मैग्नेटो-इलेक्ट्रिक स्पिन-ऑर्बिट: Difference between revisions
No edit summary |
m (4 revisions imported from alpha:मैग्नेटो-इलेक्ट्रिक_स्पिन-ऑर्बिट) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''मैग्नेटो-इलेक्ट्रिक स्पिन-ऑर्बिट''' (एमईएसओ) मापनीय [[ एकीकृत परिपथ |एकीकृत परिपथ]] के निर्माण के लिए प्रारूपित की गई एक तकनीक है, जो [[इंटेल]] द्वारा प्रस्तावित मॉस्फेट जैसे सीएमओएस उपकरणों के सापेक्ष में एक अलग संचालन सिद्धांत के साथ काम करता है।<ref>https://www.extremetech.com/computing/286163-intels-fundamentally-new-meso-architecture-could-arrive-in-a-few-years</ref> यह प्रौद्योगिकी सीएमओएस उपकरण निर्माण तकनीक और मशीनरी के साथ संगत है।<ref name="venturebeat"/><ref name="nature"/> | '''मैग्नेटो-इलेक्ट्रिक स्पिन-ऑर्बिट''' (एमईएसओ) मापनीय [[ एकीकृत परिपथ |एकीकृत परिपथ]] के निर्माण के लिए प्रारूपित की गई एक तकनीक है, जो [[इंटेल]] द्वारा प्रस्तावित मॉस्फेट जैसे सीएमओएस उपकरणों के सापेक्ष में एक अलग संचालन सिद्धांत के साथ काम करता है।<ref>https://www.extremetech.com/computing/286163-intels-fundamentally-new-meso-architecture-could-arrive-in-a-few-years</ref> यह प्रौद्योगिकी सीएमओएस उपकरण निर्माण तकनीक और मशीनरी के साथ संगत है।<ref name="venturebeat"/><ref name="nature"/> | ||
ये स्थापत्य उत्पाद प्रक्रिया के साथ बनाए गए थे जो सीएमओएस उपकरणों के उपयोग के लिए किए गए थे, क्योंकि कुछ सीएमओएस उपकरण अब भी अन्य परिपथों के साथ इंटरफेस के लिए और एक एकीकृत प्रक्रिया परिपथ के लिए घड़ी की संकेत प्रदान करने के लिए आवश्यक होते हैं, और उपस्थित | एमईएसओ के प्रारंभ से पहले, इंटेल ने बियॉन्ड सीएमओएस प्रवर्धन के लिए 17 अलग-अलग उपकरण स्थापत्य का मूल्यांकन किया था, जिसका उद्देश्य एकीकृत परिपथ में उपयोग किए जाने वाले एमओएसएफईटी जैसे सीएमओएस उपकरणों के साथ उपस्थित प्रवर्धन चुनौतियों को पार करना था। ये स्थापत्य उत्पाद प्रक्रिया के साथ बनाए गए थे जो सीएमओएस उपकरणों के उपयोग के लिए किए गए थे, क्योंकि कुछ सीएमओएस उपकरण अब भी अन्य परिपथों के साथ इंटरफेस के लिए और एक एकीकृत प्रक्रिया परिपथ के लिए घड़ी की संकेत प्रदान करने के लिए आवश्यक होते हैं, और उपस्थित उत्पाद उपकरणों को पुनर्गुणवत करने के लिए आवश्यक हैं।<ref name="venturebeat">{{cite web | url=https://venturebeat.com/technology/intel-looks-beyond-cmos-to-meso/ | title=इंटेल CMOS से आगे MESO तक की ओर देखता है| date=14 January 2022 }}</ref> टनलिंग एफईटीएस, ग्रेफेन पी-एन जंक्शन्स, आईटीएफईटीएस, बिसएफईटी, स्पिनएफईटीएस, ऑल स्पिन लॉजिक, स्पिन टॉर्क ऑसिलेटर्स, डोमेन वॉल लॉजिक, स्पिन टॉर्क मेजॉरिटी, स्पिन टॉर्क त्रिकोण, स्पिन वेव डिवाइस, नैनो मैग्नेट लॉजिक, आवेश स्पिन लॉजिक, पायजो एफईटीएस, एमआईटीएफईटीएस, एफईफईटीएस और नेगेटिव कैपैसिटेंस एफईटीएस परीक्षण किया गया और पाया गया कि इनमें से कोई भी सीएमओएस के सापेक्ष में कम शक्ति खपत का संयोजन प्रदान नहीं किया था। वेंचरबीट के अनुसार, अनुकरण ने दिखाया कि, 32-बिट एएलयू पर, एमईएसओ उपकरण सीएमओएस एचपी उपकरणों के सापेक्ष में उच्च प्रदर्शन और कम पावर डेंसिटी (ऊर्जा घनत्व) प्रदान करते हैं, जो सभी अन्य डिवाइसों में एमईएसओ के अतिरिक्त सबसे उच्च प्रदर्शन था।<ref>https://www.eetimes.com/intel-shows-life-beyond-cmos/</ref> | ||
एमईएसओ उपकरण स्पिन ऑर्बिट | एमईएसओ उपकरण स्पिन ऑर्बिट युग्मन प्रभाव के साथ [[मैग्नेटोइलेक्ट्रिक प्रभाव]] के युग्मन द्वारा संचालित होते हैं।<ref name="nature" />विशेष रूप से, मैग्नेटोइलेक्ट्रिक प्रभाव एक प्रेरित विद्युत क्षेत्र के कारण उपकरण के भीतर चुंबकत्व में बदलाव को प्रेरित करता है, जिसे स्पिन ऑर्बिट युग्मन घटक द्वारा पढ़ा जा सकता है जो इसे विद्युत आवेश में परिवर्तित करता है।<ref name="MESO experimental demo" /><ref name="nature" />यह उपकरण इस बात के अनुरूप है कि कैसे एक सीएमओएस उपकरण एक लॉजिक गेट बनाने के लिए स्रोत, गेट और ड्रेन इलेक्ट्रोड के साथ मिलकर काम करता है। | ||
[[सीएमओएस]] | [[सीएमओएस]] के सापेक्ष में, एमईएसओ परिपथ को स्विचिंग के लिए कम ऊर्जा की आवश्यकता हो सकती है, उनका संचालन वोल्टेज कम हो सकता है, उनमें अधिक एकीकरण घनत्व हो सकता है, इसमें गैर-अस्थिरता होती है जो अल्ट्रा-लो स्टैंडबाय बिजली की खपत की अनुमति देता है। | ||
2020 | 2020 के रूप में, यह प्रौद्योगिकी इंटेल और कैलिफोर्निया यूनिवर्सिटी, बर्कले द्वारा विकसित की जा रही है।<ref name="designnews" /> पहला प्रयोग, 2020 में नैनोगुन में आयोजित किया गया था, जिसमें स्पिन-ऑर्बिट युग्मनका उपयोग एमईएसओ को प्रयोजनात्मक बनाने के लिए किया गया था। <ref>{{Cite journal |last1=Pham |first1=Van Tuong |last2=Groen |first2=Inge |last3=Manipatruni |first3=Sasikanth |last4=Choi |first4=Won Young |last5=Nikonov |first5=Dmitri E. |last6=Sagasta |first6=Edurne |last7=Lin |first7=Chia-Ching |last8=Gosavi |first8=Tanay A. |last9=Marty |first9=Alain |last10=Hueso |first10=Luis E. |last11=Young |first11=Ian A. |date=June 2020 |title=Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures |url=http://www.nature.com/articles/s41928-020-0395-y |journal=Nature Electronics |language=en |volume=3 |issue=6 |pages=309–315 |doi=10.1038/s41928-020-0395-y |arxiv=2002.10581 |s2cid=211296841 |issn=2520-1131}}</ref> उपकरणों के साथ जुड़े मैटेरियल्स के संदर्भ में, मैटेरियल्स में एमई लेखन प्रक्रियाओं में बड़ी चुनौती है। पिछले कुछ वर्षों से, वैज्ञानिकों ने नैनोस्ट्रक्चर में मैग्नीटोइलेक्ट्रिक प्रभाव काम करने के लिए बड़े प्रयास किए हैं। मुख्य विषय यह है कि जब फेरोइलेक्ट्रिक सामग्री पतली झिल्ली में स्थानांतरित होती है, तो यह अपने एफई गुणों को खो देती है, और एनएम आकार प्रणालियों पर एफई-एफएम (एमई) की उच्च दक्षता-युग्मन का अनुभव करना और भी कठिन हो जाता है। | ||
{| class="wikitable" | {| class="wikitable" | ||
! | ! | ||
! | !फ़ीचर आकार [एनएम] | ||
! | !आपूर्ति वोल्टेज [एमवी] | ||
! | !स्विचिंग एनर्जी [जे] | ||
|- | |- | ||
! scope=row | | ! scope="row" |सीएमओएस | ||
| 10 || 100 - 700|| 300x10<sup>−18</sup> | | 10 || 100 - 700|| 300x10<sup>−18</sup> | ||
|- | |- | ||
! scope=row | | ! scope="row" |एमईएसओ | ||
| 10 || 10 - 100 || 10x10<sup>−18</sup> | | 10 || 10 - 100 || 10x10<sup>−18</sup> | ||
|} | |} | ||
Line 123: | Line 124: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 07/08/2023]] | [[Category:Created On 07/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:34, 28 September 2023
मैग्नेटो-इलेक्ट्रिक स्पिन-ऑर्बिट (एमईएसओ) मापनीय एकीकृत परिपथ के निर्माण के लिए प्रारूपित की गई एक तकनीक है, जो इंटेल द्वारा प्रस्तावित मॉस्फेट जैसे सीएमओएस उपकरणों के सापेक्ष में एक अलग संचालन सिद्धांत के साथ काम करता है।[1] यह प्रौद्योगिकी सीएमओएस उपकरण निर्माण तकनीक और मशीनरी के साथ संगत है।[2][3]
एमईएसओ के प्रारंभ से पहले, इंटेल ने बियॉन्ड सीएमओएस प्रवर्धन के लिए 17 अलग-अलग उपकरण स्थापत्य का मूल्यांकन किया था, जिसका उद्देश्य एकीकृत परिपथ में उपयोग किए जाने वाले एमओएसएफईटी जैसे सीएमओएस उपकरणों के साथ उपस्थित प्रवर्धन चुनौतियों को पार करना था। ये स्थापत्य उत्पाद प्रक्रिया के साथ बनाए गए थे जो सीएमओएस उपकरणों के उपयोग के लिए किए गए थे, क्योंकि कुछ सीएमओएस उपकरण अब भी अन्य परिपथों के साथ इंटरफेस के लिए और एक एकीकृत प्रक्रिया परिपथ के लिए घड़ी की संकेत प्रदान करने के लिए आवश्यक होते हैं, और उपस्थित उत्पाद उपकरणों को पुनर्गुणवत करने के लिए आवश्यक हैं।[2] टनलिंग एफईटीएस, ग्रेफेन पी-एन जंक्शन्स, आईटीएफईटीएस, बिसएफईटी, स्पिनएफईटीएस, ऑल स्पिन लॉजिक, स्पिन टॉर्क ऑसिलेटर्स, डोमेन वॉल लॉजिक, स्पिन टॉर्क मेजॉरिटी, स्पिन टॉर्क त्रिकोण, स्पिन वेव डिवाइस, नैनो मैग्नेट लॉजिक, आवेश स्पिन लॉजिक, पायजो एफईटीएस, एमआईटीएफईटीएस, एफईफईटीएस और नेगेटिव कैपैसिटेंस एफईटीएस परीक्षण किया गया और पाया गया कि इनमें से कोई भी सीएमओएस के सापेक्ष में कम शक्ति खपत का संयोजन प्रदान नहीं किया था। वेंचरबीट के अनुसार, अनुकरण ने दिखाया कि, 32-बिट एएलयू पर, एमईएसओ उपकरण सीएमओएस एचपी उपकरणों के सापेक्ष में उच्च प्रदर्शन और कम पावर डेंसिटी (ऊर्जा घनत्व) प्रदान करते हैं, जो सभी अन्य डिवाइसों में एमईएसओ के अतिरिक्त सबसे उच्च प्रदर्शन था।[4]
एमईएसओ उपकरण स्पिन ऑर्बिट युग्मन प्रभाव के साथ मैग्नेटोइलेक्ट्रिक प्रभाव के युग्मन द्वारा संचालित होते हैं।[3]विशेष रूप से, मैग्नेटोइलेक्ट्रिक प्रभाव एक प्रेरित विद्युत क्षेत्र के कारण उपकरण के भीतर चुंबकत्व में बदलाव को प्रेरित करता है, जिसे स्पिन ऑर्बिट युग्मन घटक द्वारा पढ़ा जा सकता है जो इसे विद्युत आवेश में परिवर्तित करता है।[5][3]यह उपकरण इस बात के अनुरूप है कि कैसे एक सीएमओएस उपकरण एक लॉजिक गेट बनाने के लिए स्रोत, गेट और ड्रेन इलेक्ट्रोड के साथ मिलकर काम करता है।
सीएमओएस के सापेक्ष में, एमईएसओ परिपथ को स्विचिंग के लिए कम ऊर्जा की आवश्यकता हो सकती है, उनका संचालन वोल्टेज कम हो सकता है, उनमें अधिक एकीकरण घनत्व हो सकता है, इसमें गैर-अस्थिरता होती है जो अल्ट्रा-लो स्टैंडबाय बिजली की खपत की अनुमति देता है।
2020 के रूप में, यह प्रौद्योगिकी इंटेल और कैलिफोर्निया यूनिवर्सिटी, बर्कले द्वारा विकसित की जा रही है।[6] पहला प्रयोग, 2020 में नैनोगुन में आयोजित किया गया था, जिसमें स्पिन-ऑर्बिट युग्मनका उपयोग एमईएसओ को प्रयोजनात्मक बनाने के लिए किया गया था। [7] उपकरणों के साथ जुड़े मैटेरियल्स के संदर्भ में, मैटेरियल्स में एमई लेखन प्रक्रियाओं में बड़ी चुनौती है। पिछले कुछ वर्षों से, वैज्ञानिकों ने नैनोस्ट्रक्चर में मैग्नीटोइलेक्ट्रिक प्रभाव काम करने के लिए बड़े प्रयास किए हैं। मुख्य विषय यह है कि जब फेरोइलेक्ट्रिक सामग्री पतली झिल्ली में स्थानांतरित होती है, तो यह अपने एफई गुणों को खो देती है, और एनएम आकार प्रणालियों पर एफई-एफएम (एमई) की उच्च दक्षता-युग्मन का अनुभव करना और भी कठिन हो जाता है।
फ़ीचर आकार [एनएम] | आपूर्ति वोल्टेज [एमवी] | स्विचिंग एनर्जी [जे] | |
---|---|---|---|
सीएमओएस | 10 | 100 - 700 | 300x10−18 |
एमईएसओ | 10 | 10 - 100 | 10x10−18 |
संदर्भ
- ↑ https://www.extremetech.com/computing/286163-intels-fundamentally-new-meso-architecture-could-arrive-in-a-few-years
- ↑ 2.0 2.1 "इंटेल CMOS से आगे MESO तक की ओर देखता है". 14 January 2022.
- ↑ 3.0 3.1 3.2 Manipatruni, Sasikanth; Nikonov, Dmitri E.; Lin, Chia-Ching; Gosavi, Tanay A.; Liu, Huichu; Prasad, Bhagwati; Huang, Yen-Lin; Bonturim, Everton; Ramesh, Ramamoorthy; Young, Ian A. (2018). "Scalable energy-efficient magnetoelectric spin–orbit logic". Nature. 565 (7737): 35–42. doi:10.1038/s41586-018-0770-2. PMID 30510160. S2CID 54444242.
- ↑ https://www.eetimes.com/intel-shows-life-beyond-cmos/
- ↑ Lin, Chia-Ching; Gosavi, Tanay; Nikonov, Dmitri E.; Huang, Yen-Lin; Prasad, Bhagwati; Choi, WonYoung; Pham, Van Tuong; Groen, Inge; Chen, Jun-Yang; DC, Mahendra; Liu, Huichu; Oguz, Kaan; Walker, Emily S; Plombon, John; Buford, Benjamin; Naylor, Carl H.; Wang, Jian-Ping; Casanova, Felix; Ramesh, Ramamoorthy; Young, Ian A. (2019). "Experimental demonstration of integrated magneto-electric and spin-orbit building blocks implementing energy-efficient logic". 2019 IEEE International Electron Devices Meeting (IEDM). pp. 37.3.1–37.3.4. doi:10.1109/IEDM19573.2019.8993620. ISBN 978-1-7281-4032-2. S2CID 211210115.
{{cite book}}
:|journal=
ignored (help)CS1 maint: date and year (link) - ↑ "How the New Quantum 'MESO' Architecture Could Replace CMOS". DesignNews. 10 January 2019. Retrieved 2019-07-27.
- ↑ Pham, Van Tuong; Groen, Inge; Manipatruni, Sasikanth; Choi, Won Young; Nikonov, Dmitri E.; Sagasta, Edurne; Lin, Chia-Ching; Gosavi, Tanay A.; Marty, Alain; Hueso, Luis E.; Young, Ian A. (June 2020). "Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures". Nature Electronics (in English). 3 (6): 309–315. arXiv:2002.10581. doi:10.1038/s41928-020-0395-y. ISSN 2520-1131. S2CID 211296841.