प्रकाश चुम्बकत्व: Difference between revisions
m (8 revisions imported from alpha:प्रकाश_चुम्बकत्व) |
No edit summary |
||
Line 22: | Line 22: | ||
*{{cite journal|last1=Han|first1=Jie|last2=Meng|first2=Ji-Ben|title=Progress in synthesis, photochromism and photomagnetism of biindenylidenedione derivatives|journal=Journal of Photochemistry and Photobiology C: Photochemistry Reviews|volume=10|issue=3|year=2009|pages=141–147|issn=1389-5567|doi=10.1016/j.jphotochemrev.2009.10.001}} | *{{cite journal|last1=Han|first1=Jie|last2=Meng|first2=Ji-Ben|title=Progress in synthesis, photochromism and photomagnetism of biindenylidenedione derivatives|journal=Journal of Photochemistry and Photobiology C: Photochemistry Reviews|volume=10|issue=3|year=2009|pages=141–147|issn=1389-5567|doi=10.1016/j.jphotochemrev.2009.10.001}} | ||
{{refend}} | {{refend}} | ||
[[Category:CS1]] | |||
[[Category: | |||
[[Category:Created On 08/08/2023]] | [[Category:Created On 08/08/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with broken file links]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:मैग्नेटो-ऑप्टिक प्रभाव]] | |||
[[Category:लौहचुम्बकत्व]] | |||
[[Category:संघनित पदार्थ भौतिकी]] |
Latest revision as of 15:59, 22 August 2023
प्रकाश चुम्बकत्व ( फ़ोटॉन चुंबकीय प्रभाव) वह प्रभाव है जिसमें कोई वस्तु प्रकाश की प्रतिक्रिया में अपने लौहचुंबकीय गुणों को प्राप्त कर लेती है (और कुछ स्थितियों में खो देती है)। इस परिघटना के लिए धारा मॉडल एक प्रकाश प्रेरित चुंबकन द्वारा इलेक्ट्रॉन स्थानांतरण होता है, जिसमें एक इलेक्ट्रॉन की स्पिन दिशा का प्रत्यावर्तन होता है। इससे स्पिन सांद्रता में वृद्धि होती है, जिससे चुंबकीय परिवर्तन होता है।[1] धारा में प्रभाव बहुत कम तापमान पर (किसी भी महत्वपूर्ण समय के लिए) बना रहता है। किन्तु 5K जैसे तापमान पर, प्रभाव कई दिनों तक बना रह सकता है।[1]
तंत्र
चुम्बकत्व और विचुम्बकीकरण (जहाँ तापीय रूप से विचुम्बकीय नहीं होता) मध्यवर्ती अवस्थाओं के माध्यम से होता है [2] जैसा कि दिखाया गया है (दाएं)। चुंबकीयकरण और विचुंबकीय तरंग दैर्ध्य सिस्टम को मध्यवर्ती अवस्था तक पहुंचने के लिए ऊर्जा प्रदान करते हैं जो फिर गैर-विकिरणात्मक रूप से दो स्थितियों में से एक में शिथिल होती है ((चुंबकीकरण और विचुंबकीकरण के लिए मध्यवर्ती स्थिति अलग-अलग होती है और फोटॉन प्रवाह को शिथिल द्वारा क्षीण नहीं किया जाता है) वही स्थिति जहां से सिस्टम अभी उद्दीप्त होता है)। मूल अवस्था से चुंबकीय अवस्था में सीधा परिवर्तन और, इससे भी महत्वपूर्ण बात, इसके विपरीत, एक निषिद्ध परिवर्तन होता है, और इससे चुंबकीय अवस्था मितस्थायी हो जाती है और कम तापमान पर लंबे समय तक बनी रहती है।
प्रशिया नीला एनालॉग
आणविक फ़ोटॉन चुंबकीय सामग्रियों के सबसे आशाजनक समूहों में से एक Co-Fe प्रशियन नील एनालॉग्स होते हैं (अर्थात समान संरचना और समान रसायन वाले यौगिक प्रशियन नील बनाते हैं।) एनालॉग का रासायनिक सूत्र M1-2xCo1+x[Fe होता है (CN)6]•zH2O जहां x और z चर होते हैं (z शून्य हो सकता है) और M एक क्षार धातु होती है। प्रशियाई नीले एनालॉग्स में एक पृष्ठ केंद्रित घन संरचना होती है।
यह आवश्यक है कि संरचना गैर-स्टोइकोमेट्रिक यौगिक हो।[3] इस स्थितियों में लोहे के अणुओं को पानी द्वारा यादृच्छिक रूप से प्रतिस्थापित किया जाता है (प्रति प्रतिस्थापित लोहे में पानी के 6 अणु) होते है। यह गैर-स्टोइकोमेट्री प्रशिया के नीले एनालॉग्स के प्रकाश चुम्बकत्व के लिए आवश्यक होते है क्योंकि जिन क्षेत्रों में लौह रिक्ति होती है वे गैर-चुंबकीय अवस्था में अधिक स्थिर होते हैं और बिना रिक्ति वाले क्षेत्र चुंबकीय अवस्था में अधिक स्थिर होते हैं। सही आवृत्ति मे रोशनी द्वारा इनमें से एक या दूसरे क्षेत्र को स्थानीय रूप से थोक अवस्था से इसकी अधिक स्थिर स्थिति में बदला जा सकता है, जिससे पूरे अणु का चरण परिवर्तन प्रारंभ हो जाता है। विपरीत चरण परिवर्तन को उपयुक्त आवृत्ति द्वारा अन्य प्रकार के क्षेत्र को ऊर्जित करके पूरा किया जा सकता है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Pejaković, Dušan A.; Manson, Jamie L.; Miller, Joel S.; Epstein, Arthur J. (2000). "अणु-आधारित चुंबक का फोटोप्रेरित चुंबकत्व, गतिशीलता और क्लस्टर ग्लास व्यवहार". Physical Review Letters. 85 (9): 1994–1997. Bibcode:2000PhRvL..85.1994P. doi:10.1103/PhysRevLett.85.1994. ISSN 0031-9007. PMID 10970666.
- ↑ Gütlich, P (2001). "फोटोस्विचेबल समन्वय यौगिक". Coordination Chemistry Reviews. 219–221: 839–879. doi:10.1016/S0010-8545(01)00381-2. ISSN 0010-8545.
- ↑ Kawamoto, Tohru; Asai, Yoshihiro; Abe, Shuji (2001). "अणु-आधारित चुंबकों में फोटोप्रेरित प्रतिवर्ती चरण संक्रमण का नवीन तंत्र". Physical Review Letters. 86 (2): 348–351. arXiv:cond-mat/0006076. Bibcode:2001PhRvL..86..348K. doi:10.1103/PhysRevLett.86.348. ISSN 0031-9007. PMID 11177828. S2CID 24426936.
अग्रिम पठन
- Ohkoshi, Shin-ichi; Tokoro, Hiroko (2012). "Photomagnetism in Cyano-Bridged Bimetal Assemblies". Accounts of Chemical Research. 45 (10): 1749–1758. doi:10.1021/ar300068k. ISSN 0001-4842. PMID 22869535.
- Han, Jie; Meng, Ji-Ben (2009). "Progress in synthesis, photochromism and photomagnetism of biindenylidenedione derivatives". Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 10 (3): 141–147. doi:10.1016/j.jphotochemrev.2009.10.001. ISSN 1389-5567.