कक्षीय स्टेशन-अनुरक्षण: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Maneuvers made to maintain a particular orbit}} खगोलगतिकी में, कक्षीय स्टेशन-कीपिंग एक ...")
 
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Maneuvers made to maintain a particular orbit}}
{{short description|Maneuvers made to maintain a particular orbit}}
खगोलगतिकी में, कक्षीय स्टेशन-कीपिंग एक [[अंतरिक्ष यान]] को दूसरे अंतरिक्ष यान या खगोलीय पिंड से एक निश्चित दूरी पर रखना है। सक्रिय यान को उसके लक्ष्य के समान कक्षा में रखने के लिए [[अंतरिक्ष यान प्रणोदन]] के साथ बनाई गई कक्षीय युक्तियों की एक श्रृंखला की आवश्यकता होती है। कई [[निम्न पृथ्वी कक्षा]] उपग्रहों के लिए, [[कक्षीय गड़बड़ी विश्लेषण (अंतरिक्ष यान)]] | गैर-केप्लरियन बलों के प्रभाव, यानी [[शैल प्रमेय]] से पृथ्वी के गुरुत्वाकर्षण बल का विचलन, सूर्य/चंद्रमा से गुरुत्वाकर्षण बल, [[सौर विकिरण दबाव]] और एयर ड्रैग (भौतिकी), का प्रतिकार किया जाना चाहिए।
खगोलगतिकी में, '''कक्षीय स्टेशन-अनुरक्षण''' [[अंतरिक्ष यान]] को दूसरे अंतरिक्ष यान या खगोलीय पिंड से निश्चित दूरी पर रखना है। सक्रिय यान को उसके लक्ष्य के समान कक्षा में रखने के लिए [[अंतरिक्ष यान प्रणोदन]] के साथ बनाई गई कक्षीय युक्तियों की श्रृंखला की आवश्यकता होती है। कई निम्न पृथ्वी कक्षा उपग्रहों के लिए, कक्षीय अस्तव्यस्तता विश्लेषण (अंतरिक्ष यान) | गैर-केप्लरियन बलों के प्रभाव, अर्थात शैल प्रमेय से पृथ्वी के गुरुत्वाकर्षण बल का विचलन, सूर्य/चंद्रमा से गुरुत्वाकर्षण बल, सौर विकिरण दबाव और हवा की खींचाव के प्रभाव को प्रतिकृत करने की आवश्यकता होती है।


शैल प्रमेय से पृथ्वी के गुरुत्वाकर्षण क्षेत्र का विचलन और सूर्य और चंद्रमा से गुरुत्वाकर्षण बल आम तौर पर कक्षीय तल को परेशान करेंगे। [[सूर्य-समकालिक कक्षा]] के लिए, पृथ्वी के तिरछेपन के कारण कक्षीय तल की पूर्वता एक वांछनीय विशेषता है जो मिशन डिजाइन का हिस्सा है लेकिन सूर्य और चंद्रमा के गुरुत्वाकर्षण बलों के कारण होने वाला झुकाव परिवर्तन अवांछनीय है। [[भूस्थैतिक कक्षा]] के लिए, सूर्य और चंद्रमा के गुरुत्वाकर्षण बलों के कारण होने वाले झुकाव परिवर्तन को ईंधन के बड़े खर्च से प्रतिकार किया जाना चाहिए, क्योंकि अंतरिक्ष यान को गैर-संचालनीय एंटीना द्वारा ट्रैक करने के लिए झुकाव को पर्याप्त रूप से छोटा रखा जाना चाहिए।
शैल प्रमेय से पृथ्वी के गुरुत्वाकर्षण क्षेत्र का विचलन और सूर्य और चंद्रमा से गुरुत्वाकर्षण बल सामान्यतः कक्षीय तल को चिन्तित करेंगे। सूर्य-समकालिक कक्षा के लिए, पृथ्वी के तिरछेपन के कारण कक्षीय तल की पूर्वता वांछनीय विशेषता है जो मिशन डिजाइन का भाग है किन्तु सूर्य और चंद्रमा के गुरुत्वाकर्षण बलों के कारण होने वाला झुकाव परिवर्तन अवांछनीय है। [[भूस्थैतिक कक्षा]] के लिए, सूर्य और चंद्रमा के गुरुत्वाकर्षण बलों के कारण होने वाले झुकाव परिवर्तन को ईंधन के बड़े खर्च से प्रतिकार किया जाना चाहिए, क्योंकि अंतरिक्ष यान को गैर-संचालनीय एंटीना द्वारा ट्रैक करने के लिए झुकाव को पर्याप्त रूप से छोटा रखा जाना चाहिए।


निचली कक्षा में अंतरिक्ष यान के लिए, वायुमंडलीय ड्रैग (भौतिकी) के प्रभावों की अक्सर भरपाई की जानी चाहिए, अक्सर पुन: प्रवेश से बचने के लिए; उन मिशनों के लिए जिनमें कक्षा को पृथ्वी के घूर्णन के साथ सटीक रूप से सिंक्रनाइज़ करने की आवश्यकता होती है, कक्षीय अवधि को छोटा होने से रोकने के लिए यह आवश्यक है।
निचली कक्षा में अंतरिक्ष यान के लिए, वायुमंडलीय ड्रैग (भौतिकी) के प्रभावों की प्रायः भरपाई की जानी चाहिए, प्रायः पुन: प्रवेश से बचने के लिए; उन मिशनों के लिए जिनमें कक्षा को पृथ्वी के घूर्णन के साथ सटीक रूप से सिंक्रनाइज़ करने की आवश्यकता होती है, कक्षीय अवधि को छोटा होने से रोकने के लिए यह आवश्यक है।
 
सौर विकिरण दबाव आम तौर पर विलक्षणता (यानी विलक्षणता वेक्टर) को परेशान करेगा; कक्षीय गड़बड़ी विश्लेषण (अंतरिक्ष यान) देखें। कुछ मिशनों के लिए, युद्धाभ्यास के साथ सक्रिय रूप से इसका प्रतिकार किया जाना चाहिए। भूस्थैतिक कक्षा के लिए, एक अंतरिक्ष यान को गैर-संचालनीय एंटीना के साथ ट्रैक करने के लिए विलक्षणता को पर्याप्त रूप से छोटा रखा जाना चाहिए। इसके अलावा [[पृथ्वी अवलोकन उपग्रह]] के लिए जिसके लिए एक निश्चित [[ग्राउंड ट्रैक]] के साथ एक बहुत ही दोहराव वाली कक्षा वांछनीय है, विलक्षणता वेक्टर को यथासंभव स्थिर रखा जाना चाहिए। इस क्षतिपूर्ति का एक बड़ा हिस्सा जमे हुए कक्षा डिजाइन का उपयोग करके किया जा सकता है, लेकिन अक्सर सटीक नियंत्रण युद्धाभ्यास के लिए थ्रस्टर्स की आवश्यकता होती है।
 
[[लैग्रेंज बिंदु]] के चारों ओर प्रभामंडल कक्षा में अंतरिक्ष यान के लिए, स्टेशन-कीपिंग और भी अधिक मौलिक है, क्योंकि ऐसी कक्षा अस्थिर है; थ्रस्टर बर्न के साथ सक्रिय नियंत्रण के बिना, स्थिति या वेग में सबसे छोटे विचलन के परिणामस्वरूप अंतरिक्ष यान पूरी तरह से कक्षा छोड़ देगा।<ref name=esa20090614/>


सौर विकिरण दबाव सामान्यतः विलक्षणता (अर्थात विलक्षणता सदिश ) को चिन्तित करेगा; कक्षीय अस्तव्यस्तता विश्लेषण (अंतरिक्ष यान) देखें। कुछ मिशनों के लिए, युद्धाभ्यास के साथ सक्रिय रूप से इसका प्रतिकार किया जाना चाहिए। भूस्थैतिक कक्षा के लिए, अंतरिक्ष यान को गैर-संचालनीय एंटीना के साथ ट्रैक करने के लिए विलक्षणता को पर्याप्त रूप से छोटा रखा जाना चाहिए। इसके अलावा [[पृथ्वी अवलोकन उपग्रह]] के लिए जिसके लिए निश्चित ग्राउंड ट्रैक के साथ बहुत ही दोहराव वाली कक्षा वांछनीय है, विलक्षणता सदिश को यथासंभव स्थिर रखा जाना चाहिए। इस क्षतिपूर्ति का बड़ा भाग जमे हुए कक्षा डिजाइन का उपयोग करके किया जा सकता है, किन्तु प्रायः सटीक नियंत्रण युद्धाभ्यास के लिए थ्रस्टर्स की आवश्यकता होती है।


[[लैग्रेंज बिंदु]] के चारों ओर प्रभामंडल कक्षा में अंतरिक्ष यान के लिए, स्टेशन-अनुरक्षण और भी अधिक मौलिक है, क्योंकि ऐसी कक्षा अस्थिर है; थ्रस्टर बर्न के साथ सक्रिय नियंत्रण के बिना, स्थिति या वेग में सबसे छोटे विचलन के परिणामस्वरूप अंतरिक्ष यान पूरी प्रकार से कक्षा छोड़ देगा।<ref name=esa20090614/>
==निम्न पृथ्वी कक्षा==
==निम्न पृथ्वी कक्षा==


बहुत कम कक्षा में एक अंतरिक्ष यान के लिए, ड्रैग (भौतिकी) मिशन के इच्छित अंत से पहले पुन: प्रवेश करने के लिए पर्याप्त रूप से मजबूत है यदि समय-समय पर कक्षा बढ़ाने वाले युद्धाभ्यास निष्पादित नहीं किए जाते हैं।
बहुत कम कक्षा में अंतरिक्ष यान के लिए, ड्रैग (भौतिकी) मिशन के इच्छित अंत से पहले पुन: प्रवेश करने के लिए पर्याप्त रूप से मजबूत है यदि समय-समय पर कक्षा बढ़ाने वाले युद्धाभ्यास निष्पादित नहीं किए जाते हैं।
 
इसका एक उदाहरण अंतर्राष्ट्रीय अंतरिक्ष स्टेशन (आईएसएस) है, जिसकी पृथ्वी की सतह से परिचालन ऊंचाई 330 से 410 किमी के बीच है। वायुमंडलीय खिंचाव के कारण अंतरिक्ष स्टेशन लगातार कक्षीय ऊर्जा खो रहा है। इस नुकसान की भरपाई करने के लिए, जो अंततः स्टेशन के पुन: प्रवेश की ओर ले जाएगा, समय-समय पर इसे उच्च कक्षा में पुनः बढ़ाया जाता रहा है। चुनी गई कक्षीय ऊंचाई एयर ड्रैग का प्रतिकार करने के लिए आवश्यक औसत जोर और पेलोड और लोगों को स्टेशन पर भेजने के लिए आवश्यक [[आवेग (भौतिकी)]] के बीच एक समझौता है।
 
[[GOCE]] जिसने 255 किमी (बाद में 235 किमी तक कम) की परिक्रमा की, ने लगभग 1 मीटर के अपने ललाट क्षेत्र पर खिंचाव की भरपाई के लिए 20 mN तक का जोर प्रदान करने के लिए [[आयन थ्रस्टर]]्स का उपयोग किया।<sup>2</sup>.<ref>{{Cite web|url=http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/GOCE/Satellite|title=GOCE satellite}}</ref>


इसका उदाहरण अंतर्राष्ट्रीय अंतरिक्ष स्टेशन (आईएसएस) है, जिसकी पृथ्वी की सतह से परिचालन ऊंचाई 330 से 410 किमी के बीच है। वायुमंडलीय खिंचाव के कारण अंतरिक्ष स्टेशन लगातार कक्षीय ऊर्जा खो रहा है। इस नुकसान की भरपाई करने के लिए, जो अंततः स्टेशन के पुन: प्रवेश की ओर ले जाएगा, समय-समय पर इसे उच्च कक्षा में पुनः बढ़ाया जाता रहा है। चुनी गई कक्षीय ऊंचाई एयर ड्रैग का प्रतिकार करने के लिए आवश्यक औसत जोर और पेलोड और लोगों को स्टेशन पर भेजने के लिए आवश्यक [[आवेग (भौतिकी)]] के बीच समझौता है।


[[GOCE]] जिसने 255 किमी (बाद में 235 किमी तक कम) की परिक्रमा की, ने लगभग 1 मीटर<sup>2</sup> के अपने ललाट क्षेत्र पर खिंचाव की भरपाई के लिए 20 mN तक का जोर प्रदान करने के लिए [[आयन थ्रस्टर]] का उपयोग किया।<ref>{{Cite web|url=http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/GOCE/Satellite|title=GOCE satellite}}</ref>
==पृथ्वी अवलोकन अंतरिक्ष यान==
==पृथ्वी अवलोकन अंतरिक्ष यान==


पृथ्वी अवलोकन उपग्रह के लिए जो आमतौर पर पृथ्वी की सतह से लगभग 700-800 किमी की ऊंचाई पर संचालित होता है, एयर-ड्रैग बहुत हल्का होता है और एयर-ड्रैग के कारण पुन: प्रवेश चिंता का विषय नहीं है। लेकिन यदि एक निश्चित ग्राउंड ट्रैक को बनाए रखने के लिए कक्षीय अवधि को पृथ्वी के घूर्णन के साथ समकालिक होना चाहिए, तो इस उच्च ऊंचाई पर हल्के वायु-कर्षण को भी कक्षा के स्पर्शरेखीय थ्रस्टर बर्न के रूप में कक्षा बढ़ाने वाले युद्धाभ्यास द्वारा प्रतिकार किया जाना चाहिए। ये युद्धाभ्यास बहुत छोटे होंगे, आमतौर पर [[ डेल्टा-सी ]]के कुछ मिमी/सेकेंड के क्रम में। यदि जमे हुए कक्षा डिज़ाइन का उपयोग किया जाता है तो ये बहुत छोटी कक्षा बढ़ाने वाली युक्तियाँ विलक्षणता वेक्टर को नियंत्रित करने के लिए भी पर्याप्त हैं।
पृथ्वी अवलोकन उपग्रह के लिए जो सामान्यतः पृथ्वी की सतह से लगभग 700-800 किमी की ऊंचाई पर संचालित होता है, एयर-ड्रैग बहुत हल्का होता है और एयर-ड्रैग के कारण पुन: प्रवेश चिंता का विषय नहीं है। किन्तु यदि निश्चित ग्राउंड ट्रैक को बनाए रखने के लिए कक्षीय अवधि को पृथ्वी के घूर्णन के साथ समकालिक होना चाहिए, तो इस उच्च ऊंचाई पर हल्के वायु-कर्षण को भी कक्षा के स्पर्शरेखीय थ्रस्टर बर्न के रूप में कक्षा बढ़ाने वाले युद्धाभ्यास द्वारा प्रतिकार किया जाना चाहिए। ये युद्धाभ्यास बहुत छोटे होंगे, सामान्यतः [[ डेल्टा-सी |डेल्टा-सी]] के कुछ मिमी/सेकेंड के आदेश में होते हैं। यदि जमे हुए कक्षा डिज़ाइन का उपयोग किया जाता है तो ये बहुत छोटी कक्षा बढ़ाने वाली युक्तियाँ विलक्षणता सदिश को नियंत्रित करने के लिए भी पर्याप्त हैं।


एक निश्चित जमीनी ट्रैक बनाए रखने के लिए सूर्य/चंद्रमा के गुरुत्वाकर्षण के कारण होने वाले झुकाव परिवर्तन की भरपाई के लिए विमान से बाहर युद्धाभ्यास करना भी आवश्यक है। इन्हें ऑर्बिटल प्लेन में थ्रस्टर बर्न ऑर्थोगोनल के रूप में निष्पादित किया जाता है। सूर्य के सापेक्ष स्थिर ज्यामिति वाले सूर्य-तुल्यकालिक अंतरिक्ष यान के लिए, सौर गुरुत्वाकर्षण के कारण झुकाव परिवर्तन विशेष रूप से बड़ा होता है; झुकाव को स्थिर रखने के लिए प्रति वर्ष 1-2 मी/सेकेंड के क्रम में डेल्टा-वी की आवश्यकता हो सकती है।
एक स्थिर भूमि ट्रैक बनाए रखने के लिए सूर्य/चंद्रमा के गुरुत्व के कारण उत्तर-दक्षिण में होने वाले बाहरी यातायात को संवर्धन करने के लिए प्लेन के अपरिपथ मानवर किए जाने की भी आवश्यकता होती है। सूर्य-समवर्ती उपग्रहों के लिए जो सूर्य के साथ स्थिर ज्यामिति रखते हैं, सूर्य गुरुत्व के कारण होने वाले उत्तर-दक्षिण के बदलाव का विशेष रूप से बड़ा हो सकता है; इसे स्थिर रखने के लिए सामान्यतः लगभग 1-2 मीटर/सेकंड प्रतिवर्ष की आवश्यकता हो सकती है।


== भूस्थैतिक कक्षा ==
== भूस्थैतिक कक्षा ==
[[Image:Orbital Planes.svg|thumb|upright=1.4|झुके हुए कक्षीय तल]]
[[Image:Orbital Planes.svg|thumb|upright=1.4|झुके हुए कक्षीय तल]]
{{details|Geostationary orbit#Orbital stability}}
{{details|भूस्थैतिक कक्षा#कक्षीय स्थिरता}}
भूस्थैतिक अंतरिक्ष यान के लिए, चंद्र/सौर गुरुत्वाकर्षण के प्रभाव की भरपाई के लिए कक्षीय तल पर थ्रस्टर बर्न ऑर्थोगोनल को क्रियान्वित किया जाना चाहिए जो प्रति वर्ष आम तौर पर 0.85 डिग्री के साथ कक्षा ध्रुव को परेशान करता है।<ref name=Anderson2015>{{Cite conference|url=http://hanspeterschaub.info/Papers/Anderson2015c.pdf|title=GEO डेब्रिस सिंक्रोनाइज़ेशन डायनेमिक्स के परिचालन संबंधी विचार|first1=Paul|last1=Anderson|display-authors=etal|conference=66th [[International Astronautical Congress]]|location=Jerusalem, Israel|date=2015|id=IAC-15,A6,7,3,x27478}}</ref> डेल्टा-वी को भूमध्यरेखीय तल पर झुकाव को प्रति वर्ष 45 मीटर/सेकेंड के क्रम में रखते हुए इस गड़बड़ी की भरपाई करने की आवश्यकता है। GEO स्टेशन-कीपिंग के इस भाग को उत्तर-दक्षिण नियंत्रण कहा जाता है।<ref>Soop, E. M. (1994). Handbook of Geostationary Orbits. Springer. {{ISBN|978-0-7923-3054-7}}.</ref>
भूस्थैतिक अंतरिक्ष यान के लिए, चंद्र/सौर गुरुत्वाकर्षण के प्रभाव की भरपाई के लिए कक्षीय तल पर थ्रस्टर बर्न ऑर्थोगोनल को क्रियान्वित किया जाना चाहिए जो प्रति वर्ष सामान्यतः 0.85 डिग्री के साथ कक्षा ध्रुव को चिन्तित करता है।<ref name=Anderson2015>{{Cite conference|url=http://hanspeterschaub.info/Papers/Anderson2015c.pdf|title=GEO डेब्रिस सिंक्रोनाइज़ेशन डायनेमिक्स के परिचालन संबंधी विचार|first1=Paul|last1=Anderson|display-authors=etal|conference=66th [[International Astronautical Congress]]|location=Jerusalem, Israel|date=2015|id=IAC-15,A6,7,3,x27478}}</ref> डेल्टा-वी को भूमध्यरेखीय तल पर झुकाव को प्रति वर्ष 45 मीटर/सेकेंड के क्रम में रखते हुए इस अस्तव्यस्तता की भरपाई करने की आवश्यकता है। GEO स्टेशन-अनुरक्षण के इस भाग को उत्तर-दक्षिण नियंत्रण कहा जाता है।<ref>Soop, E. M. (1994). Handbook of Geostationary Orbits. Springer. {{ISBN|978-0-7923-3054-7}}.</ref>
पूर्व-पश्चिम नियंत्रण कक्षीय अवधि और विलक्षणता वेक्टर का नियंत्रण है जो थ्रस्टर बर्न को कक्षा के स्पर्शरेखा बनाकर किया जाता है। फिर इन बर्न्स को पृथ्वी के घूर्णन के साथ कक्षीय अवधि को पूरी तरह से समकालिक बनाए रखने और विलक्षणता को पर्याप्त रूप से छोटा रखने के लिए डिज़ाइन किया गया है। कक्षीय अवधि में गड़बड़ी उत्तर/दक्षिण अक्ष के सापेक्ष पृथ्वी की अपूर्ण घूर्णी समरूपता के परिणामस्वरूप होती है, जिसे कभी-कभी पृथ्वी भूमध्य रेखा की अण्डाकारता भी कहा जाता है। विलक्षणता (यानी विलक्षणता वेक्टर) सौर विकिरण दबाव से परेशान है। इस पूर्व-पश्चिम नियंत्रण के लिए आवश्यक ईंधन उत्तर-दक्षिण नियंत्रण के लिए आवश्यक ईंधन से बहुत कम है।


कम ईंधन बचे भूस्थैतिक अंतरिक्ष यान के जीवन काल को बढ़ाने के लिए कभी-कभी उत्तर-दक्षिण नियंत्रण को बंद कर दिया जाता है और केवल पूर्व-पश्चिम नियंत्रण को जारी रखा जाता है। जैसा कि घूमती पृथ्वी पर एक पर्यवेक्षक ने देखा, अंतरिक्ष यान 24 घंटे की अवधि के साथ उत्तर-दक्षिण की ओर बढ़ेगा। जब यह उत्तर-दक्षिण गति बहुत बड़ी हो जाती है तो अंतरिक्ष यान को ट्रैक करने के लिए एक चलाने योग्य एंटीना की आवश्यकता होती है। इसका एक उदाहरण{{when|date=January 2016}}<!-- when did this condition apply to the Artemis sat?  does it still, in 2016? --> [[आर्टेमिस (उपग्रह)]] है.{{citation needed|date=January 2016}}
पूर्व-पश्चिम नियंत्रण कक्षीय अवधि और विलक्षणता सदिश का नियंत्रण है जो थ्रस्टर बर्न को कक्षा के स्पर्शरेखा बनाकर किया जाता है। फिर इन बर्न्स को पृथ्वी के घूर्णन के साथ कक्षीय अवधि को पूरी प्रकार से समकालिक बनाए रखने और विलक्षणता को पर्याप्त रूप से छोटा रखने के लिए डिज़ाइन किया गया है। कक्षीय अवधि में अस्तव्यस्तता उत्तर/दक्षिण अक्ष के सापेक्ष पृथ्वी की अपूर्ण घूर्णी समरूपता के परिणामस्वरूप होती है, जिसे कभी-कभी पृथ्वी भूमध्य रेखा की अण्डाकारता भी कहा जाता है। विलक्षणता (अर्थात विलक्षणता सदिश ) सौर विकिरण दबाव से चिन्तित है। इस पूर्व-पश्चिम नियंत्रण के लिए आवश्यक ईंधन उत्तर-दक्षिण नियंत्रण के लिए आवश्यक ईंधन से बहुत कम है।


वजन बचाने के लिए, GEO उपग्रहों के लिए सबसे अधिक ईंधन-कुशल अंतरिक्ष यान प्रणोदन प्रणाली का होना महत्वपूर्ण है। इसलिए लगभग सभी आधुनिक उपग्रह [[प्लाज्मा थ्रस्टर]] या आयन थ्रस्टर जैसी उच्च [[विशिष्ट आवेग]] प्रणाली का उपयोग कर रहे हैं।
जब कम ईंधन बचे भूस्थैतिक अंतरिक्ष यान के जीवन काल को बढ़ाने के लिए कभी-कभी उत्तर-दक्षिण नियंत्रण को बंद कर दिया जाता है और केवल पूर्व-पश्चिम नियंत्रण को जारी रखा जाता है। जैसा कि घूमती पृथ्वी पर पर्यवेक्षक ने देखा, अंतरिक्ष यान 24 घंटे की अवधि के साथ उत्तर-दक्षिण की ओर बढ़ेगा। जब यह उत्तर-दक्षिण गति बहुत बड़ी हो जाती है तो अंतरिक्ष यान को ट्रैक करने के लिए चलाने योग्य एंटीना की आवश्यकता होती है। इसका उदाहरण{{when|date=January 2016}} आर्टेमिस (उपग्रह) हैं।
 
वजन बचाने के लिए, GEO उपग्रहों के लिए सबसे अधिक ईंधन-कुशल अंतरिक्ष यान प्रणोदन प्रणाली का होना महत्वपूर्ण है। इसलिए लगभग सभी आधुनिक उपग्रह प्लाज्मा थ्रस्टर या आयन थ्रस्टर जैसी उच्च [[विशिष्ट आवेग]] प्रणाली का उपयोग कर रहे हैं।


== लैग्रेंज अंक ==
== लैग्रेंज अंक ==
{{main|Lagrange point}}
{{main|लैग्रेंज बिंदु}}
अंतरिक्ष यान की कक्षाएँ लैग्रेंज बिंदुओं के आसपास भी संभव हैं - जिन्हें लाइब्रेशन पॉइंट भी कहा जाता है - पाँच संतुलन बिंदु जो दो बड़े सौर मंडल निकायों के संबंध में मौजूद हैं। उदाहरण के लिए, सूर्य-पृथ्वी प्रणाली में इनमें से पाँच बिंदु हैं, पृथ्वी-चंद्रमा प्रणाली में पाँच, इत्यादि। अंतरिक्ष यान स्टेशन-रखने के उद्देश्यों के लिए आवश्यक न्यूनतम प्रणोदक के साथ इन बिंदुओं के चारों ओर परिक्रमा कर सकता है। ऐसे उद्देश्यों के लिए जिन दो कक्षाओं का उपयोग किया गया है उनमें हेलो कक्षा और लिसाजस कक्षा कक्षाएँ शामिल हैं।<ref name=nasa20110101/>
अंतरिक्ष यान की कक्षाएँ लैग्रेंज बिंदुओं के आसपास भी संभव हैं - जिन्हें लाइब्रेशन पॉइंट भी कहा जाता है - पाँच संतुलन बिंदु जो दो बड़े सौर मंडल निकायों के संबंध में उपस्थित हैं। उदाहरण के लिए, सूर्य-पृथ्वी प्रणाली में इनमें से पाँच बिंदु हैं, पृथ्वी-चंद्रमा प्रणाली में पाँच, इत्यादि। अंतरिक्ष यान स्टेशन-रखने के उद्देश्यों के लिए आवश्यक न्यूनतम प्रणोदक के साथ इन बिंदुओं के चारों ओर परिक्रमा कर सकता है। ऐसे उद्देश्यों के लिए जिन दो कक्षाओं का उपयोग किया गया है उनमें हेलो कक्षा और लिसाजस कक्षा कक्षाएँ सम्मिलित हैं।<ref name=nasa20110101/>


एक महत्वपूर्ण लैग्रेंज बिंदु पृथ्वी-सूर्य है {{L1}}, और तीन [[हेलियोफिजिक्स]] मिशन लगभग 2000 से एल1 की परिक्रमा कर रहे हैं। स्टेशन-रखने वाले प्रणोदक का उपयोग काफी कम हो सकता है, जिससे उन मिशनों को सुविधाजनक बनाया जा सकता है जो संभावित रूप से दशकों तक चल सकते हैं यदि अन्य अंतरिक्ष यान प्रणालियाँ चालू रहती हैं। तीन अंतरिक्ष यान- [[ उन्नत संरचना एक्सप्लोरर ]] (एसीई), [[ सौर हेलिओस्फेरिक वेधशाला ]] (एसओएचओ), और विंड (अंतरिक्ष यान) उपग्रह<!-- have been orbiting the Sun-Earth interior Lagrange point L1 continuously since 1997, 1996, and 2004, respectively -->-प्रत्येक की वार्षिक [[डेल्टा बी]]|स्टेशन-रखने वाली प्रणोदक आवश्यकताएं लगभग 1 मी/सेकंड या उससे कम हैं।<ref name=nasa20110101>
एक महत्वपूर्ण लैग्रेंज बिंदु है पृथ्वी-सूर्य {{L1}}, और तीन हेलियोफिजिक्स मिशन लगभग 2000 से एल1 की परिक्रमा कर रहे हैं। स्टेशन-रखने वाले प्रणोदक का उपयोग अत्यधिक कम हो सकता है, जिससे उन मिशनों को सुविधाजनक बनाया जा सकता है जो संभावित रूप से दशकों तक चल सकते हैं यदि अन्य अंतरिक्ष यान प्रणालियाँ चालू रहती हैं। तीन अंतरिक्ष यान- उन्नत संरचना एक्सप्लोरर (एसीई), सौर हेलिओस्फेरिक वेधशाला (एसओएचओ), और विंड (अंतरिक्ष यान) उपग्रह-प्रत्येक की वार्षिक डेल्टा बी स्टेशन-रखने वाली प्रणोदक आवश्यकताएं लगभग 1 मी/सेकंड या उससे कम हैं।<ref name=nasa20110101>
{{cite journal |last1=Roberts|first1=Craig E. |author-link1=<!-- link to the article on the NASA NTRS tech report server (included abstract): http://ntrs.nasa.gov/search.jsp?R=20110008638 --> |title=Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND|journal=NASA Technical Reports |date=1 January 2011 |publisher=NASA |hdl=2060/20110008638 |id=20110008638 |quote=''Three heliophysics missions – the Advanced Composition Explorer (ACE), Solar Heliospheric Observatory (SOHO), and the Global Geoscience WIND – have been orbiting the Sun-Earth interior libration point L1 continuously since 1997, 1996, and 2004 ... the typical interval between burns for this trio is about three months, and the typical delta-V is much smaller than 0.5 m/sec. Typical annual stationkeeping costs have been around 1.0 m/sec for ACE and WIND, and much less than that for SOHO. All three spacecraft have ample fuel remaining; barring contingencies all three could, in principle, be maintained at L1 for decades to come.'' }}</ref>
{{cite journal |last1=Roberts|first1=Craig E. |author-link1=<!-- link to the article on the NASA NTRS tech report server (included abstract): http://ntrs.nasa.gov/search.jsp?R=20110008638 --> |title=Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND|journal=NASA Technical Reports |date=1 January 2011 |publisher=NASA |hdl=2060/20110008638 |id=20110008638 |quote=''Three heliophysics missions – the Advanced Composition Explorer (ACE), Solar Heliospheric Observatory (SOHO), and the Global Geoscience WIND – have been orbiting the Sun-Earth interior libration point L1 continuously since 1997, 1996, and 2004 ... the typical interval between burns for this trio is about three months, and the typical delta-V is much smaller than 0.5 m/sec. Typical annual stationkeeping costs have been around 1.0 m/sec for ACE and WIND, and much less than that for SOHO. All three spacecraft have ample fuel remaining; barring contingencies all three could, in principle, be maintained at L1 for decades to come.'' }}</ref> पृथ्वी सूर्य {{L2}}-पृथ्वी से सूर्य-विरोधी दिशा में लगभग 1.5 मिलियन किलोमीटर दूर- अन्य महत्वपूर्ण लैग्रेंज बिंदु है, और ईएसए [[हर्शेल अंतरिक्ष वेधशाला]] 2009-2013 के समय लिसाजस कक्षा में [[वह]] संचालित हुई, जिस समय [[अंतरिक्ष दूरबीन]] के लिए शीतलक समाप्त हो गया था। . स्टेशन-अनुरक्षण कक्षा में अंतरिक्ष यान को बनाए रखने के लिए छोटे स्टेशन-अनुरक्षण कक्षीय युद्धाभ्यास को लगभग मासिक रूप से निष्पादित किया गया था।<ref name=esa20090614>
पृथ्वी सूर्य {{L2}}-पृथ्वी से सूर्य-विरोधी दिशा में लगभग 1.5 मिलियन किलोमीटर दूर-एक अन्य महत्वपूर्ण लैग्रेंज बिंदु है, और ईएसए [[हर्शेल अंतरिक्ष वेधशाला]] 2009-2013 के दौरान लिसाजस कक्षा में [[वह]]ां संचालित हुई, जिस समय [[अंतरिक्ष दूरबीन]] के लिए शीतलक समाप्त हो गया था। . स्टेशन-कीपिंग कक्षा में अंतरिक्ष यान को बनाए रखने के लिए छोटे स्टेशन-कीपिंग कक्षीय युद्धाभ्यास को लगभग मासिक रूप से निष्पादित किया गया था।<ref name=esa20090614>
{{cite web |title= ESA Science & Technology: Orbit/Navigation |url= http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34699 |date=14 June 2009 |publisher= [[European Space Agency]] |access-date=14 February 2015 }}</ref>
{{cite web |title= ESA Science & Technology: Orbit/Navigation |url= http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34699 |date=14 June 2009 |publisher= [[European Space Agency]] |access-date=14 February 2015 }}</ref>
[[जेम्स वेब स्पेस टेलीस्कोप]] पृथ्वी-सूर्य L2 के चारों ओर अपनी प्रभामंडल कक्षा को बनाए रखने के लिए प्रणोदक का उपयोग करेगा, जो इसके डिज़ाइन किए गए जीवनकाल की ऊपरी सीमा प्रदान करता है: इसे दस वर्षों तक ले जाने के लिए डिज़ाइन किया जा रहा है।<ref>{{Cite web|url=https://jwst.nasa.gov/content/about/faqs/faq.html|title=FAQ Full General Public Webb Telescope/NASA|website=jwst.nasa.gov}}</ref> हालाँकि, [[एरियन 5]] द्वारा प्रक्षेपण के बाद प्रक्षेपवक्र की सटीकता को उम्मीद से अधिक हाइड्राज़ीन#रॉकेट_फ्यूल ऑन-बोर्ड छोड़कर दूरबीन के जीवनकाल को संभावित रूप से दोगुना करने का श्रेय दिया जाता है।<ref name=BBC1>{{cite web |url=https://www.bbc.com/news/science-environment-59914936 |title=जेम्स वेब टेलीस्कोप ने महाकाव्य परिनियोजन अनुक्रम पूरा किया|last=Amos |first=Jonathan |date=January 9, 2022 |website=www.bbc.com |publisher=[[BBC News]]  |access-date=January 10, 2022 }}</ref><ref name=Ars1>{{cite web |url=https://arstechnica.com/science/2022/01/all-hail-the-ariane-5-rocket-which-doubled-the-webb-telescopes-lifetime/ |title=All hail the Ariane 5 rocket, which doubled the Webb telescope's lifetime |last=Berger |first=Eric |date=10 January 2022 |website=www.arstechnica.com |publisher=[[Ars Technica]]  |access-date=11 January 2022 }}</ref>
[[कैपस्टोन]] ऑर्बिटर और नियोजित [[ चंद्र प्रवेश द्वार ]] को पृथ्वी-चंद्रमा L2 लैग्रेंज बिंदु के आसपास नियर रेक्टिलिनियर हेलो ऑर्बिट (NRHO) पर तैनात किया जाएगा।<ref name=Muralidharan2020>{{Cite conference|url=https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Conferences/2020_AAS_MurHow.pdf|title=रेक्टिलिनियर हेलो ऑर्बिट के पास पृथ्वी-चंद्रमा में स्टेशनकीपिंग|first1=Vivek|last1=Muralidharan|first2=Kathleen|last2=Howell|conference=AAS/AIAA Astrodynamics Specialist Conference|location=South Lake Tahoe, California, USA|date=2020|id=AAS 20-642}}</ref><ref name=Newman2018>{{Cite conference|url=https://trs.jpl.nasa.gov/bitstream/handle/2014/48616/CL%2318-4181.pdf?sequence=1|title=निकट सीधी प्रभामंडल कक्षाओं में अंतरिक्ष यान के लिए स्टेशनकीपिंग, कक्षा निर्धारण और दृष्टिकोण नियंत्रण|first1=Clark P.|last1=Newman|display-authors=etal|conference=AAS/AIAA Astrodynamics Specialist Conference|location=Snowbird, Utah, USA|date=2018|id=AAS 18-388}}</ref><ref name=Muralidharan2021>{{Cite journal|title=पृथ्वी-चंद्रमा प्रभामंडल कक्षाओं में स्टेशनकीपिंग के लिए स्ट्रेचिंग दिशाओं का लाभ उठाना|first1=Vivek|last1=Muralidharan|first2=Kathleen|last2=Howell|journal =[[Advances in Space Research]]  |year=2022 | volume = 69 | issue = 1| pages = 620–646 | doi = 10.1016/j.asr.2021.10.028 | bibcode = 2022AdSpR..69..620M|s2cid=239490016 }}</ref>


[[जेम्स वेब स्पेस टेलीस्कोप|जेम्स वेब अंतरिक्ष टेलीस्कोप]] अपनी हैलो कक्षा को बनाए रखने के लिए प्रणोदक का उपयोग करेगा, जो भूमि-सूर्य L2 पॉइंट के चारों ओर है और इसके डिज़ाइन किए गए जीवनकाल की ऊपरी सीमा प्रदान करता है: इसे दस वर्षों तक ले जाने के लिए डिज़ाइन किया जा रहा है।<ref>{{Cite web|url=https://jwst.nasa.gov/content/about/faqs/faq.html|title=FAQ Full General Public Webb Telescope/NASA|website=jwst.nasa.gov}}</ref> चूँकि, [[एरियन 5]] द्वारा प्रक्षेपण के बाद प्रक्षेपवक्र की सटीकता को उम्मीद से अधिक हाइड्राज़ीन प्रणोदक को बोर्ड पर छोड़कर तेलीस्कोप की आयु को पूरे दोगुना करने के साथ जाता है।<ref name="BBC1">{{cite web |url=https://www.bbc.com/news/science-environment-59914936 |title=जेम्स वेब टेलीस्कोप ने महाकाव्य परिनियोजन अनुक्रम पूरा किया|last=Amos |first=Jonathan |date=January 9, 2022 |website=www.bbc.com |publisher=[[BBC News]]  |access-date=January 10, 2022 }}</ref><ref name="Ars1">{{cite web |url=https://arstechnica.com/science/2022/01/all-hail-the-ariane-5-rocket-which-doubled-the-webb-telescopes-lifetime/ |title=All hail the Ariane 5 rocket, which doubled the Webb telescope's lifetime |last=Berger |first=Eric |date=10 January 2022 |website=www.arstechnica.com |publisher=[[Ars Technica]]  |access-date=11 January 2022 }}</ref>


कैपस्टोन उपग्रह और नियोजित चंद्र प्रवेश द्वार को पृथ्वी-चंद्रमा L2 लैग्रेंज बिंदु के आसपास नियर आरेखीय हेलो कक्षा (एनआरएचओ)पर स्थित होंगे।<ref name="Muralidharan2020">{{Cite conference|url=https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Conferences/2020_AAS_MurHow.pdf|title=रेक्टिलिनियर हेलो ऑर्बिट के पास पृथ्वी-चंद्रमा में स्टेशनकीपिंग|first1=Vivek|last1=Muralidharan|first2=Kathleen|last2=Howell|conference=AAS/AIAA Astrodynamics Specialist Conference|location=South Lake Tahoe, California, USA|date=2020|id=AAS 20-642}}</ref><ref name="Newman2018">{{Cite conference|url=https://trs.jpl.nasa.gov/bitstream/handle/2014/48616/CL%2318-4181.pdf?sequence=1|title=निकट सीधी प्रभामंडल कक्षाओं में अंतरिक्ष यान के लिए स्टेशनकीपिंग, कक्षा निर्धारण और दृष्टिकोण नियंत्रण|first1=Clark P.|last1=Newman|display-authors=etal|conference=AAS/AIAA Astrodynamics Specialist Conference|location=Snowbird, Utah, USA|date=2018|id=AAS 18-388}}</ref><ref name="Muralidharan2021">{{Cite journal|title=पृथ्वी-चंद्रमा प्रभामंडल कक्षाओं में स्टेशनकीपिंग के लिए स्ट्रेचिंग दिशाओं का लाभ उठाना|first1=Vivek|last1=Muralidharan|first2=Kathleen|last2=Howell|journal =[[Advances in Space Research]]  |year=2022 | volume = 69 | issue = 1| pages = 620–646 | doi = 10.1016/j.asr.2021.10.028 | bibcode = 2022AdSpR..69..620M|s2cid=239490016 }}</ref>
==यह भी देखें==
==यह भी देखें==
* [[डेल्टा-v बजट]]
* डेल्टा-v बजट
* कक्षीय गड़बड़ी विश्लेषण
* कक्षीय विक्षेपण विश्लेषण
* [[पुनः बूस्ट करें]] करें
* पुनः बूस्ट करें
* [[टेलीऑपरेटर पुनर्प्राप्ति प्रणाली]] (किसी अन्य अंतरिक्ष यान से जुड़ने और उसकी कक्षा को बढ़ाने या बदलने के लिए रोबोटिक उपकरण)
* टेलीऑपरेटर पुनर्प्राप्ति प्रणाली


==संदर्भ==
==संदर्भ==
Line 62: Line 58:
* [http://www.daviddarling.info/encyclopedia/X/XIPS.html XIPS] Xenon Ion Propulsion Systems
* [http://www.daviddarling.info/encyclopedia/X/XIPS.html XIPS] Xenon Ion Propulsion Systems
* [http://www.esa.int/esaCP/SEMPEISZEFF_index_0.html Jules Verne boosts ISS orbit] Jules Verne boosts ISS orbit (report from the European Space Agency)
* [http://www.esa.int/esaCP/SEMPEISZEFF_index_0.html Jules Verne boosts ISS orbit] Jules Verne boosts ISS orbit (report from the European Space Agency)
{{orbits}}


{{DEFAULTSORT:Orbital Station-Keeping}}[[Category: कक्षीय युद्धाभ्यास]] [[Category: खगोल गतिशीलता]] [[Category: पृथ्वी परिक्रमा करती है]]  
{{DEFAULTSORT:Orbital Station-Keeping}}[[Category: कक्षीय युद्धाभ्यास]] [[Category: खगोल गतिशीलता]] [[Category: पृथ्वी परिक्रमा करती है]]  
Line 71: Line 65:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/08/2023]]
[[Category:Created On 14/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:00, 10 October 2023

खगोलगतिकी में, कक्षीय स्टेशन-अनुरक्षण अंतरिक्ष यान को दूसरे अंतरिक्ष यान या खगोलीय पिंड से निश्चित दूरी पर रखना है। सक्रिय यान को उसके लक्ष्य के समान कक्षा में रखने के लिए अंतरिक्ष यान प्रणोदन के साथ बनाई गई कक्षीय युक्तियों की श्रृंखला की आवश्यकता होती है। कई निम्न पृथ्वी कक्षा उपग्रहों के लिए, कक्षीय अस्तव्यस्तता विश्लेषण (अंतरिक्ष यान) | गैर-केप्लरियन बलों के प्रभाव, अर्थात शैल प्रमेय से पृथ्वी के गुरुत्वाकर्षण बल का विचलन, सूर्य/चंद्रमा से गुरुत्वाकर्षण बल, सौर विकिरण दबाव और हवा की खींचाव के प्रभाव को प्रतिकृत करने की आवश्यकता होती है।

शैल प्रमेय से पृथ्वी के गुरुत्वाकर्षण क्षेत्र का विचलन और सूर्य और चंद्रमा से गुरुत्वाकर्षण बल सामान्यतः कक्षीय तल को चिन्तित करेंगे। सूर्य-समकालिक कक्षा के लिए, पृथ्वी के तिरछेपन के कारण कक्षीय तल की पूर्वता वांछनीय विशेषता है जो मिशन डिजाइन का भाग है किन्तु सूर्य और चंद्रमा के गुरुत्वाकर्षण बलों के कारण होने वाला झुकाव परिवर्तन अवांछनीय है। भूस्थैतिक कक्षा के लिए, सूर्य और चंद्रमा के गुरुत्वाकर्षण बलों के कारण होने वाले झुकाव परिवर्तन को ईंधन के बड़े खर्च से प्रतिकार किया जाना चाहिए, क्योंकि अंतरिक्ष यान को गैर-संचालनीय एंटीना द्वारा ट्रैक करने के लिए झुकाव को पर्याप्त रूप से छोटा रखा जाना चाहिए।

निचली कक्षा में अंतरिक्ष यान के लिए, वायुमंडलीय ड्रैग (भौतिकी) के प्रभावों की प्रायः भरपाई की जानी चाहिए, प्रायः पुन: प्रवेश से बचने के लिए; उन मिशनों के लिए जिनमें कक्षा को पृथ्वी के घूर्णन के साथ सटीक रूप से सिंक्रनाइज़ करने की आवश्यकता होती है, कक्षीय अवधि को छोटा होने से रोकने के लिए यह आवश्यक है।

सौर विकिरण दबाव सामान्यतः विलक्षणता (अर्थात विलक्षणता सदिश ) को चिन्तित करेगा; कक्षीय अस्तव्यस्तता विश्लेषण (अंतरिक्ष यान) देखें। कुछ मिशनों के लिए, युद्धाभ्यास के साथ सक्रिय रूप से इसका प्रतिकार किया जाना चाहिए। भूस्थैतिक कक्षा के लिए, अंतरिक्ष यान को गैर-संचालनीय एंटीना के साथ ट्रैक करने के लिए विलक्षणता को पर्याप्त रूप से छोटा रखा जाना चाहिए। इसके अलावा पृथ्वी अवलोकन उपग्रह के लिए जिसके लिए निश्चित ग्राउंड ट्रैक के साथ बहुत ही दोहराव वाली कक्षा वांछनीय है, विलक्षणता सदिश को यथासंभव स्थिर रखा जाना चाहिए। इस क्षतिपूर्ति का बड़ा भाग जमे हुए कक्षा डिजाइन का उपयोग करके किया जा सकता है, किन्तु प्रायः सटीक नियंत्रण युद्धाभ्यास के लिए थ्रस्टर्स की आवश्यकता होती है।

लैग्रेंज बिंदु के चारों ओर प्रभामंडल कक्षा में अंतरिक्ष यान के लिए, स्टेशन-अनुरक्षण और भी अधिक मौलिक है, क्योंकि ऐसी कक्षा अस्थिर है; थ्रस्टर बर्न के साथ सक्रिय नियंत्रण के बिना, स्थिति या वेग में सबसे छोटे विचलन के परिणामस्वरूप अंतरिक्ष यान पूरी प्रकार से कक्षा छोड़ देगा।[1]

निम्न पृथ्वी कक्षा

बहुत कम कक्षा में अंतरिक्ष यान के लिए, ड्रैग (भौतिकी) मिशन के इच्छित अंत से पहले पुन: प्रवेश करने के लिए पर्याप्त रूप से मजबूत है यदि समय-समय पर कक्षा बढ़ाने वाले युद्धाभ्यास निष्पादित नहीं किए जाते हैं।

इसका उदाहरण अंतर्राष्ट्रीय अंतरिक्ष स्टेशन (आईएसएस) है, जिसकी पृथ्वी की सतह से परिचालन ऊंचाई 330 से 410 किमी के बीच है। वायुमंडलीय खिंचाव के कारण अंतरिक्ष स्टेशन लगातार कक्षीय ऊर्जा खो रहा है। इस नुकसान की भरपाई करने के लिए, जो अंततः स्टेशन के पुन: प्रवेश की ओर ले जाएगा, समय-समय पर इसे उच्च कक्षा में पुनः बढ़ाया जाता रहा है। चुनी गई कक्षीय ऊंचाई एयर ड्रैग का प्रतिकार करने के लिए आवश्यक औसत जोर और पेलोड और लोगों को स्टेशन पर भेजने के लिए आवश्यक आवेग (भौतिकी) के बीच समझौता है।

GOCE जिसने 255 किमी (बाद में 235 किमी तक कम) की परिक्रमा की, ने लगभग 1 मीटर2 के अपने ललाट क्षेत्र पर खिंचाव की भरपाई के लिए 20 mN तक का जोर प्रदान करने के लिए आयन थ्रस्टर का उपयोग किया।[2]

पृथ्वी अवलोकन अंतरिक्ष यान

पृथ्वी अवलोकन उपग्रह के लिए जो सामान्यतः पृथ्वी की सतह से लगभग 700-800 किमी की ऊंचाई पर संचालित होता है, एयर-ड्रैग बहुत हल्का होता है और एयर-ड्रैग के कारण पुन: प्रवेश चिंता का विषय नहीं है। किन्तु यदि निश्चित ग्राउंड ट्रैक को बनाए रखने के लिए कक्षीय अवधि को पृथ्वी के घूर्णन के साथ समकालिक होना चाहिए, तो इस उच्च ऊंचाई पर हल्के वायु-कर्षण को भी कक्षा के स्पर्शरेखीय थ्रस्टर बर्न के रूप में कक्षा बढ़ाने वाले युद्धाभ्यास द्वारा प्रतिकार किया जाना चाहिए। ये युद्धाभ्यास बहुत छोटे होंगे, सामान्यतः डेल्टा-सी के कुछ मिमी/सेकेंड के आदेश में होते हैं। यदि जमे हुए कक्षा डिज़ाइन का उपयोग किया जाता है तो ये बहुत छोटी कक्षा बढ़ाने वाली युक्तियाँ विलक्षणता सदिश को नियंत्रित करने के लिए भी पर्याप्त हैं।

एक स्थिर भूमि ट्रैक बनाए रखने के लिए सूर्य/चंद्रमा के गुरुत्व के कारण उत्तर-दक्षिण में होने वाले बाहरी यातायात को संवर्धन करने के लिए प्लेन के अपरिपथ मानवर किए जाने की भी आवश्यकता होती है। सूर्य-समवर्ती उपग्रहों के लिए जो सूर्य के साथ स्थिर ज्यामिति रखते हैं, सूर्य गुरुत्व के कारण होने वाले उत्तर-दक्षिण के बदलाव का विशेष रूप से बड़ा हो सकता है; इसे स्थिर रखने के लिए सामान्यतः लगभग 1-2 मीटर/सेकंड प्रतिवर्ष की आवश्यकता हो सकती है।

भूस्थैतिक कक्षा

झुके हुए कक्षीय तल

भूस्थैतिक अंतरिक्ष यान के लिए, चंद्र/सौर गुरुत्वाकर्षण के प्रभाव की भरपाई के लिए कक्षीय तल पर थ्रस्टर बर्न ऑर्थोगोनल को क्रियान्वित किया जाना चाहिए जो प्रति वर्ष सामान्यतः 0.85 डिग्री के साथ कक्षा ध्रुव को चिन्तित करता है।[3] डेल्टा-वी को भूमध्यरेखीय तल पर झुकाव को प्रति वर्ष 45 मीटर/सेकेंड के क्रम में रखते हुए इस अस्तव्यस्तता की भरपाई करने की आवश्यकता है। GEO स्टेशन-अनुरक्षण के इस भाग को उत्तर-दक्षिण नियंत्रण कहा जाता है।[4]

पूर्व-पश्चिम नियंत्रण कक्षीय अवधि और विलक्षणता सदिश का नियंत्रण है जो थ्रस्टर बर्न को कक्षा के स्पर्शरेखा बनाकर किया जाता है। फिर इन बर्न्स को पृथ्वी के घूर्णन के साथ कक्षीय अवधि को पूरी प्रकार से समकालिक बनाए रखने और विलक्षणता को पर्याप्त रूप से छोटा रखने के लिए डिज़ाइन किया गया है। कक्षीय अवधि में अस्तव्यस्तता उत्तर/दक्षिण अक्ष के सापेक्ष पृथ्वी की अपूर्ण घूर्णी समरूपता के परिणामस्वरूप होती है, जिसे कभी-कभी पृथ्वी भूमध्य रेखा की अण्डाकारता भी कहा जाता है। विलक्षणता (अर्थात विलक्षणता सदिश ) सौर विकिरण दबाव से चिन्तित है। इस पूर्व-पश्चिम नियंत्रण के लिए आवश्यक ईंधन उत्तर-दक्षिण नियंत्रण के लिए आवश्यक ईंधन से बहुत कम है।

जब कम ईंधन बचे भूस्थैतिक अंतरिक्ष यान के जीवन काल को बढ़ाने के लिए कभी-कभी उत्तर-दक्षिण नियंत्रण को बंद कर दिया जाता है और केवल पूर्व-पश्चिम नियंत्रण को जारी रखा जाता है। जैसा कि घूमती पृथ्वी पर पर्यवेक्षक ने देखा, अंतरिक्ष यान 24 घंटे की अवधि के साथ उत्तर-दक्षिण की ओर बढ़ेगा। जब यह उत्तर-दक्षिण गति बहुत बड़ी हो जाती है तो अंतरिक्ष यान को ट्रैक करने के लिए चलाने योग्य एंटीना की आवश्यकता होती है। इसका उदाहरण[when?] आर्टेमिस (उपग्रह) हैं।

वजन बचाने के लिए, GEO उपग्रहों के लिए सबसे अधिक ईंधन-कुशल अंतरिक्ष यान प्रणोदन प्रणाली का होना महत्वपूर्ण है। इसलिए लगभग सभी आधुनिक उपग्रह प्लाज्मा थ्रस्टर या आयन थ्रस्टर जैसी उच्च विशिष्ट आवेग प्रणाली का उपयोग कर रहे हैं।

लैग्रेंज अंक

अंतरिक्ष यान की कक्षाएँ लैग्रेंज बिंदुओं के आसपास भी संभव हैं - जिन्हें लाइब्रेशन पॉइंट भी कहा जाता है - पाँच संतुलन बिंदु जो दो बड़े सौर मंडल निकायों के संबंध में उपस्थित हैं। उदाहरण के लिए, सूर्य-पृथ्वी प्रणाली में इनमें से पाँच बिंदु हैं, पृथ्वी-चंद्रमा प्रणाली में पाँच, इत्यादि। अंतरिक्ष यान स्टेशन-रखने के उद्देश्यों के लिए आवश्यक न्यूनतम प्रणोदक के साथ इन बिंदुओं के चारों ओर परिक्रमा कर सकता है। ऐसे उद्देश्यों के लिए जिन दो कक्षाओं का उपयोग किया गया है उनमें हेलो कक्षा और लिसाजस कक्षा कक्षाएँ सम्मिलित हैं।[5]

एक महत्वपूर्ण लैग्रेंज बिंदु है पृथ्वी-सूर्य L1, और तीन हेलियोफिजिक्स मिशन लगभग 2000 से एल1 की परिक्रमा कर रहे हैं। स्टेशन-रखने वाले प्रणोदक का उपयोग अत्यधिक कम हो सकता है, जिससे उन मिशनों को सुविधाजनक बनाया जा सकता है जो संभावित रूप से दशकों तक चल सकते हैं यदि अन्य अंतरिक्ष यान प्रणालियाँ चालू रहती हैं। तीन अंतरिक्ष यान- उन्नत संरचना एक्सप्लोरर (एसीई), सौर हेलिओस्फेरिक वेधशाला (एसओएचओ), और विंड (अंतरिक्ष यान) उपग्रह-प्रत्येक की वार्षिक डेल्टा बी स्टेशन-रखने वाली प्रणोदक आवश्यकताएं लगभग 1 मी/सेकंड या उससे कम हैं।[5] पृथ्वी सूर्य L2-पृथ्वी से सूर्य-विरोधी दिशा में लगभग 1.5 मिलियन किलोमीटर दूर- अन्य महत्वपूर्ण लैग्रेंज बिंदु है, और ईएसए हर्शेल अंतरिक्ष वेधशाला 2009-2013 के समय लिसाजस कक्षा में वह संचालित हुई, जिस समय अंतरिक्ष दूरबीन के लिए शीतलक समाप्त हो गया था। . स्टेशन-अनुरक्षण कक्षा में अंतरिक्ष यान को बनाए रखने के लिए छोटे स्टेशन-अनुरक्षण कक्षीय युद्धाभ्यास को लगभग मासिक रूप से निष्पादित किया गया था।[1]

जेम्स वेब अंतरिक्ष टेलीस्कोप अपनी हैलो कक्षा को बनाए रखने के लिए प्रणोदक का उपयोग करेगा, जो भूमि-सूर्य L2 पॉइंट के चारों ओर है और इसके डिज़ाइन किए गए जीवनकाल की ऊपरी सीमा प्रदान करता है: इसे दस वर्षों तक ले जाने के लिए डिज़ाइन किया जा रहा है।[6] चूँकि, एरियन 5 द्वारा प्रक्षेपण के बाद प्रक्षेपवक्र की सटीकता को उम्मीद से अधिक हाइड्राज़ीन प्रणोदक को बोर्ड पर छोड़कर तेलीस्कोप की आयु को पूरे दोगुना करने के साथ जाता है।[7][8]

कैपस्टोन उपग्रह और नियोजित चंद्र प्रवेश द्वार को पृथ्वी-चंद्रमा L2 लैग्रेंज बिंदु के आसपास नियर आरेखीय हेलो कक्षा (एनआरएचओ)पर स्थित होंगे।[9][10][11]

यह भी देखें

  • डेल्टा-v बजट
  • कक्षीय विक्षेपण विश्लेषण
  • पुनः बूस्ट करें
  • टेलीऑपरेटर पुनर्प्राप्ति प्रणाली

संदर्भ

  1. 1.0 1.1 "ESA Science & Technology: Orbit/Navigation". European Space Agency. 14 June 2009. Retrieved 14 February 2015.
  2. "GOCE satellite".
  3. Anderson, Paul; et al. (2015). GEO डेब्रिस सिंक्रोनाइज़ेशन डायनेमिक्स के परिचालन संबंधी विचार (PDF). 66th International Astronautical Congress. Jerusalem, Israel. IAC-15,A6,7,3,x27478.
  4. Soop, E. M. (1994). Handbook of Geostationary Orbits. Springer. ISBN 978-0-7923-3054-7.
  5. 5.0 5.1 Roberts, Craig E. (1 January 2011). "Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND". NASA Technical Reports. NASA. hdl:2060/20110008638. 20110008638. Three heliophysics missions – the Advanced Composition Explorer (ACE), Solar Heliospheric Observatory (SOHO), and the Global Geoscience WIND – have been orbiting the Sun-Earth interior libration point L1 continuously since 1997, 1996, and 2004 ... the typical interval between burns for this trio is about three months, and the typical delta-V is much smaller than 0.5 m/sec. Typical annual stationkeeping costs have been around 1.0 m/sec for ACE and WIND, and much less than that for SOHO. All three spacecraft have ample fuel remaining; barring contingencies all three could, in principle, be maintained at L1 for decades to come.
  6. "FAQ Full General Public Webb Telescope/NASA". jwst.nasa.gov.
  7. Amos, Jonathan (January 9, 2022). "जेम्स वेब टेलीस्कोप ने महाकाव्य परिनियोजन अनुक्रम पूरा किया". www.bbc.com. BBC News. Retrieved January 10, 2022.
  8. Berger, Eric (10 January 2022). "All hail the Ariane 5 rocket, which doubled the Webb telescope's lifetime". www.arstechnica.com. Ars Technica. Retrieved 11 January 2022.
  9. Muralidharan, Vivek; Howell, Kathleen (2020). रेक्टिलिनियर हेलो ऑर्बिट के पास पृथ्वी-चंद्रमा में स्टेशनकीपिंग (PDF). AAS/AIAA Astrodynamics Specialist Conference. South Lake Tahoe, California, USA. AAS 20-642.
  10. Newman, Clark P.; et al. (2018). निकट सीधी प्रभामंडल कक्षाओं में अंतरिक्ष यान के लिए स्टेशनकीपिंग, कक्षा निर्धारण और दृष्टिकोण नियंत्रण (PDF). AAS/AIAA Astrodynamics Specialist Conference. Snowbird, Utah, USA. AAS 18-388.
  11. Muralidharan, Vivek; Howell, Kathleen (2022). "पृथ्वी-चंद्रमा प्रभामंडल कक्षाओं में स्टेशनकीपिंग के लिए स्ट्रेचिंग दिशाओं का लाभ उठाना". Advances in Space Research. 69 (1): 620–646. Bibcode:2022AdSpR..69..620M. doi:10.1016/j.asr.2021.10.028. S2CID 239490016.


बाहरी संबंध