वलयी समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Short description|Sheaf of rings in mathematics}}
{{Short description|Sheaf of rings in mathematics}}
गणित में, एक रिंग्ड समष्टि (कम्यूटेटिव) वलय का एक वर्ग है, जो एक टोपोलॉजिकल समष्टि  के विवर्त उपसमुच्चय द्वारा वलय होमोमोर्फिज्म के साथ पैरामीट्रिज्ड होता है जो प्रतिबंधों की भूमिका निभाता है। संक्षेप में यह एक टोपोलॉजिकल समष्टि  है जो वलय के एक समूह से सुसज्जित है जिसे संरचना शीफ कहा जाता है। यह विवर्त उपसमुच्चय पर निरंतर (अदिश-मूल्यवान) फलनों के वलय की अवधारणा का एक अमूर्तन है।
गणित में, एक '''वलयी समष्टि''' (कम्यूटेटिव) वलय का एक वर्ग है, जो एक टोपोलॉजिकल समष्टि  के विवर्त उपसमुच्चय द्वारा वलय होमोमोर्फिज्म के साथ पैरामीट्रिज्ड होता है जो प्रतिबंधों की भूमिका निभाता है। संक्षेप में यह एक टोपोलॉजिकल समष्टि  है जो वलय के एक समूह से सुसज्जित है जिसे संरचना शीफ कहा जाता है। यह विवर्त उपसमुच्चय पर निरंतर (अदिश-मूल्यवान) फलनों के वलय की अवधारणा का एक अमूर्तन है।


चक्राकार समष्टि ों में, विशेष रूप से महत्वपूर्ण और प्रमुख समष्टि ीय रूप से चक्राकार समष्टि है: एक चक्राकार समष्टि जिसमें एक बिंदु पर डंठल और एक बिंदु पर फलनों के रोगाणुओं की वलय के बीच सादृश्य मान्य है।
चक्राकार समष्टि में, विशेष रूप से महत्वपूर्ण और प्रमुख समष्टियों रूप से चक्राकार समष्टि है: एक चक्राकार समष्टि जिसमें एक बिंदु पर डंठल और एक बिंदु पर फलनों के रोगाणुओं की वलय के बीच सादृश्य मान्य है।


चक्राकार रिक्त समष्टि विश्लेषण के साथ-साथ जटिल बीजगणितीय ज्यामिति और बीजगणितीय ज्यामिति के योजना सिद्धांत में भी दिखाई देते हैं।
चक्राकार रिक्त समष्टि विश्लेषण के साथ-साथ सम्मिश्र बीजगणितीय ज्यामिति और बीजगणितीय ज्यामिति के योजना सिद्धांत में भी दिखाई देते हैं।


ध्यान दें: वलय वाले समष्टि की परिभाषा में अधिकांश व्याख्याएं वलय को क्रमविनिमेय वलय तक ही सीमित रखती हैं, जिनमें हार्टशोर्न और विकिपीडिया भी सम्मिलित हैं। दूसरी ओर, एलिमेंट्स डी जियोमेट्री अल्जेब्रिक, क्रमविनिमेयता धारणा को प्रयुक्त नहीं करता है, चूँकि पुस्तक अधिकत्तर क्रमविनिमेय स्थिति पर विचार करती है।<ref>EGA, Ch 0, 4.1.1.</ref>
ध्यान दें: वलय वाले समष्टि की परिभाषा में अधिकांश व्याख्याएं वलय को क्रमविनिमेय वलय तक ही सीमित रखती हैं, जिनमें हार्टशोर्न और विकिपीडिया भी सम्मिलित हैं। दूसरी ओर, एलिमेंट्स डी जियोमेट्री अल्जेब्रिक, क्रमविनिमेयता धारणा को प्रयुक्त नहीं करता है, चूँकि पुस्तक अधिकत्तर क्रमविनिमेय स्थिति पर विचार करती है।<ref>EGA, Ch 0, 4.1.1.</ref>


== परिभाषाएँ ==
== परिभाषाएँ ==
एक चक्राकार समष्टि  <math>(X,\mathcal{O}_X)</math> एक टोपोलॉजिकल समष्टि <math>X</math> है, साथ में <math>X</math> पर वलय का एक समूह <math>\mathcal{O}_X</math> है। शीफ <math>\mathcal{O}_X</math> को <math>X</math> का स्ट्रक्चर शीफ कहा जाता है।
एक चक्राकार समष्टि  <math>(X,\mathcal{O}_X)</math> एक टोपोलॉजिकल समष्टि <math>X</math> है, साथ में <math>X</math> पर वलय का एक समूह <math>\mathcal{O}_X</math> है। शीफ <math>\mathcal{O}_X</math> को <math>X</math> का स्ट्रक्चर शीफ कहा जाता है।


समष्टि ीय रूप से चक्राकार समष्टि  एक चक्राकार समष्टि है इस प्रकार कि <math>\mathcal{O}_X</math> के सभी डंठल समष्टि ीय वलय हैं (अर्थात उनके पास अद्वितीय अधिकतम आदर्श हैं)। ध्यान दें कि यह आवश्यक नहीं है कि<math>\mathcal{O}_X(U)</math> प्रत्येक विवर्त सेट <math>U</math> के लिए एक समष्टि ीय वलय हो; वास्तव में, ऐसा लगभग कभी नहीं होता है।
समष्टियों रूप से चक्राकार समष्टि  एक चक्राकार समष्टि है इस प्रकार कि <math>\mathcal{O}_X</math> के सभी डंठल समष्टियों वलय हैं (अर्थात उनके पास अद्वितीय अधिकतम आदर्श हैं)। ध्यान दें कि यह आवश्यक नहीं है कि<math>\mathcal{O}_X(U)</math> प्रत्येक विवर्त समुच्चय <math>U</math> के लिए एक समष्टियों वलय हो; वास्तव में, ऐसा लगभग कभी नहीं होता है।


==उदाहरण==
==उदाहरण==
एक मनमाना टोपोलॉजिकल समष्टि <math>X</math> को<math>\mathcal{O}_X</math>लेकर समष्टि ीय रूप से वलय वाला समष्टि  माना जा सविवर्त <math>X</math> के विवर्त उपसमुच्चय पर वास्तविक-मूल्यवान (या जटिल-मूल्यवान) निरंतर फलनो का समूह होना। एक बिं <math>x</math> पर डंठल <math>x</math> पर निरंतर फलन करने वाले सभी रोगाणुओं के समुच्चय के रूप में माना जा सकता है; यह अद्वितीय अधिकतम आदर्श वाला एक समष्टि ीय वलय है जिसमें वे रोगाणु सम्मिलित हैं जिनका <math>x</math> पर मान 0 है।
एक मनमाना टोपोलॉजिकल समष्टि <math>X</math> को<math>\mathcal{O}_X</math>लेकर समष्टि रूप से वलय वाला समष्टि  माना जा सविवर्त <math>X</math> के विवर्त उपसमुच्चय पर वास्तविक-मूल्यवान (या सम्मिश्र-मूल्यवान) निरंतर फलनो का समूह होना। एक बिं <math>x</math> पर डंठल <math>x</math> पर निरंतर फलन करने वाले सभी रोगाणुओं के समुच्चय के रूप में माना जा सकता है; यह अद्वितीय अधिकतम आदर्श वाला एक समष्टियों वलय है जिसमें वे रोगाणु सम्मिलित हैं जिनका <math>x</math> पर मान 0 है।


यदि <math>X</math> कुछ अतिरिक्त संरचना के साथ एक मैनिफोल्ड [[विभेदक फलन]], या [[होलोमोर्फिक फलन|होलोमोर्फिक फलन]] या जटिल-विश्लेषणात्मक फलन का शीफ ​​भी ले सकते हैं। ये दोनों समष्टि ीय रूप से चक्रित समष्टि ों को जन्म देते हैं।
यदि <math>X</math> कुछ अतिरिक्त संरचना के साथ एक मैनिफोल्ड [[अवकल फलन]], या [[होलोमोर्फिक फलन|होलोमोर्फिक फलन]] या सम्मिश्र-विश्लेषणात्मक फलन का शीफ ​​भी ले सकते हैं। ये दोनों समष्टियों रूप से चक्रित समष्टियों को जन्म देते हैं।


यदि <math>X</math> एक बीजगणितीय विविधता है जो ज़ारिस्की टोपोलॉजी को ले जाती है, हम ज़ारिस्की-ओपन सेट <math>U</math> पर परिभाषित तर्कसंगत मैपिंग की वलय के रूप में <math>\mathcal{O}_X(U)</math> लेकर समष्टि ीय रूप से वलय किए गए समष्टि  को परिभाषित कर सकते हैं। <math>U</math> के अंदर विस्फोट न हो (अनंत हो जाए)। इस उदाहरण का महत्वपूर्ण सामान्यीकरण किसी भी क्रमविनिमेय वलय के स्पेक्ट्रम का है; ये स्पेक्ट्रा समष्टि ीय रूप से चक्रित समष्टि  भी हैं। योजनाएं समष्टि ीय रूप से वलय किए गए समष्टि हैं जो क्रमविनिमेय वलयो के स्पेक्ट्रा को "एक साथ चिपकाकर" प्राप्त की जाती हैं।
यदि <math>X</math> एक बीजगणितीय विविधता है जो ज़ारिस्की टोपोलॉजी को ले जाती है, हम ज़ारिस्की-ओपन समुच्चय <math>U</math> पर परिभाषित तर्कसंगत मैपिंग की वलय के रूप में <math>\mathcal{O}_X(U)</math> लेकर समष्टियों रूप से वलय किए गए समष्टि  को परिभाषित कर सकते हैं। <math>U</math> के अंदर विस्फोट न हो (अनंत हो जाए)। इस उदाहरण का महत्वपूर्ण सामान्यीकरण किसी भी क्रमविनिमेय वलय के स्पेक्ट्रम का है; ये स्पेक्ट्रा समष्टियों रूप से चक्रित समष्टि  भी हैं। योजनाएं समष्टियों रूप से वलय किए गए समष्टि हैं जो क्रमविनिमेय वलयो के स्पेक्ट्रा को प्राप्त की जाती हैं।


==आकारिकी==
==आकारिकी==
<math>(X,\mathcal{O}_X)</math> से <math>(Y,\mathcal{O}_Y)</math> तक एक रूपवाद एक जोड़ी <math>(f,\varphi)</math> है, जहां <math>f:X\to Y</math> अंतर्निहित टोपोलॉजिकल रिक्त समष्टि  के बीच एक सतत मानचित्र है, और <math>\varphi:\mathcal{O}_Y\to f_*\mathcal{O}_X</math> <math>Y</math> के संरचना शीफ से प्रत्यक्ष तक एक रूपवाद है {{math|''X''}} के संरचना शीफ की छवि। दूसरे शब्दों में, <math>(X,\mathcal{O}_X)</math> से <math>(Y,\mathcal{O}_Y)</math> तक एक रूपवाद निम्नलिखित डेटा द्वारा दिया गया है:
<math>(X,\mathcal{O}_X)</math> से <math>(Y,\mathcal{O}_Y)</math> तक एक रूपवाद एक जोड़ी <math>(f,\varphi)</math> है, जहां <math>f:X\to Y</math> अंतर्निहित टोपोलॉजिकल रिक्त समष्टि  के बीच एक सतत मानचित्र है, और <math>\varphi:\mathcal{O}_Y\to f_*\mathcal{O}_X</math> <math>Y</math> के संरचना शीफ से प्रत्यक्ष तक एक रूपवाद है {{math|''X''}} के संरचना शीफ की छवि है। दूसरे शब्दों में, <math>(X,\mathcal{O}_X)</math> से <math>(Y,\mathcal{O}_Y)</math> तक एक रूपवाद निम्नलिखित डेटा द्वारा दिया गया है:


* एक [[सतत फलन (टोपोलॉजी)]] <math>f:X\to Y</math>
* एक [[सतत फलन (टोपोलॉजी)]] <math>f:X\to Y</math>
* वलय समरूपताओं का एक वर्ग <math>\varphi_V : \mathcal{O}_Y(V)\to\mathcal{O}_X(f^{-1}(V))</math> प्रत्येक विवर्त सेट के लिए <math>V</math> का <math>Y</math> जो प्रतिबंध मानचित्रों के साथ आवागमन करते हैं। अर्थात यदि <math>V_1\subseteq V_2</math> के दो विवर्त उपसमुच्चय हैं <math>Y</math>, तो निम्नलिखित आरेख को [[क्रमविनिमेय आरेख]] होना चाहिए (ऊर्ध्वाधर मानचित्र प्रतिबंध समरूपताएं हैं):
* वलय समरूपताओं का एक वर्ग <math>\varphi_V : \mathcal{O}_Y(V)\to\mathcal{O}_X(f^{-1}(V))</math> प्रत्येक विवर्त समुच्चय के लिए <math>V</math> का <math>Y</math> जो प्रतिबंध मानचित्रों के साथ आवागमन करते हैं। अर्थात यदि <math>V_1\subseteq V_2</math> के दो विवर्त उपसमुच्चय हैं <math>Y</math>, तो निम्नलिखित आरेख को [[क्रमविनिमेय आरेख]] होना चाहिए (ऊर्ध्वाधर मानचित्र प्रतिबंध समरूपताएं हैं):


[[Image:LocallyRingedSpace-01.png|center]]समष्टि ीय रूप से वलय किए गए समष्टि ों के बीच आकारिकी के लिए एक अतिरिक्त आवश्यकता है:
[[Image:LocallyRingedSpace-01.png|center]]समष्टियों रूप से वलय किए गए समष्टियों के बीच आकारिकी के लिए एक अतिरिक्त आवश्यकता है:


*<math>Y</math> के डंठलों और X के डंठलों के बीच <math>\varphi</math> द्वारा प्रेरित वलय समरूपताएं समष्टि ीय समरूपताएं होनी चाहिए, अथार्त प्रत्येक <math>x\in X</math> के लिए <math>f(x)\in Y</math> पर समष्टि ीय वलय (डंठल) का अधिकतम आदर्श <math>x\in X</math> पर समष्टि ीय वलय के अधिकतम आदर्श में मैप किया जाता है।
*<math>Y</math> के डंठलों और X के डंठलों के बीच <math>\varphi</math> द्वारा प्रेरित वलय समरूपताएं समष्टियों समरूपताएं होनी चाहिए, अथार्त प्रत्येक <math>x\in X</math> के लिए <math>f(x)\in Y</math> पर समष्टियों वलय (डंठल) का अधिकतम आदर्श <math>x\in X</math> पर समष्टियों वलय के अधिकतम आदर्श में मैप किया जाता है।


एक नया रूपवाद बनाने के लिए दो रूपवादों की रचना की जा सकती है, और हम चक्राकार समष्टि ों की [[श्रेणी (गणित)]] और समष्टि ीय रूप से चक्राकार समष्टि ों की श्रेणी प्राप्त करते हैं। इन श्रेणियों में समरूपता को सदैव की तरह परिभाषित किया गया है।
एक नया रूपवाद बनाने के लिए दो रूपवादों की रचना की जा सकती है, और हम चक्राकार समष्टियों की [[श्रेणी (गणित)]] और समष्टियों रूप से चक्राकार समष्टियों की श्रेणी प्राप्त करते हैं। इन श्रेणियों में समरूपता को सदैव की तरह परिभाषित किया गया है।


==स्पर्शरेखा रिक्त समष्टि ==
==स्पर्शरेखा रिक्त समष्टि ==
{{See also|ज़ारिस्की स्पर्शरेखा समष्टि }}
{{See also|ज़ारिस्की स्पर्शरेखा समष्टि }}


समष्टि ीय रूप से वलय किए गए समष्टि ों में [[स्पर्शरेखा समष्टि ]] की सार्थक परिभाषा की अनुमति देने के लिए पर्याप्त संरचना होती है। होने देना <math>X</math> संरचना शीफ ​​के साथ समष्टि ीय रूप से <math>\mathcal{O}_X</math> रिंगित समष्टि  बनें हम स्पर्शरेखा <math>T_x(X)</math> समष्टि  को परिभाषित करना चाहते हैं बिंदु पर<math>x\in X</math>. समष्टि ीय वलय (डंठल) लें <math>R_x</math> बिंदु पर <math>x</math>, अधिकतम आदर्श के साथ <math>\mathfrak{m}_x</math>. तब <math>k_x := R_x/\mathfrak{m}_x</math> एक क्षेत्र (गणित) है और <math>\mathfrak{m}_x/\mathfrak{m}_x^2</math> उस क्षेत्र ([[कोटैंजेंट समष्टि ]]) पर एक [[ सदिश स्थल |सदिश स्थल]] है। स्पर्शरेखा समष्टि  <math>T_x(X)</math> इस सदिश समष्टि के दोहरे समष्टि के रूप में परिभाषित किया गया है।
समष्टियों रूप से वलय किए गए समष्टियों में [[स्पर्शरेखा समष्टि ]] की सार्थक परिभाषा की अनुमति देने के लिए पर्याप्त संरचना होती है। होने देना <math>X</math> संरचना शीफ ​​के साथ समष्टियों रूप से <math>\mathcal{O}_X</math> रिंगित समष्टि  बनें हम स्पर्शरेखा <math>T_x(X)</math> समष्टि  को परिभाषित करना चाहते हैं बिंदु पर<math>x\in X</math>. समष्टियों वलय (डंठल) लें <math>R_x</math> बिंदु पर <math>x</math>, अधिकतम आदर्श के साथ <math>\mathfrak{m}_x</math>. तब <math>k_x := R_x/\mathfrak{m}_x</math> एक क्षेत्र (गणित) है और <math>\mathfrak{m}_x/\mathfrak{m}_x^2</math> उस क्षेत्र ([[कोटैंजेंट समष्टि ]]) पर एक [[ सदिश स्थल |सदिश स्थल]] है। स्पर्शरेखा समष्टि  <math>T_x(X)</math> इस सदिश समष्टि के दोहरे समष्टि के रूप में परिभाषित किया गया है।


विचार निम्नलिखित है: <math>x</math> पर एक स्पर्शरेखा सदिश आपको बताएगा कि <math>x</math> पर "फलन" को कैसे "अंतरित" किया जाए, अथार्त <math>R_x</math> के तत्व में अब यह जानना पर्याप्त है कि उन फलन को कैसे अलग किया जाए जिनका मान <math>x</math> पर शून्य है, क्योंकि अन्य सभी फलन इनसे केवल एक स्थिरांक द्वारा भिन्न होते हैं, और हम जानते हैं कि स्थिरांकों को कैसे अलग किया जाए। इसलिए हमें केवल <math>\mathfrak{m}_x</math> पर विचार करने की आवश्यकता है।.इसके अतिरिक्त, यदि दो फलन <math>x</math> पर मान शून्य के साथ दिए गए हैं, तो उत्पाद नियम के अनुसार, उनके उत्पाद का <math>x</math> पर व्युत्पन्न 0 है। इसलिए हमें केवल यह जानने की जरूरत है कि <math>\mathfrak{m}_x/\mathfrak{m}_x^2</math> के तत्वों को "नंबर" कैसे निर्दिष्ट किया जाए, और दोहरा समष्टि  यही करता है।
विचार निम्नलिखित है: <math>x</math> पर एक स्पर्शरेखा सदिश आपको बताएगा कि <math>x</math> पर "फलन" को कैसे "अंतरित" किया जाए, अथार्त <math>R_x</math> के तत्व में अब यह जानना पर्याप्त है कि उन फलन को कैसे अलग किया जाए जिनका मान <math>x</math> पर शून्य है, क्योंकि अन्य सभी फलन इनसे केवल एक स्थिरांक द्वारा भिन्न होते हैं, और हम जानते हैं कि स्थिरांकों को कैसे अलग किया जाए। इसलिए हमें केवल <math>\mathfrak{m}_x</math> पर विचार करने की आवश्यकता है।.इसके अतिरिक्त, यदि दो फलन <math>x</math> पर मान शून्य के साथ दिए गए हैं, तो उत्पाद नियम के अनुसार, उनके उत्पाद का <math>x</math> पर व्युत्पन्न 0 है। इसलिए हमें केवल यह जानने की जरूरत है कि <math>\mathfrak{m}_x/\mathfrak{m}_x^2</math> के तत्वों को "नंबर" कैसे निर्दिष्ट किया जाए, और दोहरा समष्टि  यही करता है।
Line 42: Line 42:
{{main|मॉड्यूल का शीफ़}}
{{main|मॉड्यूल का शीफ़}}


समष्टि ीय रूप से वलय किए गए समष्टि  <math>(X,\mathcal{O}_X)</math> को देखते हुए, <math>X</math> पर मॉड्यूल के कुछ संग्रह अनुप्रयोगों, <math>\mathcal{O}_X</math>-मॉड्यूल में होते हैं। उन्हें परिभाषित करने के लिए, <math>X</math>पर एबेलियन समूहों के एक शीफ ''F'' पर विचार करें। यदि ''F''(''U'') <math>X</math> में प्रत्येक खुले सेट <math>U</math> के लिए वलय <math>\mathcal{O}_X(U)</math> पर एक मॉड्यूल है, और प्रतिबंध मानचित्र मॉड्यूल संरचना के साथ संगत हैं, तो हम कॉल करते हैं <math>F</math> एक <math>\mathcal{O}_X</math>-मॉड्यूल इस स्थिति में, x पर <math>F</math> का डंठल प्रत्येक<math>x\in X</math> के लिए समष्टि ीय वलय (डंठल) <math>R_x</math>पर एक मॉड्यूल होगा।
समष्टियों रूप से वलय किए गए समष्टि  <math>(X,\mathcal{O}_X)</math> को देखते हुए, <math>X</math> पर मॉड्यूल के कुछ संग्रह अनुप्रयोगों, <math>\mathcal{O}_X</math>-मॉड्यूल में होते हैं। उन्हें परिभाषित करने के लिए, <math>X</math>पर एबेलियन समूहों के एक शीफ ''F'' पर विचार करें। यदि ''F''(''U'') <math>X</math> में प्रत्येक खुले समुच्चय <math>U</math> के लिए वलय <math>\mathcal{O}_X(U)</math> पर एक मॉड्यूल है, और प्रतिबंध मानचित्र मॉड्यूल संरचना के साथ संगत हैं, तो हम कॉल करते हैं <math>F</math> एक <math>\mathcal{O}_X</math>-मॉड्यूल इस स्थिति में, x पर <math>F</math> का डंठल प्रत्येक<math>x\in X</math> के लिए समष्टियों वलय (डंठल) <math>R_x</math>पर एक मॉड्यूल होगा।


ऐसे दो के बीच एक रूपवाद<math>\mathcal{O}_X</math>-मॉड्यूल शीव्स या मॉर्फिज्म का एक मॉर्फिज्म है जो दिए गए मॉड्यूल संरचनाओं के साथ संगत है। की श्रेणी <math>\mathcal{O}_X</math>-एक निश्चित समष्टि ीय वलय वाले समष्टि  पर मॉड्यूल <math>(X,\mathcal{O}_X)</math> एक [[एबेलियन श्रेणी]] है।
ऐसे दो के बीच एक रूपवाद<math>\mathcal{O}_X</math>-मॉड्यूल शीव्स या मॉर्फिज्म का एक मॉर्फिज्म है जो दिए गए मॉड्यूल संरचनाओं के साथ संगत है। की श्रेणी <math>\mathcal{O}_X</math>-एक निश्चित समष्टियों वलय वाले समष्टि  पर मॉड्यूल <math>(X,\mathcal{O}_X)</math> एक [[एबेलियन श्रेणी]] है।


<math>\mathcal{O}_X</math> मॉड्यूल की श्रेणी की एक महत्वपूर्ण उपश्रेणी <math>X</math>पर अर्ध-सुसंगत शीव्स की श्रेणी है। <math>\mathcal{O}_X</math>-मॉड्यूल के एक समूह को अर्ध-सुसंगत कहा जाता है यदि यह, समष्टि ीय रूप से, मुक्त <math>\mathcal{O}_X</math>-मॉड्यूल के बीच के मानचित्र के कोकर्नेल के लिए आइसोमोर्फिक है। एक सुसंगत शीफ F एक अर्ध-सुसंगत शीफ है, जो, समष्टि ीय रूप से, परिमित प्रकार का है <math>U</math>और <math>X</math> के प्रत्येक खुले उपसमुच्चय के लिए एक मुक्त से किसी भी रूपवाद का कर्नेल है मूल<math>\mathcal{O}_U</math>-परिमित रैंक के मॉड्यूल<math>F_U</math>यह भी परिमित प्रकार का है।
<math>\mathcal{O}_X</math> मॉड्यूल की श्रेणी की एक महत्वपूर्ण उपश्रेणी <math>X</math>पर अर्ध-सुसंगत शीव्स की श्रेणी है। <math>\mathcal{O}_X</math>-मॉड्यूल के एक समूह को अर्ध-सुसंगत कहा जाता है यदि यह, समष्टियों रूप से, मुक्त <math>\mathcal{O}_X</math>-मॉड्यूल के बीच के मानचित्र के कोकर्नेल के लिए आइसोमोर्फिक है। एक सुसंगत शीफ F एक अर्ध-सुसंगत शीफ है, जो, समष्टियों रूप से, परिमित प्रकार का है <math>U</math>और <math>X</math> के प्रत्येक खुले उपसमुच्चय के लिए एक मुक्त से किसी भी रूपवाद का कर्नेल है मूल<math>\mathcal{O}_U</math>-परिमित रैंक के मॉड्यूल<math>F_U</math>यह भी परिमित प्रकार का है।


==उद्धरण==
==उद्धरण==

Latest revision as of 13:24, 6 September 2023

गणित में, एक वलयी समष्टि (कम्यूटेटिव) वलय का एक वर्ग है, जो एक टोपोलॉजिकल समष्टि के विवर्त उपसमुच्चय द्वारा वलय होमोमोर्फिज्म के साथ पैरामीट्रिज्ड होता है जो प्रतिबंधों की भूमिका निभाता है। संक्षेप में यह एक टोपोलॉजिकल समष्टि है जो वलय के एक समूह से सुसज्जित है जिसे संरचना शीफ कहा जाता है। यह विवर्त उपसमुच्चय पर निरंतर (अदिश-मूल्यवान) फलनों के वलय की अवधारणा का एक अमूर्तन है।

चक्राकार समष्टि में, विशेष रूप से महत्वपूर्ण और प्रमुख समष्टियों रूप से चक्राकार समष्टि है: एक चक्राकार समष्टि जिसमें एक बिंदु पर डंठल और एक बिंदु पर फलनों के रोगाणुओं की वलय के बीच सादृश्य मान्य है।

चक्राकार रिक्त समष्टि विश्लेषण के साथ-साथ सम्मिश्र बीजगणितीय ज्यामिति और बीजगणितीय ज्यामिति के योजना सिद्धांत में भी दिखाई देते हैं।

ध्यान दें: वलय वाले समष्टि की परिभाषा में अधिकांश व्याख्याएं वलय को क्रमविनिमेय वलय तक ही सीमित रखती हैं, जिनमें हार्टशोर्न और विकिपीडिया भी सम्मिलित हैं। दूसरी ओर, एलिमेंट्स डी जियोमेट्री अल्जेब्रिक, क्रमविनिमेयता धारणा को प्रयुक्त नहीं करता है, चूँकि पुस्तक अधिकत्तर क्रमविनिमेय स्थिति पर विचार करती है।[1]

परिभाषाएँ

एक चक्राकार समष्टि एक टोपोलॉजिकल समष्टि है, साथ में पर वलय का एक समूह है। शीफ को का स्ट्रक्चर शीफ कहा जाता है।

समष्टियों रूप से चक्राकार समष्टि एक चक्राकार समष्टि है इस प्रकार कि के सभी डंठल समष्टियों वलय हैं (अर्थात उनके पास अद्वितीय अधिकतम आदर्श हैं)। ध्यान दें कि यह आवश्यक नहीं है कि प्रत्येक विवर्त समुच्चय के लिए एक समष्टियों वलय हो; वास्तव में, ऐसा लगभग कभी नहीं होता है।

उदाहरण

एक मनमाना टोपोलॉजिकल समष्टि कोलेकर समष्टि रूप से वलय वाला समष्टि माना जा सविवर्त के विवर्त उपसमुच्चय पर वास्तविक-मूल्यवान (या सम्मिश्र-मूल्यवान) निरंतर फलनो का समूह होना। एक बिं पर डंठल पर निरंतर फलन करने वाले सभी रोगाणुओं के समुच्चय के रूप में माना जा सकता है; यह अद्वितीय अधिकतम आदर्श वाला एक समष्टियों वलय है जिसमें वे रोगाणु सम्मिलित हैं जिनका पर मान 0 है।

यदि कुछ अतिरिक्त संरचना के साथ एक मैनिफोल्ड अवकल फलन, या होलोमोर्फिक फलन या सम्मिश्र-विश्लेषणात्मक फलन का शीफ ​​भी ले सकते हैं। ये दोनों समष्टियों रूप से चक्रित समष्टियों को जन्म देते हैं।

यदि एक बीजगणितीय विविधता है जो ज़ारिस्की टोपोलॉजी को ले जाती है, हम ज़ारिस्की-ओपन समुच्चय पर परिभाषित तर्कसंगत मैपिंग की वलय के रूप में लेकर समष्टियों रूप से वलय किए गए समष्टि को परिभाषित कर सकते हैं। के अंदर विस्फोट न हो (अनंत हो जाए)। इस उदाहरण का महत्वपूर्ण सामान्यीकरण किसी भी क्रमविनिमेय वलय के स्पेक्ट्रम का है; ये स्पेक्ट्रा समष्टियों रूप से चक्रित समष्टि भी हैं। योजनाएं समष्टियों रूप से वलय किए गए समष्टि हैं जो क्रमविनिमेय वलयो के स्पेक्ट्रा को प्राप्त की जाती हैं।

आकारिकी

से तक एक रूपवाद एक जोड़ी है, जहां अंतर्निहित टोपोलॉजिकल रिक्त समष्टि के बीच एक सतत मानचित्र है, और के संरचना शीफ से प्रत्यक्ष तक एक रूपवाद है X के संरचना शीफ की छवि है। दूसरे शब्दों में, से तक एक रूपवाद निम्नलिखित डेटा द्वारा दिया गया है:

  • एक सतत फलन (टोपोलॉजी)
  • वलय समरूपताओं का एक वर्ग प्रत्येक विवर्त समुच्चय के लिए का जो प्रतिबंध मानचित्रों के साथ आवागमन करते हैं। अर्थात यदि के दो विवर्त उपसमुच्चय हैं , तो निम्नलिखित आरेख को क्रमविनिमेय आरेख होना चाहिए (ऊर्ध्वाधर मानचित्र प्रतिबंध समरूपताएं हैं):
LocallyRingedSpace-01.png

समष्टियों रूप से वलय किए गए समष्टियों के बीच आकारिकी के लिए एक अतिरिक्त आवश्यकता है:

  • के डंठलों और X के डंठलों के बीच द्वारा प्रेरित वलय समरूपताएं समष्टियों समरूपताएं होनी चाहिए, अथार्त प्रत्येक के लिए पर समष्टियों वलय (डंठल) का अधिकतम आदर्श पर समष्टियों वलय के अधिकतम आदर्श में मैप किया जाता है।

एक नया रूपवाद बनाने के लिए दो रूपवादों की रचना की जा सकती है, और हम चक्राकार समष्टियों की श्रेणी (गणित) और समष्टियों रूप से चक्राकार समष्टियों की श्रेणी प्राप्त करते हैं। इन श्रेणियों में समरूपता को सदैव की तरह परिभाषित किया गया है।

स्पर्शरेखा रिक्त समष्टि

समष्टियों रूप से वलय किए गए समष्टियों में स्पर्शरेखा समष्टि की सार्थक परिभाषा की अनुमति देने के लिए पर्याप्त संरचना होती है। होने देना संरचना शीफ ​​के साथ समष्टियों रूप से रिंगित समष्टि बनें हम स्पर्शरेखा समष्टि को परिभाषित करना चाहते हैं बिंदु पर. समष्टियों वलय (डंठल) लें बिंदु पर , अधिकतम आदर्श के साथ . तब एक क्षेत्र (गणित) है और उस क्षेत्र (कोटैंजेंट समष्टि ) पर एक सदिश स्थल है। स्पर्शरेखा समष्टि इस सदिश समष्टि के दोहरे समष्टि के रूप में परिभाषित किया गया है।

विचार निम्नलिखित है: पर एक स्पर्शरेखा सदिश आपको बताएगा कि पर "फलन" को कैसे "अंतरित" किया जाए, अथार्त के तत्व में अब यह जानना पर्याप्त है कि उन फलन को कैसे अलग किया जाए जिनका मान पर शून्य है, क्योंकि अन्य सभी फलन इनसे केवल एक स्थिरांक द्वारा भिन्न होते हैं, और हम जानते हैं कि स्थिरांकों को कैसे अलग किया जाए। इसलिए हमें केवल पर विचार करने की आवश्यकता है।.इसके अतिरिक्त, यदि दो फलन पर मान शून्य के साथ दिए गए हैं, तो उत्पाद नियम के अनुसार, उनके उत्पाद का पर व्युत्पन्न 0 है। इसलिए हमें केवल यह जानने की जरूरत है कि के तत्वों को "नंबर" कैसे निर्दिष्ट किया जाए, और दोहरा समष्टि यही करता है।

-मॉड्यूल

समष्टियों रूप से वलय किए गए समष्टि को देखते हुए, पर मॉड्यूल के कुछ संग्रह अनुप्रयोगों, -मॉड्यूल में होते हैं। उन्हें परिभाषित करने के लिए, पर एबेलियन समूहों के एक शीफ F पर विचार करें। यदि F(U) में प्रत्येक खुले समुच्चय के लिए वलय पर एक मॉड्यूल है, और प्रतिबंध मानचित्र मॉड्यूल संरचना के साथ संगत हैं, तो हम कॉल करते हैं एक -मॉड्यूल इस स्थिति में, x पर का डंठल प्रत्येक के लिए समष्टियों वलय (डंठल) पर एक मॉड्यूल होगा।

ऐसे दो के बीच एक रूपवाद-मॉड्यूल शीव्स या मॉर्फिज्म का एक मॉर्फिज्म है जो दिए गए मॉड्यूल संरचनाओं के साथ संगत है। की श्रेणी -एक निश्चित समष्टियों वलय वाले समष्टि पर मॉड्यूल एक एबेलियन श्रेणी है।

मॉड्यूल की श्रेणी की एक महत्वपूर्ण उपश्रेणी पर अर्ध-सुसंगत शीव्स की श्रेणी है। -मॉड्यूल के एक समूह को अर्ध-सुसंगत कहा जाता है यदि यह, समष्टियों रूप से, मुक्त -मॉड्यूल के बीच के मानचित्र के कोकर्नेल के लिए आइसोमोर्फिक है। एक सुसंगत शीफ F एक अर्ध-सुसंगत शीफ है, जो, समष्टियों रूप से, परिमित प्रकार का है और के प्रत्येक खुले उपसमुच्चय के लिए एक मुक्त से किसी भी रूपवाद का कर्नेल है मूल-परिमित रैंक के मॉड्यूलयह भी परिमित प्रकार का है।

उद्धरण

  1. EGA, Ch 0, 4.1.1.


संदर्भ

  • Section 0.4 of Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083.
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157


बाहरी संबंध