समुपयोग संबंध: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
m (7 revisions imported from alpha:समुपयोग_संबंध) |
(No difference)
|
Latest revision as of 07:10, 8 October 2023
गणित में, विशेष रूप से ऑर्डर सिद्धांत में, आंशिक रूप से ऑर्डर किए गए सेट का आवरण संबंध द्विआधारी संबंध है जो तुलनात्मक अवयवों के बीच होता है जो तत्काल निकट होते हैं। आवरण सम्बन्ध का उपयोग सामान्यतः हासे आरेख के माध्यम से आंशिक क्रम को ग्राफिक रूप से व्यक्त करने के लिए किया जाता है।
परिभाषा
मान लीजिए कि आंशिक क्रम वाला एक समुच्चय है। हमेशा की तरह मान लीजिए कि X पर संबंध इस प्रकार है कि यदि और केवल यदि और है
माना और के अवयव है .फिर , को आवरण करता है, जिसे लिखा जाता है, यदि और ऐसा कोई अवयव नहीं है, जो कि हो समान रूप से, , को आवरण करता है यदि अंतराल दो-अवयव सेट है
जब , तो यह कहा जाता है कि , का आवरण है। कुछ लेखक आवरण सम्बन्ध में ऐसी किसी जोड़ी को दर्शाने के लिए आवरण शब्द का भी उपयोग करते हैं।
उदाहरण
- एक परिमित रैखिक रूप से क्रमित सेट {1, 2, ..., n} में, i + 1, 1 और n - 1 के बीच सभी i के लिए i को आवरण करता है (और कोई अन्य आवरण संबंध नहीं हैं)।
- सेट s के पावर सेट के बूलियन बीजगणित (संरचना) में, s का उपसमुच्चय b, s के उपसमुच्चय a को आवरण करता है यदि और केवल यदि a से अवयव जोड़कर b प्राप्त किया जाता है जो a में नहीं है।
- यंग की जाली में, सभी गैर-नकारात्मक पूर्णांकों के विभाजन (संख्या सिद्धांत) द्वारा गठित, विभाजन λ विभाजन μ को आवरण करता है यदि और केवल यदि λ का यंग आरेख अतिरिक्त सेल जोड़कर μ के यंग आरेख से प्राप्त किया जाता है।
- तामरी जाली के आवरण संबंध को दर्शाने वाला भाग आरेख सहफलक का एन-कंकाल है।
- किसी भी परिमित वितरण जालक का आवरण संबंध माध्यिका ग्राफ बनाता है।
- सामान्य कुल क्रम ≤ के साथ वास्तविक संख्याओं पर, आवरण सेट खाली है: कोई भी संख्या दूसरे को आवरण नहीं करती है।
गुण
- यदि आंशिक रूप से ऑर्डर किया गया सेट परिमित है, तो इसका आवरण संबंध आंशिक ऑर्डर संबंध की सकर्मक कमी है। इसलिए ऐसे आंशिक रूप से क्रमित सेटों को उनके हस्से आरेखों द्वारा पूरी तरह से वर्णित किया गया है। दूसरी ओर, सघन क्रम में, जैसे कि मानक क्रम वाली परिमेय संख्याएँ, कोई भी अवयव दूसरे को आवरण नहीं करता है।
संदर्भ
- Knuth, Donald E. (2006), The Art of Computer Programming, Volume 4, Fascicle 4, Addison-Wesley, ISBN 0-321-33570-8.
- Stanley, Richard P. (1997), Enumerative Combinatorics, vol. 1 (2nd ed.), Cambridge University Press, ISBN 0-521-55309-1.
- Brian A. Davey; Hilary Ann Priestley (2002), Introduction to Lattices and Order (2nd ed.), Cambridge University Press, ISBN 0-521-78451-4, LCCN 2001043910.