यंत्र अधिगम नियंत्रण: Difference between revisions
No edit summary |
m (17 revisions imported from alpha:यंत्र_अधिगम_नियंत्रण) |
||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Subfield of machine learning, intelligent control and control theory}} | {{short description|Subfield of machine learning, intelligent control and control theory}} | ||
'''यंत्र लर्निंग | '''यंत्र अधिगम नियंत्रण (मशीन लर्निंग कण्ट्रोल (एमएलसी))''' मशीन अधिगम, बुद्धिमत्ता नियंत्रण और नियंत्रण सिद्धांत के उपक्षेत्र का है, जो मशीन अधिगम के विधियों से [[इष्टतम नियंत्रण]] समस्याओं का समाधान करता है। मुख्य अनुप्रयोग होते हैं जिनमें जटिल अनैतिक प्रणालियाँ सम्मिलित हैं, जिसके लिए रैखिक नियंत्रण सिद्धांतो का उपयोग नहीं किया जा सकता है | ||
==समस्याओं एवं कार्यों के प्रकार == | ==समस्याओं एवं कार्यों के प्रकार == | ||
सामान्यत: चार तरह की समस्याएं सामने आती हैं। | |||
* नियंत्रण पैरामीटर पहचान: | * नियंत्रण पैरामीटर पहचान: यदि नियंत्रण नियम की संरचना दी गई है, परंतु पैरामीटर अज्ञात हैं, <ref name="Baeck1993">Thomas Bäck & Hans-Paul Schwefel (Spring 1993) [http://doi.org/10.1162/evco.1993.1.1.1 "An overview of evolutionary algorithms for parameter optimization"], [[Evolutionary Computation (journal)|Journal of Evolutionary Computation (MIT Press)]], vol. 1, no. 1, pp. 1-23</ref>तो एमएलसी पैरामीटर पहचान को पैरामीटर पहचान में बदल दिया जाता है। एक उदाहरण है [[पीआईडी नियंत्रक]] के संघटकों को अनुकूलित करने के लिए जीनेटिक कलन विधि या असतत-समय इष्टतम नियंत्रण का उपयोग करना है।<ref name="Benard2015aiaa">N. Benard, J. Pons-Prats, J. Periaux, G. Bugeda, J.-P. Bonnet & E. Moreau, (2015) [https://arc.aiaa.org/doi/abs/10.2514/6.2015-2957 "Multi-Input Genetic Algorithm for Experimental Optimization of the Reattachment Downstream of a Backward-Facing Step with Surface Plasma Actuator"], Paper AIAA 2015-2957 at 46th AIAA Plasmadynamics and Lasers Conference, Dallas, TX, USA, pp. 1-23.</ref> | ||
* पहली तरह की प्रतिगमन समस्या के रूप में नियंत्रण | * पहली तरह की प्रतिगमन समस्या के रूप में नियंत्रण प्रारूप: एमएलसी संवेदक संकेत से क्रियान्वयन आदेश तक एक सामान्य गैर रैखिक मैपिंग का अनुमान लगाता है, यदि संवेदक संकेत और इष्टतम क्रियान्वयन आदेश हर क्षेत्र के लिए जाना जाता है। इसके एक उदाहरण में, एक निश्चित पूर्ण स्थिति प्रतिसाद से संवेदक प्रतिसाद की गणना है। इस कार्य के लिए एक न्यूरल नेटवर्क सामान्यत: प्रयुक्त तकनीक हैं।<ref>C. Lee, J. Kim, D. Babcock & R. Goodman (1997) [https://dx.doi.org/10.1063/1.869290 "Application of neural networks to turbulence control for drag reduction"], [[Physics of Fluids]], vol. 6, no. 9, pp. 1740-1747</ref> | ||
* दूसरे प्रकार की प्रतिगमन समस्या के रूप में नियंत्रण | * दूसरे प्रकार की प्रतिगमन समस्या के रूप में नियंत्रण प्रारूप: एमएलसी यादृच्छिक ढंग से गैर-रेखीय नियंत्रण विधियों की भी पहचान कर सकता है जो संयंत्र की लागत फलन को कम करते हैं। इस विषय में, न तो कोई प्रारूप, न ही नियंत्रण विधि संरचना, न ही अनुकूलन क्रियान्वयन आदेश को जानने की आवश्यकता है। अनुकूलन केवल संयंत्र में मापे गए नियंत्रण प्रदर्शन (लागत फलन) पर आधारित है। [[ आनुवंशिक प्रोग्रामिंग |आनुवंशिक प्रोग्रामिंग]] इस उद्देश्य के लिए एक शक्तिशाली प्रतिगमन तकनीक है।<ref>D. C. Dracopoulos & S. Kent (December 1997) [http://doi.org/10.1007/BF01501508 "Genetic programming for prediction and control"], Neural Computing & Applications (Springer), vol. 6, no. 4, pp. 214-228.</ref> | ||
* सुदृढीकरण सीखने का नियंत्रण: | * सुदृढीकरण सीखने का नियंत्रण: नियंत्रण नियम नये मापी गई प्रदर्शन परिवर्धनों (पुरस्कारों) पर नियंत्रण विधि का उपयोग करके लगातार अद्यतन किया जा सकता है।<ref>Andrew G. Barto (December 1994) [http://doi.org/10.1016/0959-4388(94)90138-4 "Reinforcement learning control"], [[Current Opinion in Neurobiology]], vol. 6, no. 4, pp. 888–893</ref> | ||
उदाहरण के लिए, एमएलसी में तंत्रिका नेटवर्क नियंत्रण | उदाहरण के लिए, एमएलसी में तंत्रिका नेटवर्क नियंत्रण सम्मिलित है, | ||
आनुवंशिक | |||
आनुवंशिक कलन विधि आधारित नियंत्रण, | |||
आनुवंशिक प्रोग्रामिंग नियंत्रण, | आनुवंशिक प्रोग्रामिंग नियंत्रण, | ||
सुदृढीकरण सीखने का नियंत्रण, | सुदृढीकरण सीखने का नियंत्रण, | ||
और अन्य डेटा-संचालित नियंत्रण के साथ पद्धतिगत | |||
और अन्य डेटा-संचालित नियंत्रण के साथ पद्धतिगत अद्यतन है, | |||
जैसे कृत्रिम बुद्धिमत्ता और [[रोबोट नियंत्रण]]। | जैसे कृत्रिम बुद्धिमत्ता और [[रोबोट नियंत्रण]]। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
एमएलसी सफलतापूर्वक लागू कर दिया गया है | एमएलसी सफलतापूर्वक लागू कर दिया गया है अन्य अरेखीय नियंत्रण समस्याओं के लिए,अज्ञात और प्रायः अप्रत्याशित सक्रियण तंत्र की खोज करना।उदाहरण अनुप्रयोगों में सम्मिलित हैं | ||
अज्ञात और | |||
* उपग्रहों का दृष्टिकोण नियंत्रण।<ref>Dimitris. C. Dracopoulos & [[Antonia J. Jones|Antonia. J. Jones]] (1994) | * उपग्रहों का दृष्टिकोण नियंत्रण।<ref>Dimitris. C. Dracopoulos & [[Antonia J. Jones|Antonia. J. Jones]] (1994) | ||
Line 27: | Line 29: | ||
* फीडबैक अशांति नियंत्रण।<ref name=Benard2015aiaa /><ref>Steven J. Brunton & Bernd R. Noack (2015) [http://doi.org/10.1115/1.4031175 Closed-loop turbulence control: Progress and challenges], [[Applied Mechanics Reviews]], vol. 67, no. 5, article 050801, pp. 1-48.</ref> | * फीडबैक अशांति नियंत्रण।<ref name=Benard2015aiaa /><ref>Steven J. Brunton & Bernd R. Noack (2015) [http://doi.org/10.1115/1.4031175 Closed-loop turbulence control: Progress and challenges], [[Applied Mechanics Reviews]], vol. 67, no. 5, article 050801, pp. 1-48.</ref> | ||
* दूर से संचालित पानी के भीतर वाहन।<ref>J. Javadi-Moghaddam, & A. Bagheri (2010 [http://doi.org/10.1016/j.eswa.2009.06.015 "An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle"], [https://www.journals.elsevier.com/expert-systems-with-applications/ Expert Systems with Applications], vol. 37 no. 1, pp. 647-660.</ref> | * दूर से संचालित पानी के भीतर वाहन।<ref>J. Javadi-Moghaddam, & A. Bagheri (2010 [http://doi.org/10.1016/j.eswa.2009.06.015 "An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle"], [https://www.journals.elsevier.com/expert-systems-with-applications/ Expert Systems with Applications], vol. 37 no. 1, pp. 647-660.</ref> | ||
* पीजे फ्लेमिंग और आरसी पर्सहाउस (2002) | * पीजे फ्लेमिंग और आरसी पर्सहाउस (2002) <ref>Peter J. Fleming, R. C. Purshouse (2002 [http://doi.org/10.1016/S0967-0661(02)00081-3 "Evolutionary algorithms in control systems engineering: a survey"] | ||
[[:nl:Control Engineering Practice|Control Engineering Practice]], vol. 10, no. 11, pp. 1223-1241</ref> | [[:nl:Control Engineering Practice|Control Engineering Practice]], vol. 10, no. 11, pp. 1223-1241</ref> | ||
एमएलसी | और भी अधिक इंजीनियरिंग एमएलसी अनुप्रयोगों का संक्षेप दिया गययद्यपिालांकि, सामान्य गैर रूढ़ी विधियों की तरह, एमएलसी के पास विभिन्न संचालन स्थितियों के लिए कोई निश्चित संघटन, श्रेष्ठता या प्रतिरक्षण की कोई गारंटी नहीं होती। | ||
विभिन्न | |||
== संदर्भ == | == संदर्भ == | ||
Line 47: | Line 48: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 10/08/2023]] | [[Category:Created On 10/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 19:11, 3 October 2023
यंत्र अधिगम नियंत्रण (मशीन लर्निंग कण्ट्रोल (एमएलसी)) मशीन अधिगम, बुद्धिमत्ता नियंत्रण और नियंत्रण सिद्धांत के उपक्षेत्र का है, जो मशीन अधिगम के विधियों से इष्टतम नियंत्रण समस्याओं का समाधान करता है। मुख्य अनुप्रयोग होते हैं जिनमें जटिल अनैतिक प्रणालियाँ सम्मिलित हैं, जिसके लिए रैखिक नियंत्रण सिद्धांतो का उपयोग नहीं किया जा सकता है
समस्याओं एवं कार्यों के प्रकार
सामान्यत: चार तरह की समस्याएं सामने आती हैं।
- नियंत्रण पैरामीटर पहचान: यदि नियंत्रण नियम की संरचना दी गई है, परंतु पैरामीटर अज्ञात हैं, [1]तो एमएलसी पैरामीटर पहचान को पैरामीटर पहचान में बदल दिया जाता है। एक उदाहरण है पीआईडी नियंत्रक के संघटकों को अनुकूलित करने के लिए जीनेटिक कलन विधि या असतत-समय इष्टतम नियंत्रण का उपयोग करना है।[2]
- पहली तरह की प्रतिगमन समस्या के रूप में नियंत्रण प्रारूप: एमएलसी संवेदक संकेत से क्रियान्वयन आदेश तक एक सामान्य गैर रैखिक मैपिंग का अनुमान लगाता है, यदि संवेदक संकेत और इष्टतम क्रियान्वयन आदेश हर क्षेत्र के लिए जाना जाता है। इसके एक उदाहरण में, एक निश्चित पूर्ण स्थिति प्रतिसाद से संवेदक प्रतिसाद की गणना है। इस कार्य के लिए एक न्यूरल नेटवर्क सामान्यत: प्रयुक्त तकनीक हैं।[3]
- दूसरे प्रकार की प्रतिगमन समस्या के रूप में नियंत्रण प्रारूप: एमएलसी यादृच्छिक ढंग से गैर-रेखीय नियंत्रण विधियों की भी पहचान कर सकता है जो संयंत्र की लागत फलन को कम करते हैं। इस विषय में, न तो कोई प्रारूप, न ही नियंत्रण विधि संरचना, न ही अनुकूलन क्रियान्वयन आदेश को जानने की आवश्यकता है। अनुकूलन केवल संयंत्र में मापे गए नियंत्रण प्रदर्शन (लागत फलन) पर आधारित है। आनुवंशिक प्रोग्रामिंग इस उद्देश्य के लिए एक शक्तिशाली प्रतिगमन तकनीक है।[4]
- सुदृढीकरण सीखने का नियंत्रण: नियंत्रण नियम नये मापी गई प्रदर्शन परिवर्धनों (पुरस्कारों) पर नियंत्रण विधि का उपयोग करके लगातार अद्यतन किया जा सकता है।[5]
उदाहरण के लिए, एमएलसी में तंत्रिका नेटवर्क नियंत्रण सम्मिलित है,
आनुवंशिक कलन विधि आधारित नियंत्रण,
आनुवंशिक प्रोग्रामिंग नियंत्रण,
सुदृढीकरण सीखने का नियंत्रण,
और अन्य डेटा-संचालित नियंत्रण के साथ पद्धतिगत अद्यतन है,
जैसे कृत्रिम बुद्धिमत्ता और रोबोट नियंत्रण।
अनुप्रयोग
एमएलसी सफलतापूर्वक लागू कर दिया गया है अन्य अरेखीय नियंत्रण समस्याओं के लिए,अज्ञात और प्रायः अप्रत्याशित सक्रियण तंत्र की खोज करना।उदाहरण अनुप्रयोगों में सम्मिलित हैं
- उपग्रहों का दृष्टिकोण नियंत्रण।[6]
- थर्मल नियंत्रण का निर्माण।[7]
- फीडबैक अशांति नियंत्रण।[2][8]
- दूर से संचालित पानी के भीतर वाहन।[9]
- पीजे फ्लेमिंग और आरसी पर्सहाउस (2002) [10]
और भी अधिक इंजीनियरिंग एमएलसी अनुप्रयोगों का संक्षेप दिया गययद्यपिालांकि, सामान्य गैर रूढ़ी विधियों की तरह, एमएलसी के पास विभिन्न संचालन स्थितियों के लिए कोई निश्चित संघटन, श्रेष्ठता या प्रतिरक्षण की कोई गारंटी नहीं होती।
संदर्भ
- ↑ Thomas Bäck & Hans-Paul Schwefel (Spring 1993) "An overview of evolutionary algorithms for parameter optimization", Journal of Evolutionary Computation (MIT Press), vol. 1, no. 1, pp. 1-23
- ↑ 2.0 2.1 N. Benard, J. Pons-Prats, J. Periaux, G. Bugeda, J.-P. Bonnet & E. Moreau, (2015) "Multi-Input Genetic Algorithm for Experimental Optimization of the Reattachment Downstream of a Backward-Facing Step with Surface Plasma Actuator", Paper AIAA 2015-2957 at 46th AIAA Plasmadynamics and Lasers Conference, Dallas, TX, USA, pp. 1-23.
- ↑ C. Lee, J. Kim, D. Babcock & R. Goodman (1997) "Application of neural networks to turbulence control for drag reduction", Physics of Fluids, vol. 6, no. 9, pp. 1740-1747
- ↑ D. C. Dracopoulos & S. Kent (December 1997) "Genetic programming for prediction and control", Neural Computing & Applications (Springer), vol. 6, no. 4, pp. 214-228.
- ↑ Andrew G. Barto (December 1994) "Reinforcement learning control", Current Opinion in Neurobiology, vol. 6, no. 4, pp. 888–893
- ↑ Dimitris. C. Dracopoulos & Antonia. J. Jones (1994) Neuro-genetic adaptive attitude control, Neural Computing & Applications (Springer), vol. 2, no. 4, pp. 183-204.
- ↑ Jonathan A. Wright, Heather A. Loosemore & Raziyeh Farmani (2002) "Optimization of building thermal design and control by multi-criterion genetic algorithm, [Energy and Buildings], vol. 34, no. 9, pp. 959-972.
- ↑ Steven J. Brunton & Bernd R. Noack (2015) Closed-loop turbulence control: Progress and challenges, Applied Mechanics Reviews, vol. 67, no. 5, article 050801, pp. 1-48.
- ↑ J. Javadi-Moghaddam, & A. Bagheri (2010 "An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle", Expert Systems with Applications, vol. 37 no. 1, pp. 647-660.
- ↑ Peter J. Fleming, R. C. Purshouse (2002 "Evolutionary algorithms in control systems engineering: a survey" Control Engineering Practice, vol. 10, no. 11, pp. 1223-1241
अग्रिम पठन
- Dimitris C Dracopoulos (August 1997) "Evolutionary Learning Algorithms for Neural Adaptive Control", Springer. ISBN 978-3-540-76161-7.
- Thomas Duriez, Steven L. Brunton & Bernd R. Noack (November 2016) "Machine Learning Control - Taming Nonlinear Dynamics and Turbulence", Springer. ISBN 978-3-319-40624-4.