व्यक्ति अनुमान की माध्य वर्ग मानक त्रुटि व्यक्तियों के मध्य त्रुटियों के विचरण का अनुमान देती है। मानक त्रुटियाँ सामान्यतः अनुमान प्रक्रिया के उपोत्पाद के रूप में उत्पन्न होती हैं। पृथक्करण सूचकांक सामान्यतः क्रोनबैक के अल्फा के मान के अत्यंत निकट है।[28]

आईआरटी को कभी-कभी स्ट्रांग ट्रू स्कोर सिद्धांत अथवा आधुनिक मानसिक परीक्षण सिद्धांत कहा जाता है क्योंकि यह सिद्धांत का नवीनतम समूह है और सीटीटी के अंदर निहित परिकल्पनाओं को और अधिक स्पष्ट करता है।

यह भी देखें

संदर्भ

  1. "महत्वपूर्ण मूल्यांकन और मापन शर्तों की शब्दावली". National Council on Measurement in Education. Archived from the original on 2017-07-22.
  2. A. van Alphen, R. Halfens, A. Hasman and T. Imbos. (1994). Likert or Rasch? Nothing is more applicable than good theory. Journal of Advanced Nursing. 20, 196-201
  3. Embretson, Susan E.; Reise, Steven P. (2000). मनोवैज्ञानिकों के लिए आइटम रिस्पांस थ्योरी. Psychology Press. ISBN 9780805828191.
  4. ETS Research Overview
  5. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: Sage Press.
  6. Bock, R.D.; Aitkin, M. (1981). "Marginal maximum likelihood estimation of item parameters: application of an EM algorithm". Psychometrika. 46 (4): 443–459. doi:10.1007/BF02293801. S2CID 122123206.
  7. Ostini, Remo; Nering, Michael L. (2005). पॉलीटोमस आइटम रिस्पांस थ्योरी मॉडल. Quantitative Applications in the Social Sciences. Vol. 144. SAGE. ISBN 978-0-7619-3068-6.
  8. Nering, Michael L.; Ostini, Remo, eds. (2010). पॉलीटोमस आइटम प्रतिक्रिया सिद्धांत मॉडल की हैंडबुक. Taylor & Francis. ISBN 978-0-8058-5992-8.
  9. Thissen, D. & Orlando, M. (2001). Item response theory for items scored in two categories. In D. Thissen & Wainer, H. (Eds.), Test Scoring (pp. 73–140). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  10. K. G. Jöreskog and D. Sörbom(1988). PRELIS 1 user's manual, version 1. Chicago: Scientific Software, Inc.
  11. Camilli, Gregory (1994). "Origin of the Scaling Constant d = 1.7 in Item Response Theory". Journal of Educational and Behavioral Statistics. 19 (3): 293–295. doi:10.3102/10769986019003293. S2CID 122401679.
  12. Abramowitz M., Stegun I.A. (1972). Handbook of Mathematical Functions. Washington DC: U. S. Government Printing Office.
  13. Uebersax, J.S. (December 1999). "Probit latent class analysis with dichotomous or ordered category measures: conditional independence/dependence models". Applied Psychological Measurement. 23 (4): 283–297. doi:10.1177/01466219922031400. S2CID 120497324.
  14. Andrich, D (1989), Distinctions between assumptions and requirements in measurement in the Social sciences", in Keats, J.A, Taft, R., Heath, R.A, Lovibond, S (Eds), Mathematical and Theoretical Systems, Elsevier Science Publishers, North Holland, Amsterdam, pp.7-16.
  15. Steinberg, J. (2000). Frederic Lord, Who Devised Testing Yardstick, Dies at 87. New York Times, February 10, 2000
  16. Andrich, D. (January 2004). "Controversy and the Rasch model: a characteristic of incompatible paradigms?". Medical Care. 42 (1): I–7. doi:10.1097/01.mlr.0000103528.48582.7c. PMID 14707751. S2CID 23087904.
  17. Smith, R.M. (1990). "फिट का सिद्धांत और अभ्यास". Rasch Measurement Transactions. 3 (4): 78.
  18. Zwick, R.; Thayer, D.T.; Wingersky, M. (December 1995). "कंप्यूटर-अनुकूली परीक्षणों में क्षमता और डीआईएफ अनुमान पर रश अंशांकन का प्रभाव". Journal of Educational Measurement. 32 (4): 341–363. doi:10.1111/j.1745-3984.1995.tb00471.x.
  19. Rasch, G. (1960/1980). Probabilistic models for some intelligence and attainment tests. (Copenhagen, Danish Institute for Educational Research), expanded edition (1980) with foreword and afterword by B.D. Wright. Chicago: The University of Chicago Press.
  20. Wright, B.D. (1992). "IRT in the 1990s: Which Models Work Best?". Rasch Measurement Transactions. 6 (1): 196–200.
  21. Fischer, G.H. & Molenaar, I.W. (1995). Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer.
  22. de Ayala, R.J. (2009). The Theory and Practice of Item Response Theory, New York, NY: The Guilford Press. (6.12), p.144
  23. Lazarsfeld P.F, & Henry N.W. (1968). Latent Structure Analysis. Boston: Houghton Mifflin.
  24. Thompson, N.A. (2009). "आईआरटी के साथ क्षमता का आकलन" (PDF).
  25. Kolen, Michael J.; Zeng, Lingjia; Hanson, Bradley A. (June 1996). "आईआरटी का उपयोग करके स्केल स्कोर के लिए माप की सशर्त मानक त्रुटियां". Journal of Educational Measurement. 33 (2): 129–140. doi:10.1111/j.1745-3984.1996.tb00485.x.
  26. Hall, L.A., & McDonald, J.L. (2000). Measuring Change in Teachers' Perceptions of the Impact that Staff Development Has on Teaching. Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24–28, 2000).
  27. Lord, F.M. (1980). Applications of item response theory to practical testing problems. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  28. Andrich, D. (1982). "An index of person separation in latent trait theory, the traditional KR.20 index, and the Guttman scale response pattern". Education Research and Perspectives. 9: 95–104.


अग्रिम पठन

Many books have been written that address item response theory or contain IRT or IRT-like models. This is a partial list, focusing on texts that provide more depth.

  • Lord, F.M. (1980). Applications of item response theory to practical testing problems. Mahwah, NJ: Erlbaum.
This book summaries much of Lord's IRT work, including chapters on the relationship between IRT and classical methods, fundamentals of IRT, estimation, and several advanced topics. Its estimation chapter is now dated in that it primarily discusses joint maximum likelihood method rather than the marginal maximum likelihood method implemented by Darrell Bock and his colleagues.
This book is an accessible introduction to IRT, aimed, as the title says, at psychologists.
  • Baker, Frank (2001). The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park, MD.
This introductory book is by one of the pioneers in the field, and is available online at [1]
This book describes various item response theory models and furnishes detailed explanations of algorithms that can be used to estimate the item and ability parameters. Portions of the book are available online as limited preview at Google Books.
This book provides a comprehensive overview regarding various popular IRT models. It is well suited for persons who already have gained basic understanding of IRT.
This volume shows an integrated introduction to item response models, mainly aimed at practitioners, researchers and graduate students.
This book discusses the Bayesian approach towards item response modeling. The book will be useful for persons (who are familiar with IRT) with an interest in analyzing item response data from a Bayesian perspective.


बाहरी संबंध