संपीड़न (भौतिकी): Difference between revisions
(Created page with "{{Short description|Application of balanced forces which push an object inward towards itself}} File:Compression applied.svg|thumb|right|50 px|एकअक्षीय स...") |
m (6 revisions imported from alpha:संपीड़न_(भौतिकी)) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Application of balanced forces which push an object inward towards itself}} | {{Short description|Application of balanced forces which push an object inward towards itself}} | ||
[[File:Compression applied.svg|thumb|right|50 px| | [[File:Compression applied.svg|thumb|right|50 px|अक्षीय संपीड़न]] | ||
{{Further| | {{Further|तनाव (यांत्रिकी) | ||
[[ यांत्रिकी ]] में | }} | ||
[[ यांत्रिकी | यांत्रिकी]] में '''संपीड़न''' किसी द्रव्य या [[ संरचनात्मक प्रणाली |संरचनात्मक प्रणाली]] पर भिन्न-भिन्न बिंदुओं पर संतुलित अन्दर की ओर लगने वाले (धक्का) बलों का अनुप्रयोग है, अर्थात, बिना नेट बल या टॉर्क के निर्देशित बल जिससे एक या अधिक दिशाओं में इसके आकार को कम किया जा सके।<ref name=Beer>Ferdinand Pierre Beer, Elwood Russell Johnston, John T. DeWolf (1992), "Mechanics of Materials". (Book) McGraw-Hill Professional, {{ISBN|0-07-112939-1}}</ref> यह [[ तनाव (भौतिकी) |तनाव (भौतिकी)]] या कर्षण संतुलित बाहरी ("खींचने") बलों के अनुप्रयोग से की जाती है और [[ अपरूपण तनाव |अपरूपण बलों]] के साथ निर्देशित किया गया। जिससे द्रव्य की परतों को एक-दूसरे के समानांतर विस्थापित किया जा सके। द्रव्य और संरचनाओं की संपीड़न शक्ति महत्वपूर्ण इंजीनियरिंग विचार है। | |||
अक्षीय संपीड़न में, बलों को केवल एक दिशा में निर्देशित किया जाता है, जिससे वह उस दिशा में वस्तु की लंबाई को कम करने की दिशा में कार्य करें।<ref>Erkens, Sandra & Poot, M. The uniaxial compression test. Delft University of Technology. (1998). Report number: 7-98-117-4. </ref> संपीड़न बलों को कई दिशाओं में भी क्रियान्वित किया जा सकता है; उदाहरण के लिए, किसी प्लेट के किनारों के साथ अंदर की ओर या सिलेंडर की सम्पूर्ण पार्श्व सतह पर, जिससे उसका क्षेत्रफल कम किया जा सके (द्विअक्षीय संपीड़न), या किसी पिंड की सम्पूर्ण सतह पर अंदर की ओर जिससे उसका आयतन कम किया जा सके। | |||
तकनीकी रूप से | तकनीकी रूप से सामग्री कुछ विशिष्ट बिंदु पर और विशिष्ट दिशा <math>x</math> के साथ संपीड़न की स्थिति में होती है, यदि सतह के साथ सतह पर [[ तनाव (यांत्रिकी) |तनाव (यांत्रिकी)]] सदिश का सामान्य तनाव <math>x</math> के विपरीत निर्देशित <math>x</math> सामान्य है। यदि तनाव सदिश स्वयं <math>x</math> के विपरीत है, यह कहा जाता है कि सामग्री x के अनुदिश सामान्य संपीड़न या शुद्ध संपीड़न तनाव के अन्तर्गत है। [[ ठोस |ठोस]] में, संपीड़न की मात्रा सामान्यतः <math>x</math> दिशा पर निर्भर करती है और द्रव्य कुछ दिशाओं में संपीड़न के अन्तर्गत हो सकती है। किन्तु दूसरों के साथ कर्षण के अनुसार हो सकती है। यदि तनाव सदिश विशुद्ध रूप से संपीड़ित है और सभी दिशाओं के लिए समान परिमाण है, तो उस बिंदु पर द्रव्य को आइसोट्रोपिक या हाइड्रोस्टेटिक संपीड़न के अनुसार कहा जाता है। यह एकमात्र प्रकार का स्थैतिक संपीड़न है। जिसे [[ तरल पदार्थ |तरल पदार्थ]] और गैसें सहन कर सकती हैं।<ref>Ronald L. Huston and Harold Josephs (2009), "Practical Stress Analysis in Engineering Design". 3rd edition, CRC Press, 634 pages. ISBN 9781574447132</ref> | ||
[[ यांत्रिक तरंग |यांत्रिक तरंग]] में जो अनुदैर्ध्य तरंग होती है, माध्यम तरंग की दिशा में विस्थापित हो जाता है, जिसके परिणामस्वरूप संपीड़न और विरलन के क्षेत्र बनते हैं। | |||
== प्रभाव == | == प्रभाव == | ||
जब संपीड़न (या किसी अन्य प्रकार के तनाव) के | जब संपीड़न (या किसी अन्य प्रकार के तनाव) के अनुसार रखा जाता है, तो प्रत्येक सामग्री को कुछ विकृति का सामना करना पड़ेगा, तथापि वह अदृश्य हो, जिससे उसके परमाणुओं और अणुओं की औसत सापेक्ष स्थिति बदल जाती है। विकृति स्थायी हो सकता है, या जब संपीड़न बल गायब हो जाते हैं तो उलटा हो सकता है। इसके बाद की स्थिति में विकृति प्रतिक्रिया बलों को उत्पन्न करता है। जो संपीड़न बलों का विरोध करते हैं और अंततः उन्हें संतुलित कर सकते हैं।<ref name =ONE>Fung, Y. C. (1977). A First Course in Continuum Mechanics (2nd ed.). Prentice-Hall, Inc. ISBN 978-0-13-318311-5.</ref> | ||
तरल पदार्थ और गैसें स्थिर | |||
तरल पदार्थ और गैसें स्थिर एक-अक्षीय या द्वि-अक्षीय संपीड़न को सहन नहीं कर सकते हैं, वह तुरंत और स्थायी रूप से विकृत हो जाएंगे और कोई स्थायी प्रतिक्रिया बल नहीं देंगे। चूंकि वह [[ समदैशिक |समदैशिक]] संपीड़न को सहन कर सकते हैं और अन्य उपायों से छोटे से समय में संकुचित हो सकते हैं। उदाहरण के लिए ध्वनि तरंग में समदैशिक सम्पीडन होता है। | |||
[[File:Corset 1900.jpg|thumb|100px|[[ चोली | कोर्सेट]] को कसने से कमर पर द्विअक्षीय संपीड़न क्रियान्वित होता है।]] | |||
समदैशिक संपीड़न के अनुसार रखे जाने पर प्रत्येक सामान्य द्रव्य की मात्रा में अनुबंध करेगी, क्रॉस-सेक्शन क्षेत्र में अनुबंध जब समान द्वि-अक्षीय संपीड़न के अनुसार रखा जाएगा और लंबाई में अनुबंध जब अक्षीय संपीड़न में रखा जाएगा। विकृति एक समान नहीं हो सकता है और संपीड़न बलों के साथ संगठन नहीं किया जा सकता है। उन दिशाओं में क्या होता है जहां कोई संपीड़न नहीं होता है। यह द्रव्य पर निर्भर करता है।<ref name="ONE" /> अधिकांश द्रव्यों का उन दिशाओं में विस्तार होगा, किन्तु कुछ विशेष द्रव्य अपरिवर्तित या अनुबंधित भी रहेंगी। सामान्यतः द्रव्य पर क्रियान्वित तनाव और परिणामी विकृति के मध्य संबंध सतत यांत्रिकी का केंद्रीय विषय है। | |||
[[File: | == उपयोग == | ||
[[File:Compression test.jpg|right|thumb|150px|[[ सार्वभौमिक परीक्षण मशीन |सार्वभौमिक परीक्षण मशीन]] पर संपीड़न परीक्षण]] | |||
ठोस पदार्थों के संपीड़न के सामग्री विज्ञान, भौतिकी और संरचनात्मक इंजीनियरिंग में कई निहित अर्थ हैं क्योंकि संपीड़न से ध्यान देने योग्य मात्रा में [[ तनाव (भौतिकी) |तनाव (भौतिकी)]] और [[ तनाव (यांत्रिकी) |तनाव (यांत्रिकी)]] उत्पन्न होता है। | |||
संपीड़न को प्रेरित करके, यांत्रिक गुणों जैसे कि संपीड़ित शक्ति या [[ लोच के मापांक |लोच के मापांक]] को मापा जा सकता है।<ref>Hartsuijker, C.; Welleman, J. W. (2001). Engineering Mechanics. Volume 2. Springer. ISBN 978-1-4020-412</ref> | |||
[[ | |||
संपीड़न मशीनें बहुत छोटे टेबल टॉप प्रणाली से लेकर 53 मिलियन से अधिक क्षमता वाले लोगों तक होती हैं। | |||
संपीड़न मशीनें बहुत छोटे टेबल टॉप | |||
अंतरिक्ष को बचाने के लिए गैसों को | अंतरिक्ष को बचाने के लिए गैसों को अधिकांशतः अत्यधिक संपीड़ित गैस के रूप में संग्रहीत और भेजा जाता है। थोड़ी सी संपीड़ित हवा या अन्य गैसों का उपयोग गुब्बारे, रबर की नावों और अन्य [[ inflatable संरचना |फुलाने वाली संरचनाओँ]] को भरने के लिए भी किया जाता है। संपीडित द्रवों का उपयोग [[ हाइड्रोलिक उपकरण |हाइड्रोलिक उपकरण]] और [[ fracking |फ्रैकिंग]] में किया जाता है। | ||
== इंजन में == | == इंजन में == | ||
=== [[ आंतरिक दहन इंजन ]] === | === [[ आंतरिक दहन इंजन ]] === | ||
आंतरिक दहन इंजन में विस्फोटक मिश्रण प्रज्वलित होने से पहले संकुचित हो जाता | आंतरिक दहन इंजन में विस्फोटक मिश्रण प्रज्वलित होने से पहले संकुचित हो जाता है। संपीड़न इंजन की दक्षता में सुधार करता है। उदाहरण के लिए [[ ओटो चक्र |ओटो चक्र]] में, पिस्टन का दूसरा स्ट्रोक चार्ज के संपीड़न को प्रभावित करता है। जिसे पहले फॉरवर्ड स्ट्रोक द्वारा सिलेंडर में खींचा गया है।<ref>J.Heywood. Internal Combustion Engine Fundamentals 2E. McGraw-Hill Education. (2018). ISBN 9781260116113 [url=https://books.google.com/books?id=OmJUDwAAQBAJ]</ref> | ||
=== भाप इंजन === | === भाप इंजन === | ||
यह शब्द उस व्यवस्था पर | यह शब्द उस व्यवस्था पर क्रियान्वित होता है, जिसके द्वारा भाप इंजन के निकास वाल्व को बंद करने के लिए बनाया जाता है, [[ पिस्टन |पिस्टन]] के स्ट्रोक के पूरा होने से पहले [[ सिलेंडर (इंजन) |सिलेंडर (इंजन)]] में निकास भाप के भाग को बंद कर देता है। जैसे ही स्ट्रोक पूरा होता है, इस भाप को संपीड़ित किया जाता है और यह इस तीव्र बनता है। जिसके विरुद्ध पिस्टन कार्य करता है। जबकि इसका वेग तेजी से कम हो रहा है और इस प्रकार पारस्परिक भागों की जड़ता के कारण तंत्र में तनाव कम हो जाता है।<ref name="Wiser">{{cite book|title=Energy resources: occurrence, production, conversion, use|last= Wiser |first= Wendell H.|year= 2000|publisher= Birkhäuser|isbn= 978-0-387-98744-6|page= 190|url= https://books.google.com/books?id=UmMx9ixu90kC&dq=steam&pg=PA190}}</ref> इसके अतिरिक्त यह संपीड़न उस झटके को कम करता है, जो अन्यथा रिटर्न स्ट्रोक के लिए ताजी भाप के प्रवेश के कारण होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[ buckling ]] | * [[ buckling |बकलिंग]] | ||
* [[ कंटेनर संपीड़न परीक्षण ]] | * [[ कंटेनर संपीड़न परीक्षण |कंटेनर संपीड़न परीक्षण]] | ||
*[[ संपीड़न सदस्य ]] | *[[ संपीड़न सदस्य |संपीड़न सदस्य]] | ||
* दबाव की शक्ति | * दबाव की शक्ति | ||
* लोंगिट्युडिनल वेव | * लोंगिट्युडिनल वेव | ||
* [[ पी लहर ]] | * [[ पी लहर |पी-लहर]] | ||
* | * विरल करना | ||
* [[ सामग्री की ताकत ]] | * [[ सामग्री की ताकत | द्रव्य की शक्ति]] | ||
* [[ रीसल प्रभाव ]] | * [[ रीसल प्रभाव ]] | ||
* [[ विमान तनाव संपीड़न परीक्षण ]] | * [[ विमान तनाव संपीड़न परीक्षण | प्लेन तनाव संपीड़न परीक्षण]] | ||
[[Category:Created On 09/09/2022]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:यांत्रिक अभियांत्रिकी]] | |||
== संदर्भ == | == संदर्भ == | ||
{{reflist}} | {{reflist}} | ||
Line 75: | Line 72: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 09/09/2022]] | [[Category:Created On 09/09/2022]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 19:13, 3 October 2023
यांत्रिकी में संपीड़न किसी द्रव्य या संरचनात्मक प्रणाली पर भिन्न-भिन्न बिंदुओं पर संतुलित अन्दर की ओर लगने वाले (धक्का) बलों का अनुप्रयोग है, अर्थात, बिना नेट बल या टॉर्क के निर्देशित बल जिससे एक या अधिक दिशाओं में इसके आकार को कम किया जा सके।[1] यह तनाव (भौतिकी) या कर्षण संतुलित बाहरी ("खींचने") बलों के अनुप्रयोग से की जाती है और अपरूपण बलों के साथ निर्देशित किया गया। जिससे द्रव्य की परतों को एक-दूसरे के समानांतर विस्थापित किया जा सके। द्रव्य और संरचनाओं की संपीड़न शक्ति महत्वपूर्ण इंजीनियरिंग विचार है।
अक्षीय संपीड़न में, बलों को केवल एक दिशा में निर्देशित किया जाता है, जिससे वह उस दिशा में वस्तु की लंबाई को कम करने की दिशा में कार्य करें।[2] संपीड़न बलों को कई दिशाओं में भी क्रियान्वित किया जा सकता है; उदाहरण के लिए, किसी प्लेट के किनारों के साथ अंदर की ओर या सिलेंडर की सम्पूर्ण पार्श्व सतह पर, जिससे उसका क्षेत्रफल कम किया जा सके (द्विअक्षीय संपीड़न), या किसी पिंड की सम्पूर्ण सतह पर अंदर की ओर जिससे उसका आयतन कम किया जा सके।
तकनीकी रूप से सामग्री कुछ विशिष्ट बिंदु पर और विशिष्ट दिशा के साथ संपीड़न की स्थिति में होती है, यदि सतह के साथ सतह पर तनाव (यांत्रिकी) सदिश का सामान्य तनाव के विपरीत निर्देशित सामान्य है। यदि तनाव सदिश स्वयं के विपरीत है, यह कहा जाता है कि सामग्री x के अनुदिश सामान्य संपीड़न या शुद्ध संपीड़न तनाव के अन्तर्गत है। ठोस में, संपीड़न की मात्रा सामान्यतः दिशा पर निर्भर करती है और द्रव्य कुछ दिशाओं में संपीड़न के अन्तर्गत हो सकती है। किन्तु दूसरों के साथ कर्षण के अनुसार हो सकती है। यदि तनाव सदिश विशुद्ध रूप से संपीड़ित है और सभी दिशाओं के लिए समान परिमाण है, तो उस बिंदु पर द्रव्य को आइसोट्रोपिक या हाइड्रोस्टेटिक संपीड़न के अनुसार कहा जाता है। यह एकमात्र प्रकार का स्थैतिक संपीड़न है। जिसे तरल पदार्थ और गैसें सहन कर सकती हैं।[3]
यांत्रिक तरंग में जो अनुदैर्ध्य तरंग होती है, माध्यम तरंग की दिशा में विस्थापित हो जाता है, जिसके परिणामस्वरूप संपीड़न और विरलन के क्षेत्र बनते हैं।
प्रभाव
जब संपीड़न (या किसी अन्य प्रकार के तनाव) के अनुसार रखा जाता है, तो प्रत्येक सामग्री को कुछ विकृति का सामना करना पड़ेगा, तथापि वह अदृश्य हो, जिससे उसके परमाणुओं और अणुओं की औसत सापेक्ष स्थिति बदल जाती है। विकृति स्थायी हो सकता है, या जब संपीड़न बल गायब हो जाते हैं तो उलटा हो सकता है। इसके बाद की स्थिति में विकृति प्रतिक्रिया बलों को उत्पन्न करता है। जो संपीड़न बलों का विरोध करते हैं और अंततः उन्हें संतुलित कर सकते हैं।[4]
तरल पदार्थ और गैसें स्थिर एक-अक्षीय या द्वि-अक्षीय संपीड़न को सहन नहीं कर सकते हैं, वह तुरंत और स्थायी रूप से विकृत हो जाएंगे और कोई स्थायी प्रतिक्रिया बल नहीं देंगे। चूंकि वह समदैशिक संपीड़न को सहन कर सकते हैं और अन्य उपायों से छोटे से समय में संकुचित हो सकते हैं। उदाहरण के लिए ध्वनि तरंग में समदैशिक सम्पीडन होता है।
समदैशिक संपीड़न के अनुसार रखे जाने पर प्रत्येक सामान्य द्रव्य की मात्रा में अनुबंध करेगी, क्रॉस-सेक्शन क्षेत्र में अनुबंध जब समान द्वि-अक्षीय संपीड़न के अनुसार रखा जाएगा और लंबाई में अनुबंध जब अक्षीय संपीड़न में रखा जाएगा। विकृति एक समान नहीं हो सकता है और संपीड़न बलों के साथ संगठन नहीं किया जा सकता है। उन दिशाओं में क्या होता है जहां कोई संपीड़न नहीं होता है। यह द्रव्य पर निर्भर करता है।[4] अधिकांश द्रव्यों का उन दिशाओं में विस्तार होगा, किन्तु कुछ विशेष द्रव्य अपरिवर्तित या अनुबंधित भी रहेंगी। सामान्यतः द्रव्य पर क्रियान्वित तनाव और परिणामी विकृति के मध्य संबंध सतत यांत्रिकी का केंद्रीय विषय है।
उपयोग
ठोस पदार्थों के संपीड़न के सामग्री विज्ञान, भौतिकी और संरचनात्मक इंजीनियरिंग में कई निहित अर्थ हैं क्योंकि संपीड़न से ध्यान देने योग्य मात्रा में तनाव (भौतिकी) और तनाव (यांत्रिकी) उत्पन्न होता है।
संपीड़न को प्रेरित करके, यांत्रिक गुणों जैसे कि संपीड़ित शक्ति या लोच के मापांक को मापा जा सकता है।[5]
संपीड़न मशीनें बहुत छोटे टेबल टॉप प्रणाली से लेकर 53 मिलियन से अधिक क्षमता वाले लोगों तक होती हैं।
अंतरिक्ष को बचाने के लिए गैसों को अधिकांशतः अत्यधिक संपीड़ित गैस के रूप में संग्रहीत और भेजा जाता है। थोड़ी सी संपीड़ित हवा या अन्य गैसों का उपयोग गुब्बारे, रबर की नावों और अन्य फुलाने वाली संरचनाओँ को भरने के लिए भी किया जाता है। संपीडित द्रवों का उपयोग हाइड्रोलिक उपकरण और फ्रैकिंग में किया जाता है।
इंजन में
आंतरिक दहन इंजन
आंतरिक दहन इंजन में विस्फोटक मिश्रण प्रज्वलित होने से पहले संकुचित हो जाता है। संपीड़न इंजन की दक्षता में सुधार करता है। उदाहरण के लिए ओटो चक्र में, पिस्टन का दूसरा स्ट्रोक चार्ज के संपीड़न को प्रभावित करता है। जिसे पहले फॉरवर्ड स्ट्रोक द्वारा सिलेंडर में खींचा गया है।[6]
भाप इंजन
यह शब्द उस व्यवस्था पर क्रियान्वित होता है, जिसके द्वारा भाप इंजन के निकास वाल्व को बंद करने के लिए बनाया जाता है, पिस्टन के स्ट्रोक के पूरा होने से पहले सिलेंडर (इंजन) में निकास भाप के भाग को बंद कर देता है। जैसे ही स्ट्रोक पूरा होता है, इस भाप को संपीड़ित किया जाता है और यह इस तीव्र बनता है। जिसके विरुद्ध पिस्टन कार्य करता है। जबकि इसका वेग तेजी से कम हो रहा है और इस प्रकार पारस्परिक भागों की जड़ता के कारण तंत्र में तनाव कम हो जाता है।[7] इसके अतिरिक्त यह संपीड़न उस झटके को कम करता है, जो अन्यथा रिटर्न स्ट्रोक के लिए ताजी भाप के प्रवेश के कारण होता है।
यह भी देखें
- बकलिंग
- कंटेनर संपीड़न परीक्षण
- संपीड़न सदस्य
- दबाव की शक्ति
- लोंगिट्युडिनल वेव
- पी-लहर
- विरल करना
- द्रव्य की शक्ति
- रीसल प्रभाव
- प्लेन तनाव संपीड़न परीक्षण
संदर्भ
- ↑ Ferdinand Pierre Beer, Elwood Russell Johnston, John T. DeWolf (1992), "Mechanics of Materials". (Book) McGraw-Hill Professional, ISBN 0-07-112939-1
- ↑ Erkens, Sandra & Poot, M. The uniaxial compression test. Delft University of Technology. (1998). Report number: 7-98-117-4.
- ↑ Ronald L. Huston and Harold Josephs (2009), "Practical Stress Analysis in Engineering Design". 3rd edition, CRC Press, 634 pages. ISBN 9781574447132
- ↑ 4.0 4.1 Fung, Y. C. (1977). A First Course in Continuum Mechanics (2nd ed.). Prentice-Hall, Inc. ISBN 978-0-13-318311-5.
- ↑ Hartsuijker, C.; Welleman, J. W. (2001). Engineering Mechanics. Volume 2. Springer. ISBN 978-1-4020-412
- ↑ J.Heywood. Internal Combustion Engine Fundamentals 2E. McGraw-Hill Education. (2018). ISBN 9781260116113 [url=https://books.google.com/books?id=OmJUDwAAQBAJ]
- ↑ Wiser, Wendell H. (2000). Energy resources: occurrence, production, conversion, use. Birkhäuser. p. 190. ISBN 978-0-387-98744-6.