वितरित मापदण्ड प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|System with an infinite-dimensional state-space}}[[नियंत्रण सिद्धांत]]  में, एक वितरित-पैरामीटर [[प्रणाली]] (एक लम्प्ड-पैरामीटर प्रणाली के विपरीत) एक प्रणाली है जिसका स्टेट स्पेस अनंत-आयामी है। ऐसी प्रणालियों को इसलिए अनंत-आयामी प्रणालियों के रूप में भी जाना जाता है। विशिष्ट उदाहरण आंशिक अवकल समीकरणों या विलंब अवकल समीकरणों द्वारा वर्णित प्रणालियाँ हैं।
{{Short description|System with an infinite-dimensional state-space}}[[नियंत्रण सिद्धांत]]  में, एक '''वितरित-मापदण्ड [[प्रणाली]]''' (एक लम्प्ड-मापदण्ड प्रणाली के विपरीत) एक प्रणाली है जिसका स्टेट स्पेस (अवस्था समष्टि) अनंत-आयामी है। ऐसी प्रणालियों को इसलिए अनंत-आयामी प्रणालियों के रूप में भी जाना जाता है। विशिष्ट उदाहरण आंशिक अवकल समीकरणों या विलंब अवकल समीकरणों द्वारा वर्णित प्रणालियाँ हैं।


== रैखिक समय-अपरिवर्तनीय वितरित-पैरामीटर प्रणाली ==
== रैखिक समय-अपरिवर्तनीय वितरित-मापदण्ड प्रणाली ==


=== सार विकास समीकरण ===
=== सार विकास समीकरण ===
Line 9: Line 9:
:<math>x(k+1)=Ax(k)+Bu(k)\,</math>
:<math>x(k+1)=Ax(k)+Bu(k)\,</math>
:<math>y(k)=Cx(k)+Du(k)\,</math>
:<math>y(k)=Cx(k)+Du(k)\,</math>
<math>x\,</math> के साथ, (स्टेट) X, <math>u\,</math> में मानों वाला एक अनुक्रम, (इनपुट या नियंत्रण) U और <math>y\,</math>में मानों वाला एक अनुक्रम, (आउटपुट) Y में मानों वाला एक अनुक्रम है।
<math>x\,</math> के साथ, (स्टेट) X, <math>u\,</math> में मानों वाला एक अनुक्रम, (इनपुट या नियंत्रण) ''U'' और <math>y\,</math>में मानों वाला एक अनुक्रम, (आउटपुट) ''Y'' में मानों वाला एक अनुक्रम है।


==== सतत-समय ====
==== सतत-समय ====
नियमित समय की अवस्था डिस्क्रीट समय की अवस्था के तरह है, लेकिन अब विभिन्न समीकरणों की बजाय अवकल समीकरणों का विचार किया जाता है:
नियमित समय की अवस्था डिस्क्रीट समय की अवस्था के तरह है, लेकिन अब विभिन्न समीकरणों के स्थान पर अवकल समीकरणों का विचार किया जाता है:
:<math>\dot{x}(t)=Ax(t)+Bu(t)\, </math>,
:<math>\dot{x}(t)=Ax(t)+Bu(t)\, </math>,
:<math>y(t)=Cx(t)+Du(t)\, </math>.
:<math>y(t)=Cx(t)+Du(t)\, </math>.
एक और समस्या यह है कि इस एब्स्ट्रैक्ट फ्रेमवर्क में आंशिक अवकलन समीकरण और देरी अवकलन समीकरण जैसे रुचिकर भौतिक उदाहरणों को शामिल करने के लिए, हमें अबोधित ऑपरेटर्स का विचार करना पड़ता है। आमतौर पर, स्टेट स्पेस ''X'' पर तय करने के लिए ''A'' का मानना है कि यह स्थिति स्थान पर एक मजबूत निरंतर सेमीग्रुप उत्पन्न करता है। ''B, C'' और ''D'' को बाउंडेड ऑपरेटर्स मानने की धारणा करने से पहले ही कई रुचिकर भौतिक उदाहरणों को शामिल किया जा सकता है,<ref>Curtain and Zwart</ref> लेकिन अन्य कई रुचिकर भौतिक उदाहरणों को शामिल करने से ''B'' और ''C'' की अबाउंडेड होने की आवश्यकता होती है।
एक और समस्या यह है कि इस एब्स्ट्रैक्ट फ्रेमवर्क में आंशिक अवकलन समीकरण और विलंब अवकलन समीकरण जैसे रुचिकर भौतिक उदाहरणों को सम्मिलित करने के लिए, हमें अबोधित ऑपरेटर्स का विचार करना पड़ता है। सामान्यतः, स्टेट स्पेस ''X'' पर तय करने के लिए ''A'' का मानना है कि यह स्थिति स्थान पर एक प्रबल निरंतर अर्धसमूह उत्पन्न करता है। ''B, C'' और ''D'' को बाउंडेड ऑपरेटर्स मानने की धारणा करने से पहले ही कई रुचिकर भौतिक उदाहरणों को सम्मिलित किया जा सकता है,<ref>Curtain and Zwart</ref> लेकिन अन्य कई रुचिकर भौतिक उदाहरणों को सम्मिलित करने से ''B'' और ''C'' की अबाउंडेड होने की आवश्यकता होती है।


=== उदाहरण: आंशिक अवकल समीकरण ===
=== उदाहरण: आंशिक अवकल समीकरण ===
Line 23: Line 23:
:<math>w(t,0)=0,</math>
:<math>w(t,0)=0,</math>
:<math>y(t)=\int_0^1 w(t,\xi)\,d\xi,</math>
:<math>y(t)=\int_0^1 w(t,\xi)\,d\xi,</math>
ऊपर वर्णित अमूर्त विकास समीकरण ढांचे में निम्नानुसार फिट बैठता है। इनपुट स्पेस यू और आउटपुट स्पेस वाई दोनों को जटिल संख्याओं के सेट के रूप में चुना गया है। स्टेट स्पेस X को L चुना गया है<sup>2</sup>(0, 1). ऑपरेटर A को इस प्रकार परिभाषित किया गया है
ऊपर वर्णित अमूर्त विकास समीकरण फ्रेमवर्क में इस प्रकार उपयुक्त बैठता है। इनपुट स्पेस ''U'' और आउटपुट स्पेस ''Y'' दोनों को सम्मिश्र संख्याओं के समुच्चय के रूप में चुना गया है। स्टेट स्पेस X को ''L<sup>2</sup>(0, 1)'' के रूप में चुना गया है। ऑपरेटर ''A'' को इस रूप में परिभाषित किया गया है
:<math>Ax=-x',~~~D(A)=\left\{x\in X: x\text{ absolutely continuous }, x'\in L^2(0,1)\text{ and }x(0)=0\right\}.</math>
:<math>Ax=-x',~~~D(A)=\left\{x\in X: x\text{ absolutely continuous }, x'\in L^2(0,1)\text{ and }x(0)=0\right\}.</math>
इसे दिखाया जा सकता है<ref>Curtain and Zwart Example 2.2.4</ref> कि A, X पर एक दृढ़ता से निरंतर [[अर्धसमूह]] उत्पन्न करता है। परिबद्ध ऑपरेटरों B, C और D को इस प्रकार परिभाषित किया गया है
यह प्रदर्शित किया जा सकता है<ref>Curtain and Zwart Example 2.2.4</ref> कि ''A X'' पर प्रबल निरंतर [[अर्धसमूह]] उत्पन्न करता है। बाउंडेड ऑपरेटर्स ''B, C'' और ''D'' को इस प्रकार परिभाषित किया जाता है:
:<math>Bu=u,~~~Cx=\int_0^1 x(\xi)\,d\xi,~~~D=0.</math>
:<math>Bu=u,~~~Cx=\int_0^1 x(\xi)\,d\xi,~~~D=0.</math>


=== उदाहरण: विलंब अवकल समीकरण ===
=== उदाहरण: विलंब अवकल समीकरण ===
Line 33: Line 32:
:<math>\dot{w}(t)=w(t)+w(t-\tau)+u(t),</math>
:<math>\dot{w}(t)=w(t)+w(t-\tau)+u(t),</math>
:<math>y(t)=w(t),</math>
:<math>y(t)=w(t),</math>
ऊपर वर्णित अमूर्त विकास समीकरण ढांचे में निम्नानुसार फिट बैठता है। इनपुट स्पेस यू और आउटपुट स्पेस वाई दोनों को जटिल संख्याओं के सेट के रूप में चुना गया है। स्टेट स्पेस X को L के साथ सम्मिश्र संख्याओं के गुणनफल के रूप में चुना गया है<sup>2</sup>(−τ, 0). ऑपरेटर A को इस प्रकार परिभाषित किया गया है
ऊपर वर्णित अमूर्त विकास समीकरण फ्रेमवर्क में इस प्रकार उपयुक्त बैठता है। इनपुट स्पेस ''U'' और आउटपुट स्पेस ''Y'' दोनों को सम्मिश्र संख्याओं के समुच्चय के रूप में चुना गया है। स्टेट स्पेस X को ''L<sup>2</sup>(−τ, 0)'' के रूप में चुना गया है। ऑपरेटर ''A'' को इस रूप में परिभाषित किया गया है
:<math>A\begin{pmatrix}r\\f\end{pmatrix}=\begin{pmatrix}r+f(-\tau)\\f'\end{pmatrix},~~~D(A)=\left\{\begin{pmatrix}r\\f\end{pmatrix}\in X: f\text{ absolutely continuous }, f'\in L^2([-\tau,0])\text{ and }r=f(0)\right\}.</math>
:<math>A\begin{pmatrix}r\\f\end{pmatrix}=\begin{pmatrix}r+f(-\tau)\\f'\end{pmatrix},~~~D(A)=\left\{\begin{pmatrix}r\\f\end{pmatrix}\in X: f\text{ absolutely continuous }, f'\in L^2([-\tau,0])\text{ and }r=f(0)\right\}.</math>
इसे दिखाया जा सकता है<ref>Curtain and Zwart Theorem 2.4.6</ref> कि A, X पर एक दृढ़ता से निरंतर अर्धसमूह उत्पन्न करता है। परिबद्ध ऑपरेटरों B, C और D को इस प्रकार परिभाषित किया गया है
यह प्रदर्शित किया जा सकता है<ref>Curtain and Zwart Theorem 2.4.6</ref> कि ''A X'' पर प्रबल निरंतर [[अर्धसमूह]] उत्पन्न करता है। बाउंडेड ऑपरेटर्स ''B, C'' और ''D'' को इस प्रकार परिभाषित किया जाता है:
:<math>Bu=\begin{pmatrix}u\\0\end{pmatrix},~~~C\begin{pmatrix}r\\f\end{pmatrix}=r,~~~D=0.</math>
:<math>Bu=\begin{pmatrix}u\\0\end{pmatrix},~~~C\begin{pmatrix}r\\f\end{pmatrix}=r,~~~D=0.</math>
 
=== स्थानांतरण फलन ===
 
जैसा कि परिमित-आयामी स्थिति में स्थानांतरण फलन को [[लाप्लास परिवर्तन]] (निरंतर-समय) या ''Z''-परिवर्तन (असतत-समय) के माध्यम से परिभाषित किया गया है। जबकि परिमित-आयामी स्थिति में स्थानांतरण फलन एक उचित तर्कसंगत फलन है, स्टेट स्पेस की अनंत-आयामीता तर्कहीन फलन की ओर ले जाती है (जो अभी भी होलोमोर्फिक हैं)।
=== स्थानांतरण कार्य ===
जैसा कि परिमित-आयामी मामले में स्टेट स्पेस (नियंत्रण)#ट्रांसफर फ़ंक्शन को [[लाप्लास परिवर्तन]] (निरंतर-समय) या [[जेड को बदलने]] (असतत-समय) के माध्यम से परिभाषित किया गया है। जबकि परिमित-आयामी मामले में स्थानांतरण फ़ंक्शन एक उचित तर्कसंगत फ़ंक्शन है, स्टेट स्पेस की अनंत-आयामीता तर्कहीन कार्यों की ओर ले जाती है (जो कि अभी भी [[होलोमोर्फिक फ़ंक्शन]] हैं)।


==== असतत-समय ====
==== असतत-समय ====
असतत-समय में स्थानांतरण फ़ंक्शन राज्य-अंतरिक्ष मापदंडों के संदर्भ में दिया जाता है <math>D+\sum_{k=0}^\infty CA^kBz^k</math> और यह मूल बिंदु पर केन्द्रित डिस्क में होलोमोर्फिक है।<ref>This is the mathematical convention, engineers seem to prefer transfer functions to be holomorphic at infinity; this is achieved by replacing ''z'' by 1/''z''</ref> यदि 1/z A के रिसॉल्वेंट सेट से संबंधित है (जो मूल पर केंद्रित संभवतः छोटी डिस्क पर मामला है) तो स्थानांतरण फ़ंक्शन बराबर होता है <math>D+Cz(I-zA)^{-1}B</math>. एक दिलचस्प तथ्य यह है कि कोई भी फ़ंक्शन जो शून्य में होलोमोर्फिक है, कुछ असतत-समय प्रणाली का स्थानांतरण फ़ंक्शन है।
असतत-समय में, स्थानांतरण फलन <math>D+\sum_{k=0}^\infty CA^kBz^k</math> द्वारा स्टेट स्पेस मापदंडों के संदर्भ में दिया जाता है और यह मूल पर केंद्रित डिस्क में होलोमोर्फिक है।<ref>This is the mathematical convention, engineers seem to prefer transfer functions to be holomorphic at infinity; this is achieved by replacing ''z'' by 1/''z''</ref> यदि 1/z ''A'' के रिसॉल्वेंट समुच्चय से संबंधित है (जो कि मूल बिंदु पर केंद्रित संभवतः छोटी डिस्क पर स्थिति है) तो स्थानांतरण फलन <math>D+Cz(I-zA)^{-1}B</math> के बराबर होता है। एक रोचक तथ्य यह है कि कोई भी फलन जो शून्य में होलोमोर्फिक है, कुछ असतत-समय प्रणाली का स्थानांतरण फलन है।


==== सतत-समय ====
==== सतत-समय ====
यदि A एक दृढ़ता से निरंतर अर्धसमूह उत्पन्न करता है और बी, सी और डी बंधे हुए ऑपरेटर हैं, तो<ref>Curtain and Zwart Lemma 4.3.6</ref> स्थानांतरण फ़ंक्शन स्टेट स्पेस मापदंडों के संदर्भ में दिया गया है <math>D+C(sI-A)^{-1}B</math> एस के लिए जिसका वास्तविक भाग A द्वारा उत्पन्न अर्धसमूह की घातीय वृद्धि से बड़ा है। अधिक सामान्य स्थितियों में यह सूत्र जैसा कि खड़ा है, इसका कोई मतलब भी नहीं हो सकता है, लेकिन इस सूत्र का एक उचित सामान्यीकरण अभी भी कायम है।<ref>Staffans Theorem 4.6.7</ref>
यदि A प्रबल निरंतर अर्धसमूह उत्पन्न करता है और B, C और D बाउंडेड ऑपरेटर्स हैं, तो<ref>Curtain and Zwart Lemma 4.3.6</ref> वास्तविक भाग के साथ s के लिए स्टेट स्पेस मापदण्ड्स के रूप में स्टेट स्पेस मापदण्ड्स के रूप में अनुपात समीकरण का दिया जाता है <math>D+C(sI-A)^{-1}B</math> जब A द्वारा उत्पन्न अर्धसमूह के विस्तारी वृद्धि सीमा से अधिक हो। और अधिक सामान्य स्थितियों में, जैसा कि यह खड़ा है, तो यह सूत्र समय-स्थान मापदण्ड्स के रूप में दिया गया हो सकता है, लेकिन इस सूत्र का उचित विस्तार अभी भी बना होता है।<ref>Staffans Theorem 4.6.7</ref> अनुपात समीकरण के लिए एक सरल अभिव्यक्ति प्राप्त करने के लिए यह प्रायः दिए गए उपयुक्त विस्तारी समीकरण में लापलेस परिवर्तन लेना अच्छा होता है, स्थिति स्पेस सूत्रों का उपयोग करने के स्थान पर जैसा कि उपरोक्त उदाहरणों पर प्रक्षिप्त किया गया है।
स्थानांतरण फ़ंक्शन के लिए एक आसान अभिव्यक्ति प्राप्त करने के लिए ऊपर दिए गए उदाहरणों में नीचे दिए गए राज्य अंतरिक्ष सूत्रों का उपयोग करने की तुलना में दिए गए अवकल समीकरण में लाप्लास परिवर्तन लेना अक्सर बेहतर होता है।


==== आंशिक अवकल समीकरण उदाहरण के लिए स्थानांतरण फ़ंक्शन ====
==== आंशिक अवकल समीकरण उदाहरण के लिए स्थानांतरण फलन ====
प्रारंभिक शर्त निर्धारित करना <math>w_0</math> शून्य के बराबर और ऊपर दिए गए आंशिक अवकल समीकरण से प्राप्त बड़े अक्षरों द्वारा टी के संबंध में लाप्लास परिवर्तनों को निरूपित करना
प्रारंभिक शर्त निर्धारित करना <math>w_0</math> शून्य के बराबर और ऊपर दिए गए आंशिक अवकल समीकरण से प्राप्त बड़े अक्षरों द्वारा ''t'' के संबंध में लाप्लास परिवर्तनों को निरूपित करना।
:<math>sW(s,\xi)=-\frac{d}{d\xi}W(s,\xi)+U(s),</math>
:<math>sW(s,\xi)=-\frac{d}{d\xi}W(s,\xi)+U(s),</math>
:<math>W(s,0)=0,</math>
:<math>W(s,0)=0,</math>
:<math>Y(s)=\int_0^1 W(s,\xi)\,d\xi.</math>
:<math>Y(s)=\int_0^1 W(s,\xi)\,d\xi.</math>
यह एक अमानवीय रैखिक अवकल समीकरण है <math>\xi</math> चर के रूप में, s एक पैरामीटर के रूप में और प्रारंभिक स्थिति शून्य। समाधान है <math>W(s,\xi)=U(s)(1-e^{-s\xi})/s</math>. इसे Y के समीकरण में प्रतिस्थापित करना और प्राप्तियों को एकीकृत करना <math>Y(s)=U(s)(e^{-s}+s-1)/s^2</math> ताकि स्थानांतरण कार्य हो <math>(e^{-s}+s-1)/s^2</math>.
यह एक अमानवीय रैखिक अवकल समीकरण <math>\xi</math> है चर के रूप में, s एक मापदण्ड के रूप में और प्रारंभिक स्थिति शून्य। <math>W(s,\xi)=U(s)(1-e^{-s\xi})/s</math> समाधान है। इसे Y के समीकरण में प्रतिस्थापित करना और प्राप्तियों <math>Y(s)=U(s)(e^{-s}+s-1)/s^2</math> को एकीकृत करना ताकि स्थानांतरण फलन <math>(e^{-s}+s-1)/s^2</math> हो।


==== विलंब अवकल समीकरण उदाहरण के लिए स्थानांतरण फ़ंक्शन ====
==== विलंब अवकल समीकरण उदाहरण के लिए स्थानांतरण फलन ====
आंशिक अवकल समीकरण उदाहरण के समान ही आगे बढ़ते हुए, विलंब समीकरण उदाहरण के लिए स्थानांतरण फ़ंक्शन है<ref>Curtain and Zwart Example 4.3.13</ref> <math>1/(s-1-e^{-s})</math>.
आंशिक अवकल समीकरण उदाहरण के समान ही आगे बढ़ते हुए, विलंब समीकरण उदाहरण के लिए स्थानांतरण फलन <math>1/(s-1-e^{-s})</math>है।<ref>Curtain and Zwart Example 4.3.13</ref>


=== नियंत्रणीयता ===
=== नियंत्रणीयता ===
अनंत-आयामी मामले में नियंत्रणीयता की कई गैर-समकक्ष परिभाषाएँ हैं जो परिमित-आयामी मामले के लिए नियंत्रणीयता की एक सामान्य धारणा को ध्वस्त कर देती हैं। तीन सबसे महत्वपूर्ण नियंत्रणीयता अवधारणाएँ हैं:
अनंत-आयामी स्थिति में नियंत्रणीयता की कई गैर-समतुल्य परिभाषाएँ हैं जो परिमित-आयामी स्थितियों के लिए नियंत्रणीयता की एक सामान्य धारणा में बदल जाता है। नियंत्रणीयता की तीन सबसे महत्वपूर्ण अवधारणाएँ हैं:
*सटीक नियंत्रणीयता,
*पूर्ण नियंत्रणीयता,
*अनुमानित नियंत्रणीयता,
*अनुमानित नियंत्रणीयता,
*शून्य नियंत्रणीयता.
*शून्य नियंत्रणीयता.


==== अलग-अलग समय में नियंत्रणीयता ====
==== असतत समय में नियंत्रणीयता ====
मानचित्रों द्वारा एक महत्वपूर्ण भूमिका निभाई जाती है <math>\Phi_n</math> जो सभी यू मूल्यवान अनुक्रमों के सेट को X में मैप करता है और इसके द्वारा दिया जाता है <math>\Phi_n u=\sum_{k=0}^n A^kBu_k</math>. व्याख्या यह है <math>\Phi_nu</math> वह स्थिति है जो प्रारंभिक स्थिति शून्य होने पर इनपुट अनुक्रम यू लागू करने से प्राप्त होती है। सिस्टम कहा जाता है
 
*समय n में बिल्कुल नियंत्रणीय यदि की सीमा <math>\Phi_n</math> X के बराबर है,
मानचित्रों द्वारा एक महत्वपूर्ण भूमिका निभाई जाती है <math>\Phi_n</math> जो सभी ''U'' मूल्यवान अनुक्रमों के समुच्चय को ''X'' में मैप करता है और इसके द्वारा दिया जाता है। <math>\Phi_n u=\sum_{k=0}^n A^kBu_k</math> यह है <math>\Phi_nu</math> वह स्थिति है जो प्रारंभिक स्थिति शून्य होने पर इनपुट अनुक्रम ''U'' प्रयुक्त करने से प्राप्त होती है। निम्न प्रणाली कहा जाता है:
*समय n में लगभग नियंत्रणीय यदि की सीमा <math>\Phi_n</math> X में सघन है,
*समय ''n'' में बिल्कुल नियंत्रणीय यदि <math>\Phi_n</math>की सीमा X के बराबर है,
*समय एन में शून्य नियंत्रणीय यदि की सीमा <math>\Phi_n</math> A की रेंज शामिल है<sup>n</sup>.
*समय ''n'' में लगभग नियंत्रणीय यदि <math>\Phi_n</math>की सीमा X में सघन है,
*समय ''n'' में शून्य नियंत्रणीय यदि <math>\Phi_n</math>की सीमा A की रेंज ''A<sup>n</sup>'' सम्मिलित है।


====निरंतर-समय में नियंत्रणीयता ====
====निरंतर-समय में नियंत्रणीयता ====
सतत-समय प्रणालियों की नियंत्रणीयता में मानचित्र <math>\Phi_t</math> द्वारा दिए गए <math>\int_0^t {\rm e}^{As}Bu(s)\,ds</math> वह भूमिका निभाता है <math>\Phi_n</math> अलग-अलग समय में खेलता है। हालाँकि, नियंत्रण कार्यों का वह स्थान जिस पर यह ऑपरेटर अब कार्य करता है, परिभाषा को प्रभावित करता है। सामान्य विकल्प एल है<sup>2</sup>(0, ∞;U), अंतराल (0, ∞) पर यू-मूल्य वर्ग पूर्णांक कार्यों का स्थान (समतुल्य वर्ग), लेकिन अन्य विकल्प जैसे एल<sup>1</sup>(0, ∞;U) संभव हैं. विभिन्न नियंत्रणीयता धारणाओं को एक बार डोमेन के रूप में परिभाषित किया जा सकता है <math>\Phi_t</math> चुना जाता है। सिस्टम कहा जाता है<ref>Tucsnak Definition 11.1.1</ref>
निरंतर-समय प्रणालियों की नियंत्रणीयता में <math>\Phi_t</math>,<math>\int_0^t {\rm e}^{As}Bu(s)\,ds</math> द्वारा दिया गया मानचित्र <math>\Phi_n</math>वही भूमिका निभाता है जो Φ अलग-अलग समय में निभाता है। हालाँकि, नियंत्रण फलनों का वह स्पेस जिस पर यह ऑपरेटर अब फलन करता है, परिभाषा को प्रभावित करता है। सामान्य विकल्प ''L''<sup>2</sup>(0, ;''U'') है, अंतराल (0, ) पर U-मान वाले वर्ग-अभिन्न फलन का स्थान (समतुल्य वर्ग), लेकिन अन्य विकल्प जैसे ''L''<sup>1</sup>(0, ;''U'') संभव हैं. <math>\Phi_t</math> का डोमेन चुने जाने के बाद विभिन्न नियंत्रणीयता धारणाओं को परिभाषित किया जा सकता है। प्रणाली को कहा जाता है:<ref>Tucsnak Definition 11.1.1</ref>
*समय टी में बिल्कुल नियंत्रणीय यदि की सीमा <math>\Phi_t</math> X के बराबर है,
*समय ''t'' में बिल्कुल नियंत्रणीय यदि <math>\Phi_t</math>की सीमा X के बराबर है,
*समय टी में लगभग नियंत्रणीय यदि की सीमा <math>\Phi_t</math> X में सघन है,
*समय ''t'' में लगभग नियंत्रणीय यदि <math>\Phi_t</math> की सीमा X में सघन है,
*समय टी में शून्य नियंत्रणीय यदि की सीमा <math>\Phi_t</math> की रेंज शामिल है <math>{\rm e}^{At}</math>.
*समय ''t'' में शून्य नियंत्रणीय यदि <math>\Phi_t</math>की सीमा की रेंज <math>{\rm e}^{At}</math> सम्मिलित है।


=== अवलोकनशीलता ===
=== अवलोकनशीलता ===
जैसा कि परिमित-आयामी मामले में, अवलोकनीयता नियंत्रणीयता की दोहरी धारणा है। अनंत-आयामी मामले में अवलोकन की कई अलग-अलग धारणाएं हैं जो परिमित-आयामी मामले में मेल खाती हैं। तीन सबसे महत्वपूर्ण हैं:
परिमित-आयामी स्थिति की तरह, अवलोकनीयता नियंत्रणीयता की दोहरी धारणा है। अनंत-आयामी स्थिति में अवलोकन के बारे में कई अलग-अलग धारणाएं हैं जो परिमित-आयामी स्थिति में मेल खाती हैं। इनमें से तीन सबसे महत्वपूर्ण हैं:
*सटीक अवलोकनशीलता (निरंतर अवलोकनशीलता के रूप में भी जाना जाता है),
 
*अनुमानित अवलोकनशीलता,
* पूर्ण अवलोकनीयता (जिसे निरंतर अवलोकनशीलता के रूप में भी जाना जाता है),
*अंतिम स्थिति का अवलोकन।
* अनुमानित अवलोकन क्षमता,
* अंतिम स्थिति का अवलोकन।


==== अलग-अलग समय में अवलोकनीयता ====
==== अलग-अलग समय में अवलोकनीयता ====
मानचित्रों द्वारा एक महत्वपूर्ण भूमिका निभाई जाती है <math>\Psi_n</math> जो सभी Y मूल्यवान अनुक्रमों के स्थान में X को मैप करता है और इसके द्वारा दिया जाता है <math>(\Psi_nx)_k=CA^kx</math> यदि k ≤ n और शून्य यदि >n। व्याख्या यह है <math>\Psi_nx</math> प्रारंभिक स्थिति x और नियंत्रण शून्य के साथ छोटा आउटपुट है। सिस्टम कहा जाता है
मानचित्र <math>\Psi_n</math> द्वारा एक महत्वपूर्ण भूमिका निभाई जाती है जो X को सभी Y-मान अनुक्रमों के स्थान में मैप करता है और <math>(\Psi_nx)_k=CA^kx</math> द्वारा दिया जाता है यदि ''k ≤ n'' और शून्य यदि ''k > n'' है। व्याख्या यह है कि <math>\Psi_nx</math> प्रारंभिक स्थिति ''x'' और नियंत्रण शून्य के साथ काटा गया आउटपुट है। निम्न प्रणाली कहा जाता है:
* यदि कोई k मौजूद है तो समय n में सटीक रूप से देखा जा सकता है<sub>''n''</sub>> 0 ऐसे कि <math>\|\Psi_nx\|\geq k_n\|x\|</math> सभी x ∈ X के लिए,
* समय n में बिल्कुल देखने योग्य यदि कोई ''k<sub>n</sub>'' > 0 उपस्थित है जैसे कि सभी <math>\|\Psi_nx\|\geq k_n\|x\|</math>x ∈ X के लिए,
*लगभग समय n यदि में अवलोकनीय <math>\Psi_n</math> [[इंजेक्शन]] है,
*लगभग समय n यदि <math>\Psi_n</math> में अवलोकनीय [[इंजेक्शन|इंजेक्टिव]] है,
* यदि कोई k मौजूद है तो अंतिम स्थिति समय n में देखी जा सकती है<sub>''n''</sub>> 0 ऐसे कि <math>\|\Psi_nx\|\geq k_n\|A^nx\|</math> सभी x ∈ X के लिए।
*समय n में बिल्कुल देखने योग्य यदि कोई ''k<sub>n</sub>'' > 0 उपस्थित है जैसे कि सभी <math>\|\Psi_nx\|\geq k_n\|A^nx\|</math> x ∈ X के लिए,
 
==== '''सतत-समय में अवलोकनीयता''' ====
निरंतर-समय प्रणालियों के अवलोकन में ''s∈[0,t]''  के लिए <math>(\Psi_t)(s)=C{\rm e}^{As}x</math> द्वारा दिया गया मानचित्र <math>\Psi_t</math> और s>t के लिए शून्य वह भूमिका निभाता है जो <math>\Psi_n</math>अलग समय में निभाता है। हालाँकि, यह ऑपरेटर अब जिन फ़ंक्शंस को मैप करता है उनका स्थान परिभाषा को प्रभावित करता है। सामान्य विकल्प ''L''<sup>2</sup>(0, ∞, ''Y'') है, अंतराल (0,∞) पर Y-मूल्यवान वर्ग-अभिन्न फलन का स्थान (समतुल्य वर्ग), लेकिन अन्य विकल्प जैसे ''L''<sup>1</sup>(0, ∞, ''Y'') संभव हैं. <math>\Psi_t</math>का सह-डोमेन चुने जाने के बाद विभिन्न अवलोकन संबंधी धारणाओं को परिभाषित किया जा सकता है। निम्न प्रणाली कहा जाता है:<ref>Tucsnak Definition 6.1.1</ref>
* समय ''t'' में पूर्ण रूप से देखने योग्य यदि ''k<sub>t</sub>'' > 0 उपस्थित है जैसे कि सभी ''x'' ∈ ''X'' के लिए <math>\|\Psi_tx\|\geq k_t\|x\|</math>,
*यदि <math>\Psi_t</math> इंजेक्टिव है, तो समय ''t'' में लगभग अवलोकन योग्य है,
*समय ''t'' में पूर्ण रूप से देखने योग्य यदि ''k<sub>t</sub>'' > 0 उपस्थित है जैसे कि सभी ''x'' ∈ ''X'' के लिए <math>\|\Psi_tx\|\geq k_t\|{\rm e}^{At}x\|</math>,


==== सतत-समय में अवलोकनीयता ====
=== नियंत्रणीयता और अवलोकनीयता के बीच द्वैत ===
निरंतर-समय प्रणालियों के अवलोकन में मानचित्र <math>\Psi_t</math> द्वारा दिए गए <math>(\Psi_t)(s)=C{\rm e}^{As}x</math> s∈[0,t] के लिए और s>t के लिए शून्य की भूमिका निभाता है <math>\Psi_n</math> अलग-अलग समय में खेलता है। हालाँकि, यह ऑपरेटर अब जिन फ़ंक्शंस को मैप करता है उनका स्थान परिभाषा को प्रभावित करता है। सामान्य विकल्प एल है<sup>2</sup>(0, ∞, Y), अंतराल (0,∞) पर Y-मूल्य वर्ग पूर्णांक कार्यों का स्थान (समतुल्य वर्ग), लेकिन अन्य विकल्प जैसे L<sup>1</sup>(0, ∞, Y) संभव हैं. विभिन्न अवलोकन संबंधी धारणाओं को एक बार सह-डोमेन के रूप में परिभाषित किया जा सकता है <math>\Psi_t</math> चुना जाता है। सिस्टम कहा जाता है<ref>Tucsnak Definition 6.1.1</ref>
जैसा कि परिमित-आयामी स्थिति में, नियंत्रणीयता और अवलोकनीयता दोहरी अवधारणाएं हैं (कम से कम तब जब <math>\Phi</math> के डोमेन और <math>\Psi</math> के सह-डोमेन के लिए सामान्य L<sup>2</sup> विकल्प बनाया जाता है)विभिन्न अवधारणाओं के द्वैत के अंतर्गत पत्राचार है:<ref>Tucsnak Theorem 11.2.1</ref>  
* यदि कोई k मौजूद है तो समय t में सटीक रूप से देखा जा सकता है<sub>''t''</sub>> 0 ऐसे कि <math>\|\Psi_tx\|\geq k_t\|x\|</math> सभी x ∈ X के लिए,
*समय टी में लगभग अवलोकनीय <math>\Psi_t</math> इंजेक्शन है,
* यदि कोई k मौजूद है तो समय t में देखने योग्य अंतिम स्थिति<sub>''t''</sub>> 0 ऐसे कि <math>\|\Psi_tx\|\geq k_t\|{\rm e}^{At}x\|</math> सभी x ∈ X के लिए।


=== नियंत्रणीयता और अवलोकनीयता के बीच द्वंद्व ===
* पूर्ण नियंत्रणीयता ↔ पूर्ण अवलोकन क्षमता,
जैसा कि परिमित-आयामी मामले में, नियंत्रणीयता और अवलोकनीयता दोहरी अवधारणाएँ हैं (कम से कम जब के डोमेन के लिए) <math>\Phi</math> और का सह-डोमेन <math>\Psi</math> सामान्य एल<sup>2</sup>चुनाव हो गया है)। विभिन्न अवधारणाओं के द्वंद्व के अंतर्गत पत्राचार है:<ref>Tucsnak Theorem 11.2.1</ref>
* अनुमानित नियंत्रणीयता ↔ अनुमानित अवलोकन क्षमता,
*सटीक नियंत्रणीयता ↔ सटीक अवलोकनशीलता,
* अशक्त नियंत्रणीयता ↔ अंतिम स्थिति का अवलोकन।
*अनुमानित नियंत्रणीयता ↔ अनुमानित अवलोकनशीलता,
*शून्य नियंत्रणीयता ↔ अंतिम स्थिति का अवलोकन।


== यह भी देखें ==
== यह भी देखें ==
Line 107: Line 106:
== टिप्पणियाँ ==
== टिप्पणियाँ ==
{{Reflist|2}}
{{Reflist|2}}
== संदर्भ ==
== संदर्भ ==
*{{ citation | last1=Curtain| first1=Ruth|author1-link=Ruth F. Curtain| last2=Zwart| first2=Hans | title=An Introduction to Infinite-Dimensional Linear Systems theory | year=1995| publisher=Springer}}
*{{ citation | last1=Curtain| first1=Ruth|author1-link=Ruth F. Curtain| last2=Zwart| first2=Hans | title=An Introduction to Infinite-Dimensional Linear Systems theory | year=1995| publisher=Springer}}
Line 125: Line 122:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/08/2023]]
[[Category:Created On 14/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:04, 28 September 2023

नियंत्रण सिद्धांत में, एक वितरित-मापदण्ड प्रणाली (एक लम्प्ड-मापदण्ड प्रणाली के विपरीत) एक प्रणाली है जिसका स्टेट स्पेस (अवस्था समष्टि) अनंत-आयामी है। ऐसी प्रणालियों को इसलिए अनंत-आयामी प्रणालियों के रूप में भी जाना जाता है। विशिष्ट उदाहरण आंशिक अवकल समीकरणों या विलंब अवकल समीकरणों द्वारा वर्णित प्रणालियाँ हैं।

रैखिक समय-अपरिवर्तनीय वितरित-मापदण्ड प्रणाली

सार विकास समीकरण

असतत-समय

U, X और Y हिल्बर्ट स्पेसेस हैं और A∈ L(X), B∈ L(U, X), C∈ L(X, Y) और D∈L(U, Y), तो निम्नलिखित अवकल समीकरण एक असतत-समय रैखिक समय-अपरिवर्तनीय प्रणाली को निर्धारित करते हैं:

के साथ, (स्टेट) X, में मानों वाला एक अनुक्रम, (इनपुट या नियंत्रण) U और में मानों वाला एक अनुक्रम, (आउटपुट) Y में मानों वाला एक अनुक्रम है।

सतत-समय

नियमित समय की अवस्था डिस्क्रीट समय की अवस्था के तरह है, लेकिन अब विभिन्न समीकरणों के स्थान पर अवकल समीकरणों का विचार किया जाता है:

,
.

एक और समस्या यह है कि इस एब्स्ट्रैक्ट फ्रेमवर्क में आंशिक अवकलन समीकरण और विलंब अवकलन समीकरण जैसे रुचिकर भौतिक उदाहरणों को सम्मिलित करने के लिए, हमें अबोधित ऑपरेटर्स का विचार करना पड़ता है। सामान्यतः, स्टेट स्पेस X पर तय करने के लिए A का मानना है कि यह स्थिति स्थान पर एक प्रबल निरंतर अर्धसमूह उत्पन्न करता है। B, C और D को बाउंडेड ऑपरेटर्स मानने की धारणा करने से पहले ही कई रुचिकर भौतिक उदाहरणों को सम्मिलित किया जा सकता है,[1] लेकिन अन्य कई रुचिकर भौतिक उदाहरणों को सम्मिलित करने से B और C की अबाउंडेड होने की आवश्यकता होती है।

उदाहरण: आंशिक अवकल समीकरण

आंशिक अवकल समीकरण के साथ और द्वारा दिए गए

ऊपर वर्णित अमूर्त विकास समीकरण फ्रेमवर्क में इस प्रकार उपयुक्त बैठता है। इनपुट स्पेस U और आउटपुट स्पेस Y दोनों को सम्मिश्र संख्याओं के समुच्चय के रूप में चुना गया है। स्टेट स्पेस X को L2(0, 1) के रूप में चुना गया है। ऑपरेटर A को इस रूप में परिभाषित किया गया है

यह प्रदर्शित किया जा सकता है[2] कि A X पर प्रबल निरंतर अर्धसमूह उत्पन्न करता है। बाउंडेड ऑपरेटर्स B, C और D को इस प्रकार परिभाषित किया जाता है:

उदाहरण: विलंब अवकल समीकरण

विलंब अवकल समीकरण

ऊपर वर्णित अमूर्त विकास समीकरण फ्रेमवर्क में इस प्रकार उपयुक्त बैठता है। इनपुट स्पेस U और आउटपुट स्पेस Y दोनों को सम्मिश्र संख्याओं के समुच्चय के रूप में चुना गया है। स्टेट स्पेस X को L2(−τ, 0) के रूप में चुना गया है। ऑपरेटर A को इस रूप में परिभाषित किया गया है

यह प्रदर्शित किया जा सकता है[3] कि A X पर प्रबल निरंतर अर्धसमूह उत्पन्न करता है। बाउंडेड ऑपरेटर्स B, C और D को इस प्रकार परिभाषित किया जाता है:

स्थानांतरण फलन

जैसा कि परिमित-आयामी स्थिति में स्थानांतरण फलन को लाप्लास परिवर्तन (निरंतर-समय) या Z-परिवर्तन (असतत-समय) के माध्यम से परिभाषित किया गया है। जबकि परिमित-आयामी स्थिति में स्थानांतरण फलन एक उचित तर्कसंगत फलन है, स्टेट स्पेस की अनंत-आयामीता तर्कहीन फलन की ओर ले जाती है (जो अभी भी होलोमोर्फिक हैं)।

असतत-समय

असतत-समय में, स्थानांतरण फलन द्वारा स्टेट स्पेस मापदंडों के संदर्भ में दिया जाता है और यह मूल पर केंद्रित डिस्क में होलोमोर्फिक है।[4] यदि 1/z A के रिसॉल्वेंट समुच्चय से संबंधित है (जो कि मूल बिंदु पर केंद्रित संभवतः छोटी डिस्क पर स्थिति है) तो स्थानांतरण फलन के बराबर होता है। एक रोचक तथ्य यह है कि कोई भी फलन जो शून्य में होलोमोर्फिक है, कुछ असतत-समय प्रणाली का स्थानांतरण फलन है।

सतत-समय

यदि A प्रबल निरंतर अर्धसमूह उत्पन्न करता है और B, C और D बाउंडेड ऑपरेटर्स हैं, तो[5] वास्तविक भाग के साथ s के लिए स्टेट स्पेस मापदण्ड्स के रूप में स्टेट स्पेस मापदण्ड्स के रूप में अनुपात समीकरण का दिया जाता है जब A द्वारा उत्पन्न अर्धसमूह के विस्तारी वृद्धि सीमा से अधिक हो। और अधिक सामान्य स्थितियों में, जैसा कि यह खड़ा है, तो यह सूत्र समय-स्थान मापदण्ड्स के रूप में दिया गया हो सकता है, लेकिन इस सूत्र का उचित विस्तार अभी भी बना होता है।[6] अनुपात समीकरण के लिए एक सरल अभिव्यक्ति प्राप्त करने के लिए यह प्रायः दिए गए उपयुक्त विस्तारी समीकरण में लापलेस परिवर्तन लेना अच्छा होता है, स्थिति स्पेस सूत्रों का उपयोग करने के स्थान पर जैसा कि उपरोक्त उदाहरणों पर प्रक्षिप्त किया गया है।

आंशिक अवकल समीकरण उदाहरण के लिए स्थानांतरण फलन

प्रारंभिक शर्त निर्धारित करना शून्य के बराबर और ऊपर दिए गए आंशिक अवकल समीकरण से प्राप्त बड़े अक्षरों द्वारा t के संबंध में लाप्लास परिवर्तनों को निरूपित करना।

यह एक अमानवीय रैखिक अवकल समीकरण है चर के रूप में, s एक मापदण्ड के रूप में और प्रारंभिक स्थिति शून्य। समाधान है। इसे Y के समीकरण में प्रतिस्थापित करना और प्राप्तियों को एकीकृत करना ताकि स्थानांतरण फलन हो।

विलंब अवकल समीकरण उदाहरण के लिए स्थानांतरण फलन

आंशिक अवकल समीकरण उदाहरण के समान ही आगे बढ़ते हुए, विलंब समीकरण उदाहरण के लिए स्थानांतरण फलन है।[7]

नियंत्रणीयता

अनंत-आयामी स्थिति में नियंत्रणीयता की कई गैर-समतुल्य परिभाषाएँ हैं जो परिमित-आयामी स्थितियों के लिए नियंत्रणीयता की एक सामान्य धारणा में बदल जाता है। नियंत्रणीयता की तीन सबसे महत्वपूर्ण अवधारणाएँ हैं:

  • पूर्ण नियंत्रणीयता,
  • अनुमानित नियंत्रणीयता,
  • शून्य नियंत्रणीयता.

असतत समय में नियंत्रणीयता

मानचित्रों द्वारा एक महत्वपूर्ण भूमिका निभाई जाती है जो सभी U मूल्यवान अनुक्रमों के समुच्चय को X में मैप करता है और इसके द्वारा दिया जाता है। यह है वह स्थिति है जो प्रारंभिक स्थिति शून्य होने पर इनपुट अनुक्रम U प्रयुक्त करने से प्राप्त होती है। निम्न प्रणाली कहा जाता है:

  • समय n में बिल्कुल नियंत्रणीय यदि की सीमा X के बराबर है,
  • समय n में लगभग नियंत्रणीय यदि की सीमा X में सघन है,
  • समय n में शून्य नियंत्रणीय यदि की सीमा A की रेंज An सम्मिलित है।

निरंतर-समय में नियंत्रणीयता

निरंतर-समय प्रणालियों की नियंत्रणीयता में , द्वारा दिया गया मानचित्र वही भूमिका निभाता है जो Φ अलग-अलग समय में निभाता है। हालाँकि, नियंत्रण फलनों का वह स्पेस जिस पर यह ऑपरेटर अब फलन करता है, परिभाषा को प्रभावित करता है। सामान्य विकल्प L2(0, ∞;U) है, अंतराल (0, ∞) पर U-मान वाले वर्ग-अभिन्न फलन का स्थान (समतुल्य वर्ग), लेकिन अन्य विकल्प जैसे L1(0, ∞;U) संभव हैं. का डोमेन चुने जाने के बाद विभिन्न नियंत्रणीयता धारणाओं को परिभाषित किया जा सकता है। प्रणाली को कहा जाता है:[8]

  • समय t में बिल्कुल नियंत्रणीय यदि की सीमा X के बराबर है,
  • समय t में लगभग नियंत्रणीय यदि की सीमा X में सघन है,
  • समय t में शून्य नियंत्रणीय यदि की सीमा की रेंज सम्मिलित है।

अवलोकनशीलता

परिमित-आयामी स्थिति की तरह, अवलोकनीयता नियंत्रणीयता की दोहरी धारणा है। अनंत-आयामी स्थिति में अवलोकन के बारे में कई अलग-अलग धारणाएं हैं जो परिमित-आयामी स्थिति में मेल खाती हैं। इनमें से तीन सबसे महत्वपूर्ण हैं:

  • पूर्ण अवलोकनीयता (जिसे निरंतर अवलोकनशीलता के रूप में भी जाना जाता है),
  • अनुमानित अवलोकन क्षमता,
  • अंतिम स्थिति का अवलोकन।

अलग-अलग समय में अवलोकनीयता

मानचित्र द्वारा एक महत्वपूर्ण भूमिका निभाई जाती है जो X को सभी Y-मान अनुक्रमों के स्थान में मैप करता है और द्वारा दिया जाता है यदि k ≤ n और शून्य यदि k > n है। व्याख्या यह है कि प्रारंभिक स्थिति x और नियंत्रण शून्य के साथ काटा गया आउटपुट है। निम्न प्रणाली कहा जाता है:

  • समय n में बिल्कुल देखने योग्य यदि कोई kn > 0 उपस्थित है जैसे कि सभी x ∈ X के लिए,
  • लगभग समय n यदि में अवलोकनीय इंजेक्टिव है,
  • समय n में बिल्कुल देखने योग्य यदि कोई kn > 0 उपस्थित है जैसे कि सभी x ∈ X के लिए,

सतत-समय में अवलोकनीयता

निरंतर-समय प्रणालियों के अवलोकन में s∈[0,t] के लिए द्वारा दिया गया मानचित्र और s>t के लिए शून्य वह भूमिका निभाता है जो अलग समय में निभाता है। हालाँकि, यह ऑपरेटर अब जिन फ़ंक्शंस को मैप करता है उनका स्थान परिभाषा को प्रभावित करता है। सामान्य विकल्प L2(0, ∞, Y) है, अंतराल (0,∞) पर Y-मूल्यवान वर्ग-अभिन्न फलन का स्थान (समतुल्य वर्ग), लेकिन अन्य विकल्प जैसे L1(0, ∞, Y) संभव हैं. का सह-डोमेन चुने जाने के बाद विभिन्न अवलोकन संबंधी धारणाओं को परिभाषित किया जा सकता है। निम्न प्रणाली कहा जाता है:[9]

  • समय t में पूर्ण रूप से देखने योग्य यदि kt > 0 उपस्थित है जैसे कि सभी xX के लिए ,
  • यदि इंजेक्टिव है, तो समय t में लगभग अवलोकन योग्य है,
  • समय t में पूर्ण रूप से देखने योग्य यदि kt > 0 उपस्थित है जैसे कि सभी xX के लिए ,

नियंत्रणीयता और अवलोकनीयता के बीच द्वैत

जैसा कि परिमित-आयामी स्थिति में, नियंत्रणीयता और अवलोकनीयता दोहरी अवधारणाएं हैं (कम से कम तब जब के डोमेन और के सह-डोमेन के लिए सामान्य L2 विकल्प बनाया जाता है)। विभिन्न अवधारणाओं के द्वैत के अंतर्गत पत्राचार है:[10]

  • पूर्ण नियंत्रणीयता ↔ पूर्ण अवलोकन क्षमता,
  • अनुमानित नियंत्रणीयता ↔ अनुमानित अवलोकन क्षमता,
  • अशक्त नियंत्रणीयता ↔ अंतिम स्थिति का अवलोकन।

यह भी देखें

  • नियंत्रण सिद्धांत
  • स्टेट स्पेस (नियंत्रण)

टिप्पणियाँ

  1. Curtain and Zwart
  2. Curtain and Zwart Example 2.2.4
  3. Curtain and Zwart Theorem 2.4.6
  4. This is the mathematical convention, engineers seem to prefer transfer functions to be holomorphic at infinity; this is achieved by replacing z by 1/z
  5. Curtain and Zwart Lemma 4.3.6
  6. Staffans Theorem 4.6.7
  7. Curtain and Zwart Example 4.3.13
  8. Tucsnak Definition 11.1.1
  9. Tucsnak Definition 6.1.1
  10. Tucsnak Theorem 11.2.1

संदर्भ

  • Curtain, Ruth; Zwart, Hans (1995), An Introduction to Infinite-Dimensional Linear Systems theory, Springer
  • Tucsnak, Marius; Weiss, George (2009), Observation and Control for Operator Semigroups, Birkhauser
  • Staffans, Olof (2005), Well-posed linear systems, Cambridge University Press
  • Luo, Zheng-Hua; Guo, Bao-Zhu; Morgul, Omer (1999), Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer
  • Lasiecka, Irena; Triggiani, Roberto (2000), Control Theory for Partial Differential Equations, Cambridge University Press
  • Bensoussan, Alain; Da Prato, Giuseppe; Delfour, Michel; Mitter, Sanjoy (2007), Representation and Control of Infinite Dimensional Systems (second ed.), Birkhauser