दाब विनिमयक: Difference between revisions

From Vigyanwiki
No edit summary
m (5 revisions imported from alpha:दाब_विनिमयक)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Device for exchanging pressure between two fluids}}
{{short description|Device for exchanging pressure between two fluids}}
[[File:PressureExchanger 2DSchematics.svg|thumb|300px|एक रोटरी दबाव एक्सचेंजर की योजनाएँ। {{nowrap|''A'': High pressure side,}} {{nowrap|''B'': Low pressure side,}} {{nowrap|''C'': Rotor rotation,}} {{nowrap|''D'': Sealed area,}} 1: उच्च दबाव जल प्रवाह को अस्वीकार करता है, 2: दबावयुक्त समुद्री जल, 3: निम्न दबाव समुद्री जल प्रवाह, 4: निम्न दबाव जल प्रवाह को अस्वीकार करता है, {{nowrap|{{legend2|#ff0000}}: Reject water / concentrate,}} {{nowrap|{{legend2|#808080}}: Piston / barrier,}} {{nowrap|{{legend2|#00ffff}}: Sea water}}]]एक प्रेशर एक्सचेंजर दबाव [[ऊर्जा]] को [[उच्च दबाव]] वाले तरल प्रवाह से कम दबाव वाले तरल प्रवाह में स्थानांतरित करता है। कई औद्योगिक प्रक्रियाएं ऊंचे दबाव पर संचालित होती हैं और उनमें उच्च दबाव वाली अपशिष्ट धाराएं होती हैं। ऐसी प्रक्रिया के लिए उच्च दबाव वाला [[तरल पदार्थ]] प्रदान करने का एक तरीका एक दबाव एक्सचेंजर का उपयोग करके अपशिष्ट दबाव को कम दबाव की धारा में स्थानांतरित करना है।
[[File:PressureExchanger 2DSchematics.svg|thumb|300px|रोटरी दाब विनिमयक की योजनाएँ। {{nowrap|'''': उच्च दबाव पक्ष,}} {{nowrap|''बी'': निम्न दबाव पक्ष,}} {{nowrap|''सी'': रोटर घूर्णन,}} {{nowrap|''डी'': सीलबंद क्षेत्र,}} 1: उच्च दाब जल प्रवाह को अस्वीकार करता है, 2: दाबयुक्त समुद्री जल, 3: निम्न दाब समुद्री जल प्रवाह, 4: निम्न दाब जल प्रवाह को अस्वीकार करता है, {{nowrap|{{legend2|#ff0000}}: जल अस्वीकृत/सान्द्र,}} {{nowrap|{{legend2|#808080}}: पिस्टन/बैरियर,}} {{nowrap|{{legend2|#00ffff}}: समुद्री जल}}]]एक '''दाब विनिमयक''' दाब [[ऊर्जा]] को [[उच्च दबाव|उच्च दाब]] वाले द्रव्य प्रवाह से न्यून दाब वाले द्रव्य प्रवाह में स्थानांतरित करता है। कई औद्योगिक प्रक्रियाएं उच्च दाब पर संचालित होती हैं और उनमें उच्च दाब वाली अपशिष्ट धाराएं होती हैं। ऐसी प्रक्रिया के लिए उच्च दाब वाला [[तरल पदार्थ]] प्रदान करने का एक तरीका एक दाब विनिमयक का उपयोग करके अपशिष्ट दाब को कम दाब की धारा में स्थानांतरित करना है।


एक विशेष रूप से कुशल प्रकार का दबाव एक्सचेंजर एक रोटरी दबाव एक्सचेंजर है। यह उपकरण अपने घूर्णन अक्ष के समानांतर अनुदैर्ध्य नलिकाओं वाले एक [[बेलनाकार]] रोटर का उपयोग करता है। रोटर दो सिरे वाले आवरणों के बीच एक आस्तीन के अंदर घूमता है। रोटर की नलिकाओं में दबाव ऊर्जा सीधे उच्च दबाव धारा से निम्न दबाव धारा में स्थानांतरित की जाती है। नलिकाओं में बचा हुआ कुछ तरल एक अवरोध के रूप में कार्य करता है जो धाराओं के बीच मिश्रण को रोकता है। यह घूर्णी क्रिया पुराने ज़माने की मशीन गन के समान है जो उच्च दबाव की गोलियाँ चलाती है और इसे लगातार नए तरल पदार्थ कारतूसों से भरा जाता है। जैसे ही दबाव स्थानांतरण प्रक्रिया दोहराई जाती है, रोटर की नलिकाएं चार्ज और डिस्चार्ज हो जाती हैं।
विशेष रूप से दक्षतापूर्ण प्रकार का दाब विनिमयक एक चक्रीय (रोटरी) दाब विनिमयक है। यह उपकरण अपने घूर्णन अक्ष के समानांतर अनुदैर्ध्य नलिकाओं वाले एक [[बेलनाकार]] घूर्णक (रोटर) का उपयोग करता है। घूर्णक दो सिरे वाले आवरणों के बीच एक आवरण नली के अंदर घूर्णन करता है। घूर्णक की नलिकाओं में दाब ऊर्जा सीधे उच्च दाब धारा से निम्न दाब धारा में स्थानांतरित की जाती है। नलिकाओं में बचा हुआ कुछ तरल एक अवरोध के रूप में कार्य करता है जो धाराओं के बीच मिश्रण को रोकता है। यह घूर्णन क्रिया पुराने शैली की मशीन गन द्वारा उच्च दबाव वाले गोलियों के फायरिंग के समान है और यह सदैव नई द्रव्य कारतूसों (कार्ट्रिजों) से फिर से भरा जाता है। घूर्णक की नलिकाएं दाब स्थानांतरण प्रक्रिया स्वयं को बार-बार दोहराते हुए आवेशित (चार्ज) और अनावेशित (डिस्चार्ज) करते हैं।


प्रेशर एक्सचेंजर का प्रदर्शन ऊर्जा हस्तांतरण प्रक्रिया की दक्षता और धाराओं के बीच मिश्रण की डिग्री से मापा जाता है। धाराओं की ऊर्जा उनके प्रवाह के आयतन और दबाव का उत्पाद है। दक्षता निम्नलिखित समीकरण के साथ गणना की गई डिवाइस के माध्यम से दबाव के अंतर और वॉल्यूमेट्रिक नुकसान (रिसाव) का एक कार्य है:
दाब विनिमयक का प्रदर्शन ऊर्जा हस्तांतरण प्रक्रिया की दक्षता और धाराओं के बीच मिश्रण की डिग्री से मापा जाता है। धाराओं की ऊर्जा उनके प्रवाह के आयतन और दाब का उत्पाद है। दक्षता निम्नलिखित समीकरण के साथ गणना की गई डिवाइस के माध्यम से दाब अवकल और आयतनमितीय (वॉल्यूमेट्रिक) हानि (रिसाव) का एक फलन है:


<math display="block">\eta=\frac{\Sigma\text{ energy out} }{\Sigma\text{ energy in} }=\frac{(Q_G-L)\times(P_G-HDP)+(Q_B+L)\times(P_B-LDP)}{Q_G\times P_G+Q_B\times P_B}\qquad\qquad(1)</math>यहाँ, Q प्रवाह को दर्शाता है, P दबाव को, L रिसाव का प्रवाह को, HDP उच्च दबाव सांतर्जन को, LDP न्यून दबाव सांतर्जन को, उपलेख "B" उपयुक्त उपकरण के लिए न्यून दबाव संचालन को सूचित करता है और "G" उपलेख उच्च दबाव संचालन को सूचित करता है। मिश्रण उपकरण में आने वाली धाराओं की संकेत करता है और यह उपकरण के प्रवाह आवृत्तियों की संघटनों का कारक है।
<math display="block">\eta=\frac{\Sigma\text{ energy out} }{\Sigma\text{ energy in} }=\frac{(Q_G-L)\times(P_G-HDP)+(Q_B+L)\times(P_B-LDP)}{Q_G\times P_G+Q_B\times P_B}\qquad\qquad(1)</math>जहाँ, Q प्रवाह को दर्शाता है, P दाब को, L रिसाव का प्रवाह को, HDP उच्च दाब अवकल को, LDP न्यून दाब अवकल को, पादाक्षर "B" उपयुक्त उपकरण के लिए न्यून दाब संचालन को सूचित करता है और "G" पादाक्षर उच्च दाब संचालन को सूचित करता है। मिश्रण उपकरण में आने वाली धाराओं की संकेत करता है और यह उपकरण के प्रवाह आवृत्तियों की संघटनों का कारक है।
==रिवर्स ऑस्मोसिस==
==उत्क्रम परासरण==
[[File:ReverseOsmosis with PressureExchanger.svg|thumb|300px|एक दबाव एक्सचेंजर का उपयोग करके [[विपरीत परासरण]] सिस्टम (अलवणीकरण) की योजनाएँ। 1: समुद्री जल प्रवाह, 2: ताजा जल प्रवाह (40%), 3: सांद्र प्रवाह (60%), 4: समुद्री जल प्रवाह (60%), 5: सांद्र (नाली), ए: उच्च दबाव पंप प्रवाह (40%) %), बी: परिसंचरण पंप, सी: झिल्ली के साथ ऑस्मोसिस इकाई, डी: दबाव एक्सचेंजर]]एक अनुप्रयोग जिसमें दबाव एक्सचेंजर्स का व्यापक रूप से उपयोग किया जाता है, रिवर्स ऑस्मोसिस (आरओ) है। आरओ प्रणाली में, दबाव एक्सचेंजर्स का उपयोग [[ऊर्जा पुनःप्राप्ति]] उपकरणों (ईआरडी) के रूप में किया जाता है। जैसा कि चित्रित किया गया है, झिल्लियों [सी] से उच्च दबाव वाले सांद्रण को ईआरडी [डी] की ओर निर्देशित किया जाता है [3]। ERD इस उच्च दबाव वाली संकेंट्रेट स्ट्रीम का उपयोग करता है ताकि यह न्यून दबाव वाली समुद्र जल स्ट्रीम को दबावित कर सके (स्ट्रीम [1] स्ट्रीम [4] में परिणामित होती है), जिसे फिर यह (सर्कुलेशन [[पंप]] [B] की मदद से) उच्चतम दबाव वाली समुद्र जल स्ट्रीम में मिला देता है जिसे उच्च दबाव पंप [A] द्वारा बनाई गई समुद्र जल स्ट्रीम के साथ। यह संयुक्त स्ट्रीम मेम्ब्रेन्स [C] को प्रदान करती है। संकेंट्रेट ERD को न्यून दबाव [5] पर छोड़ती है, जिसे आगमन फीडवॉटर प्रवाह [1] द्वारा निकाल दिया जाता है।
[[File:ReverseOsmosis with PressureExchanger.svg|thumb|300px|दाब विनिमयक का उपयोग करके [[विपरीत परासरण]] सिस्टम (आसवन) की योजनाएँ। 1: समुद्री जल प्रवाह, 2: ताजा जल प्रवाह (40%), 3: सांद्र प्रवाह (60%), 4: समुद्री जल प्रवाह (60%), 5: सांद्र (नाली), ए: उच्च दाब पंप प्रवाह (40%) %), बी: परिसंचरण पंप, सी: झिल्ली के साथ ऑस्मोसिस इकाई, डी: दाब विनिमयक]]एक अनुप्रयोग जिसमें दाब विनिमयकों का व्यापक रूप से उत्क्रम परासरण (आरओ) का उपयोग किया जाता है। आरओ प्रणाली में, दाब विनिमयकों का उपयोग [[ऊर्जा पुनःप्राप्ति]] उपकरणों (ईआरडी) के रूप में किया जाता है। जैसा कि चित्रित किया गया है, झिल्लियों [सी] से उच्च दाब वाले सांद्रण को ईआरडी [डी] की ओर निर्देशित किया जाता है [3]। ईआरडी इस उच्च दाब वाली सान्द्र धारा का उपयोग करता है ताकि यह न्यून दाब वाली समुद्र जल धारा को दाबित कर सके (धारा [1] धारा [4] में परिणामित होती है), जिसे फिर यह (सर्कुलेशन [[पंप]] [B] की सहायता से) उच्चतम दाब वाली समुद्र जल धारा में मिला देता है जिसे उच्च दाब पंप [A] द्वारा बनाई गई समुद्र जल धारा के साथ। यह संयुक्त धारा मेम्ब्रेन्स [C] को प्रदान करती है। सान्द्र ईआरडी को न्यून दाब [5] पर छोड़ती है, जिसे आगमन फीडवॉटर प्रवाह [1] द्वारा निकाल दिया जाता है।
   
   
प्रेशर एक्सचेंजर्स उच्च दबाव पंप पर लोड को कम करके इन प्रणालियों में ऊर्जा बचाते हैं। 40% झिल्ली जल रिकवरी दर पर काम करने वाले समुद्री जल आरओ सिस्टम में, ईआरडी 60% झिल्ली फ़ीड प्रवाह की आपूर्ति करता है। हालाँकि, परिसंचरण पंप द्वारा ऊर्जा की खपत होती है, क्योंकि यह पंप केवल घूमता है और पानी पर दबाव नहीं डालता है, इसकी ऊर्जा खपत लगभग नगण्य है: उच्च दबाव पंप द्वारा खपत की गई ऊर्जा का 3% से भी कम है। इसलिए, लगभग 60% झिल्ली फ़ीड प्रवाह पर लगभग कोई ऊर्जा इनपुट नहीं होने पर दबाव पड़ता है।
दाब विनिमयकों उच्च दाब पंप पर लोड को कम करके इन प्रणालियों में ऊर्जा बचाते हैं। 40% झिल्ली जल रिकवरी दर पर काम करने वाले समुद्री जल आरओ सिस्टम में, ईआरडी 60% झिल्ली फ़ीड प्रवाह की आपूर्ति करता है। हालाँकि, परिसंचरण पंप द्वारा ऊर्जा की खपत होती है, क्योंकि यह पंप केवल घूमता है और जल पर दाब नहीं डालता है, इसकी ऊर्जा खपत लगभग नगण्य है: उच्च दाब पंप द्वारा खपत की गई ऊर्जा का 3% से भी कम है। इसलिए, लगभग 60% झिल्ली फ़ीड प्रवाह पर लगभग कोई ऊर्जा इनपुट नहीं होने पर दाब पड़ता है।


==अनुप्रयोग==
==अनुप्रयोग==
समुद्री [[जल अलवणीकरण]] संयंत्रों ने कई वर्षों से पीने योग्य पानी का उत्पादन किया है। हालाँकि, हाल तक अलवणीकरण का उपयोग केवल विशेष परिस्थितियों में ही किया जाता था क्योंकि प्रक्रिया में ऊर्जा की खपत अधिक होती है।{{Citation needed|date=June 2010}}
समुद्री जल का [[जल अलवणीकरण|आसवन]] (डिसेलिनेशन) संयंत्रों ने कई वर्षों से पीने योग्य जल का उत्पादन किया है। हालाँकि, हाल तक आसवन का उपयोग केवल विशेष परिस्थितियों में ही किया जाता था क्योंकि प्रक्रिया में ऊर्जा की खपत अधिक होती है।{{Citation needed|date=June 2010}}


अलवणीकरण संयंत्रों के शुरुआती डिज़ाइनों में विभिन्न वाष्पीकरण तकनीकों का उपयोग किया गया। सबसे उन्नत [[ मल्टी-स्टेज फ़्लैश आसवन |मल्टी-स्टेज फ़्लैश आसवन]] समुद्री जल वाष्पीकरण डिसेलिनेटर हैं, जो कई चरणों का उपयोग करते हैं और उत्पादित पीने योग्य पानी के प्रति घन मीटर 9 kWh से अधिक की ऊर्जा खपत करते हैं। इस कारण से शुरू में बड़े समुद्री जल अलवणीकरणकर्ताओं का निर्माण कम ऊर्जा लागत वाले स्थानों, जैसे मध्य पूर्व, या उपलब्ध अपशिष्ट ताप वाले प्रसंस्करण संयंत्रों के बगल में किया गया था।
आसवन संयंत्रों के शुरुआती डिज़ाइनों में विभिन्न वाष्पीकरण तकनीकों का उपयोग किया गया। सबसे उन्नत [[ मल्टी-स्टेज फ़्लैश आसवन |मल्टी-स्टेज फ़्लैश आसवन]] समुद्री जल वाष्पीकरण डिसेलिनेटर हैं, जो कई चरणों का उपयोग करते हैं और उत्पादित पीने योग्य जल के प्रति घन मीटर 9 kWh से अधिक की ऊर्जा खपत करते हैं। इस कारण से शुरू में बड़े समुद्री जल आसवनकर्ताओं का निर्माण कम ऊर्जा लागत वाले स्थानों, जैसे मध्य पूर्व, या उपलब्ध अपशिष्ट ताप वाले प्रसंस्करण संयंत्रों के बगल में किया गया था।
   
   
1970 के दशक में समुद्री जल रिवर्स ऑस्मोसिस (एसडब्ल्यूआरओ) प्रक्रिया विकसित की गई थी, जो एक तंग झिल्ली के माध्यम से उच्च [[दबाव]] में समुद्री जल को पीने योग्य बनाती थी और इस प्रकार नमक और अशुद्धियों को फ़िल्टर करती थी। इन लवणों और अशुद्धियों को एसडब्ल्यूआरओ डिवाइस से एक सतत धारा में केंद्रित नमकीन घोल के रूप में छोड़ा जाता है, जिसमें बड़ी मात्रा में उच्च दबाव वाली ऊर्जा होती है। इस ऊर्जा का अधिकांश भाग उपयुक्त उपकरण से पुनः प्राप्त किया जा सकता है। 1970 और 1980 के दशक की शुरुआत में निर्मित कई शुरुआती एसडब्ल्यूआरओ संयंत्रों में कम झिल्ली प्रदर्शन, दबाव ड्रॉप सीमाओं और ऊर्जा पुनर्प्राप्ति उपकरणों की अनुपस्थिति के कारण उत्पादित पीने योग्य पानी के प्रति घन मीटर 6.0 kWh से अधिक की ऊर्जा खपत होती थी।
1970 के दशक में समुद्री जल उत्क्रम परासरण (एसडब्ल्यूआरओ) प्रक्रिया विकसित की गई थी, जो एक तंग झिल्ली के माध्यम से उच्च [[दबाव|दाब]] में समुद्री जल को पीने योग्य बनाती थी और इस प्रकार नमक और अशुद्धियों को फ़िल्टर करती थी। इन लवणों और अशुद्धियों को एसडब्ल्यूआरओ डिवाइस से एक सतत धारा में केंद्रित नमकीन घोल के रूप में छोड़ा जाता है, जिसमें बड़ी मात्रा में उच्च दाब वाली ऊर्जा होती है। इस ऊर्जा का अधिकांश भाग उपयुक्त उपकरण से पुनः प्राप्त किया जा सकता है। 1970 और 1980 के दशक की शुरुआत में निर्मित कई शुरुआती एसडब्ल्यूआरओ संयंत्रों में कम झिल्ली प्रदर्शन, दाब ड्रॉप सीमाओं और ऊर्जा पुनर्प्राप्ति उपकरणों की अनुपस्थिति के कारण उत्पादित पीने योग्य जल के प्रति घन मीटर 6.0 kWh से अधिक की ऊर्जा खपत होती थी।


एक उदाहरण जहां एक दबाव विनिमय इंजन को रिवर्स ऑस्मोसिस झिल्ली प्रक्रिया का उपयोग करके पीने योग्य पानी के उत्पादन में आवेदन मिलता है। इस प्रक्रिया में, एक फ़ीड नमकीन घोल को उच्च दबाव पर झिल्ली सरणी में पंप किया जाता है। फिर इनपुट खारे घोल को झिल्ली सरणी द्वारा उच्च दबाव पर सुपर खारे घोल (नमकीन पानी) और कम दबाव पर पीने योग्य पानी में विभाजित किया जाता है। जबकि उच्च दबाव वाली नमकीन पानी अब इस प्रक्रिया में एक तरल पदार्थ के रूप में उपयोगी नहीं है, लेकिन इसमें मौजूद दबाव ऊर्जा का उच्च मूल्य है। नमकीन पानी में दबाव ऊर्जा को पुनः प्राप्त करने और इसे खारे घोल में स्थानांतरित करने के लिए एक दबाव विनिमय इंजन को नियोजित किया जाता है। नमकीन पानी के प्रवाह में दबाव ऊर्जा को स्थानांतरित करने के बाद, नमकीन पानी को कम दबाव पर नाली में बहा दिया जाता है।
एक उदाहरण जहां एक दाब विनिमय इंजन को उत्क्रम परासरण झिल्ली प्रक्रिया का उपयोग करके पीने योग्य जल के उत्पादन में आवेदन मिलता है। इस प्रक्रिया में, एक फ़ीड नमकीन घोल को उच्च दाब पर झिल्ली सरणी में पंप किया जाता है। फिर इनपुट खारे घोल को झिल्ली सरणी द्वारा उच्च दाब पर सुपर खारे घोल (नमकीन जल) और कम दाब पर पीने योग्य जल में विभाजित किया जाता है। जबकि उच्च दाब वाली नमकीन जल अब इस प्रक्रिया में एक तरल पदार्थ के रूप में उपयोगी नहीं है, लेकिन इसमें मौजूद दाब ऊर्जा का उच्च मूल्य है। नमकीन जल में दाब ऊर्जा को पुनः प्राप्त करने और इसे खारे घोल में स्थानांतरित करने के लिए एक दाब विनिमय इंजन को नियोजित किया जाता है। नमकीन जल के प्रवाह में दाब ऊर्जा को स्थानांतरित करने के बाद, नमकीन जल को कम दाब पर नाली में बहा दिया जाता है।


औद्योगिक पैमाने पर पीने के पानी का उत्पादन करने के लिए समुद्री जल के अलवणीकरण के लिए संचालित लगभग सभी [[रिवर्स ऑस्मोसिस संयंत्र]] टर्बाइनों पर आधारित ऊर्जा पुनर्प्राप्ति प्रणाली से लैस हैं। ये पौधे से निकलने वाले सांद्रण (नमकीन पानी) द्वारा सक्रिय होते हैं और इस सांद्रण के उच्च दबाव में निहित ऊर्जा को आमतौर पर यंत्रवत् उच्च दबाव वाले पंप में स्थानांतरित करते हैं। प्रेशर एक्सचेंजर में नमकीन पानी में निहित ऊर्जा को हाइड्रॉलिक रूप से स्थानांतरित किया जाता है<ref>{{Cite patent
औद्योगिक पैमाने पर पीने के जल का उत्पादन करने के लिए समुद्री जल के आसवन के लिए संचालित लगभग सभी [[रिवर्स ऑस्मोसिस संयंत्र|उत्क्रम परासरण संयंत्र]] टर्बाइनों पर आधारित ऊर्जा पुनर्प्राप्ति प्रणाली से लैस हैं। ये पौधे से निकलने वाले सांद्रण (नमकीन जल) द्वारा सक्रिय होते हैं और इस सांद्रण के उच्च दाब में निहित ऊर्जा को आमतौर पर यंत्रवत् उच्च दाब वाले पंप में स्थानांतरित करते हैं। दाब विनिमयक में नमकीन जल में निहित ऊर्जा को हाइड्रॉलिक रूप से स्थानांतरित किया जाता है<ref>{{Cite patent
|country=NO
|country=NO
|number=870016
|number=870016
Line 31: Line 31:
|status=patent
|status=patent
|gdate=1988-09-02
|gdate=1988-09-02
|fdate=1988-12-19}}</ref> और लगभग 98% की दक्षता के साथ फ़ीड में स्थानांतरित किया जाता है।<ref>[http://www.reverseosmosisguides.com/ Reverse Osmosis System]</ref> इससे अलवणीकरण प्रक्रिया के लिए ऊर्जा की मांग काफी कम हो जाती है और इस प्रकार परिचालन लागत में भी कमी आती है। इसके परिणामस्वरूप आर्थिक ऊर्जा पुनर्प्राप्ति होती है, ऐसी प्रणालियों के लिए परिशोधन समय संचालन के स्थान के आधार पर 2 से 4 साल के बीच भिन्न होता है।
|fdate=1988-12-19}}</ref> और लगभग 98% की दक्षता के साथ फ़ीड में स्थानांतरित किया जाता है।<ref>[http://www.reverseosmosisguides.com/ Reverse Osmosis System]</ref> इससे आसवन प्रक्रिया के लिए ऊर्जा की मांग काफी कम हो जाती है और इस प्रकार परिचालन लागत में भी कमी आती है। इसके परिणामस्वरूप आर्थिक ऊर्जा पुनर्प्राप्ति होती है, ऐसी प्रणालियों के लिए परिशोधन समय संचालन के स्थान के आधार पर 2 से 4 साल के बीच भिन्न होता है।


कम ऊर्जा और पूंजीगत लागत का मतलब है कि पहली बार दुनिया भर में कई स्थानों पर समुद्री जल से 1 डॉलर प्रति घन मीटर से कम लागत पर पीने योग्य पानी का उत्पादन करना संभव है। हालाँकि उच्च बिजली लागत वाले द्वीपों पर लागत थोड़ी अधिक हो सकती है, लेकिन पीई में समुद्री जल अलवणीकरण के लिए बाजार का तेजी से विस्तार करने की क्षमता है।
कम ऊर्जा और पूंजीगत लागत का मतलब है कि पहली बार दुनिया भर में कई स्थानों पर समुद्री जल से 1 डॉलर प्रति घन मीटर से कम लागत पर पीने योग्य जल का उत्पादन करना संभव है। हालाँकि उच्च बिजली लागत वाले द्वीपों पर लागत थोड़ी अधिक हो सकती है, लेकिन पीई में समुद्री जल आसवन के लिए बाजार का तेजी से विस्तार करने की क्षमता है।


दबाव विनिमय प्रणाली के अनुप्रयोग के माध्यम से, जो पहले से ही अन्य डोमेन में उपयोग किया जाता है, रिवर्स रनिंग पंप या टर्बाइन के उपयोग की तुलना में रिवर्स ऑस्मोसिस सिस्टम की ऊर्जा पुनर्प्राप्ति की काफी उच्च दक्षता प्राप्त की जा सकती है। दबाव विनिमय प्रणाली, सबसे पहले, बड़े पौधों यानी लगभग के लिए उपयुक्त है। ≥ 2000 m3/d पर्मिट उत्पादन।
दाब विनिमय प्रणाली के अनुप्रयोग के माध्यम से, जो पहले से ही अन्य डोमेन में उपयोग किया जाता है, रिवर्स रनिंग पंप या टर्बाइन के उपयोग की तुलना में उत्क्रम परासरण सिस्टम की ऊर्जा पुनर्प्राप्ति की काफी उच्च दक्षता प्राप्त की जा सकती है। दाब विनिमय प्रणाली, सबसे ऊपर, बड़े संयंत्रों के लिए उपयुक्त है, अर्थात लगभग ≥ 2000 m3/d पर्मिट उत्पादन होता है।


==यह भी देखें==
==यह भी देखें==
* [[रिचर्ड स्टोवर]] ने एक ऊर्जा पुनर्प्राप्ति उपकरण के विकास का बीड़ा उठाया है जो वर्तमान में अधिकांश समुद्री जल रिवर्स ऑस्मोसिस डिसेलिनेशन संयंत्रों में उपयोग किया जाता है।
* [[रिचर्ड स्टोवर]] ने ऊर्जा पुनर्प्राप्ति उपकरण के विकास का बीड़ा उठाया है जो वर्तमान में अधिकांश समुद्री जल उत्क्रम परासरण आसवन संयंत्रों में उपयोग किया जाता है।


== संदर्भ ==
== संदर्भ ==
Line 46: Line 46:
*[https://web.archive.org/web/20110605141449/http://www.wipo.int/pctdb/en/wo.jsp?IA=WO2006020679&DISPLAY=STATUS]
*[https://web.archive.org/web/20110605141449/http://www.wipo.int/pctdb/en/wo.jsp?IA=WO2006020679&DISPLAY=STATUS]
*[https://web.archive.org/web/20110605141647/http://www.wipo.int/pctdb/en/wo.jsp?IA=WO2006020679&DISPLAY=DESC]
*[https://web.archive.org/web/20110605141647/http://www.wipo.int/pctdb/en/wo.jsp?IA=WO2006020679&DISPLAY=DESC]
*http://www.energyrecovery.com/news/documents/ERDsforSWRO.pdf{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}
*[http://www.energyrecovery.com/news/documents/ERDsforSWRO.pdf{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }} http://www.energyrecovery.com/news/documents/ईआरडीsforSWRO.pdf%5B%5D]
*http://www.energyrecovery.com/news/pdf/eri_launches_advanced_swro.doc{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}
*http://www.energyrecovery.com/news/pdf/eri_launches_advanced_swro.doc{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}
*https://archive.today/20130421173348/http://www.patentstorm.us/patents/7306437-description.html
*https://archive.today/20130421173348/http://www.patentstorm.us/patents/7306437-description.html
Line 55: Line 55:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 12/08/2023]]
[[Category:Created On 12/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:34, 10 October 2023

रोटरी दाब विनिमयक की योजनाएँ। : उच्च दबाव पक्ष, बी: निम्न दबाव पक्ष, सी: रोटर घूर्णन, डी: सीलबंद क्षेत्र, 1: उच्च दाब जल प्रवाह को अस्वीकार करता है, 2: दाबयुक्त समुद्री जल, 3: निम्न दाब समुद्री जल प्रवाह, 4: निम्न दाब जल प्रवाह को अस्वीकार करता है,   : जल अस्वीकृत/सान्द्र,   : पिस्टन/बैरियर,   : समुद्री जल

एक दाब विनिमयक दाब ऊर्जा को उच्च दाब वाले द्रव्य प्रवाह से न्यून दाब वाले द्रव्य प्रवाह में स्थानांतरित करता है। कई औद्योगिक प्रक्रियाएं उच्च दाब पर संचालित होती हैं और उनमें उच्च दाब वाली अपशिष्ट धाराएं होती हैं। ऐसी प्रक्रिया के लिए उच्च दाब वाला तरल पदार्थ प्रदान करने का एक तरीका एक दाब विनिमयक का उपयोग करके अपशिष्ट दाब को कम दाब की धारा में स्थानांतरित करना है।

विशेष रूप से दक्षतापूर्ण प्रकार का दाब विनिमयक एक चक्रीय (रोटरी) दाब विनिमयक है। यह उपकरण अपने घूर्णन अक्ष के समानांतर अनुदैर्ध्य नलिकाओं वाले एक बेलनाकार घूर्णक (रोटर) का उपयोग करता है। घूर्णक दो सिरे वाले आवरणों के बीच एक आवरण नली के अंदर घूर्णन करता है। घूर्णक की नलिकाओं में दाब ऊर्जा सीधे उच्च दाब धारा से निम्न दाब धारा में स्थानांतरित की जाती है। नलिकाओं में बचा हुआ कुछ तरल एक अवरोध के रूप में कार्य करता है जो धाराओं के बीच मिश्रण को रोकता है। यह घूर्णन क्रिया पुराने शैली की मशीन गन द्वारा उच्च दबाव वाले गोलियों के फायरिंग के समान है और यह सदैव नई द्रव्य कारतूसों (कार्ट्रिजों) से फिर से भरा जाता है। घूर्णक की नलिकाएं दाब स्थानांतरण प्रक्रिया स्वयं को बार-बार दोहराते हुए आवेशित (चार्ज) और अनावेशित (डिस्चार्ज) करते हैं।

दाब विनिमयक का प्रदर्शन ऊर्जा हस्तांतरण प्रक्रिया की दक्षता और धाराओं के बीच मिश्रण की डिग्री से मापा जाता है। धाराओं की ऊर्जा उनके प्रवाह के आयतन और दाब का उत्पाद है। दक्षता निम्नलिखित समीकरण के साथ गणना की गई डिवाइस के माध्यम से दाब अवकल और आयतनमितीय (वॉल्यूमेट्रिक) हानि (रिसाव) का एक फलन है:

जहाँ, Q प्रवाह को दर्शाता है, P दाब को, L रिसाव का प्रवाह को, HDP उच्च दाब अवकल को, LDP न्यून दाब अवकल को, पादाक्षर "B" उपयुक्त उपकरण के लिए न्यून दाब संचालन को सूचित करता है और "G" पादाक्षर उच्च दाब संचालन को सूचित करता है। मिश्रण उपकरण में आने वाली धाराओं की संकेत करता है और यह उपकरण के प्रवाह आवृत्तियों की संघटनों का कारक है।

उत्क्रम परासरण

दाब विनिमयक का उपयोग करके विपरीत परासरण सिस्टम (आसवन) की योजनाएँ। 1: समुद्री जल प्रवाह, 2: ताजा जल प्रवाह (40%), 3: सांद्र प्रवाह (60%), 4: समुद्री जल प्रवाह (60%), 5: सांद्र (नाली), ए: उच्च दाब पंप प्रवाह (40%) %), बी: परिसंचरण पंप, सी: झिल्ली के साथ ऑस्मोसिस इकाई, डी: दाब विनिमयक

एक अनुप्रयोग जिसमें दाब विनिमयकों का व्यापक रूप से उत्क्रम परासरण (आरओ) का उपयोग किया जाता है। आरओ प्रणाली में, दाब विनिमयकों का उपयोग ऊर्जा पुनःप्राप्ति उपकरणों (ईआरडी) के रूप में किया जाता है। जैसा कि चित्रित किया गया है, झिल्लियों [सी] से उच्च दाब वाले सांद्रण को ईआरडी [डी] की ओर निर्देशित किया जाता है [3]। ईआरडी इस उच्च दाब वाली सान्द्र धारा का उपयोग करता है ताकि यह न्यून दाब वाली समुद्र जल धारा को दाबित कर सके (धारा [1] धारा [4] में परिणामित होती है), जिसे फिर यह (सर्कुलेशन पंप [B] की सहायता से) उच्चतम दाब वाली समुद्र जल धारा में मिला देता है जिसे उच्च दाब पंप [A] द्वारा बनाई गई समुद्र जल धारा के साथ। यह संयुक्त धारा मेम्ब्रेन्स [C] को प्रदान करती है। सान्द्र ईआरडी को न्यून दाब [5] पर छोड़ती है, जिसे आगमन फीडवॉटर प्रवाह [1] द्वारा निकाल दिया जाता है।

दाब विनिमयकों उच्च दाब पंप पर लोड को कम करके इन प्रणालियों में ऊर्जा बचाते हैं। 40% झिल्ली जल रिकवरी दर पर काम करने वाले समुद्री जल आरओ सिस्टम में, ईआरडी 60% झिल्ली फ़ीड प्रवाह की आपूर्ति करता है। हालाँकि, परिसंचरण पंप द्वारा ऊर्जा की खपत होती है, क्योंकि यह पंप केवल घूमता है और जल पर दाब नहीं डालता है, इसकी ऊर्जा खपत लगभग नगण्य है: उच्च दाब पंप द्वारा खपत की गई ऊर्जा का 3% से भी कम है। इसलिए, लगभग 60% झिल्ली फ़ीड प्रवाह पर लगभग कोई ऊर्जा इनपुट नहीं होने पर दाब पड़ता है।

अनुप्रयोग

समुद्री जल का आसवन (डिसेलिनेशन) संयंत्रों ने कई वर्षों से पीने योग्य जल का उत्पादन किया है। हालाँकि, हाल तक आसवन का उपयोग केवल विशेष परिस्थितियों में ही किया जाता था क्योंकि प्रक्रिया में ऊर्जा की खपत अधिक होती है।[citation needed]

आसवन संयंत्रों के शुरुआती डिज़ाइनों में विभिन्न वाष्पीकरण तकनीकों का उपयोग किया गया। सबसे उन्नत मल्टी-स्टेज फ़्लैश आसवन समुद्री जल वाष्पीकरण डिसेलिनेटर हैं, जो कई चरणों का उपयोग करते हैं और उत्पादित पीने योग्य जल के प्रति घन मीटर 9 kWh से अधिक की ऊर्जा खपत करते हैं। इस कारण से शुरू में बड़े समुद्री जल आसवनकर्ताओं का निर्माण कम ऊर्जा लागत वाले स्थानों, जैसे मध्य पूर्व, या उपलब्ध अपशिष्ट ताप वाले प्रसंस्करण संयंत्रों के बगल में किया गया था।

1970 के दशक में समुद्री जल उत्क्रम परासरण (एसडब्ल्यूआरओ) प्रक्रिया विकसित की गई थी, जो एक तंग झिल्ली के माध्यम से उच्च दाब में समुद्री जल को पीने योग्य बनाती थी और इस प्रकार नमक और अशुद्धियों को फ़िल्टर करती थी। इन लवणों और अशुद्धियों को एसडब्ल्यूआरओ डिवाइस से एक सतत धारा में केंद्रित नमकीन घोल के रूप में छोड़ा जाता है, जिसमें बड़ी मात्रा में उच्च दाब वाली ऊर्जा होती है। इस ऊर्जा का अधिकांश भाग उपयुक्त उपकरण से पुनः प्राप्त किया जा सकता है। 1970 और 1980 के दशक की शुरुआत में निर्मित कई शुरुआती एसडब्ल्यूआरओ संयंत्रों में कम झिल्ली प्रदर्शन, दाब ड्रॉप सीमाओं और ऊर्जा पुनर्प्राप्ति उपकरणों की अनुपस्थिति के कारण उत्पादित पीने योग्य जल के प्रति घन मीटर 6.0 kWh से अधिक की ऊर्जा खपत होती थी।

एक उदाहरण जहां एक दाब विनिमय इंजन को उत्क्रम परासरण झिल्ली प्रक्रिया का उपयोग करके पीने योग्य जल के उत्पादन में आवेदन मिलता है। इस प्रक्रिया में, एक फ़ीड नमकीन घोल को उच्च दाब पर झिल्ली सरणी में पंप किया जाता है। फिर इनपुट खारे घोल को झिल्ली सरणी द्वारा उच्च दाब पर सुपर खारे घोल (नमकीन जल) और कम दाब पर पीने योग्य जल में विभाजित किया जाता है। जबकि उच्च दाब वाली नमकीन जल अब इस प्रक्रिया में एक तरल पदार्थ के रूप में उपयोगी नहीं है, लेकिन इसमें मौजूद दाब ऊर्जा का उच्च मूल्य है। नमकीन जल में दाब ऊर्जा को पुनः प्राप्त करने और इसे खारे घोल में स्थानांतरित करने के लिए एक दाब विनिमय इंजन को नियोजित किया जाता है। नमकीन जल के प्रवाह में दाब ऊर्जा को स्थानांतरित करने के बाद, नमकीन जल को कम दाब पर नाली में बहा दिया जाता है।

औद्योगिक पैमाने पर पीने के जल का उत्पादन करने के लिए समुद्री जल के आसवन के लिए संचालित लगभग सभी उत्क्रम परासरण संयंत्र टर्बाइनों पर आधारित ऊर्जा पुनर्प्राप्ति प्रणाली से लैस हैं। ये पौधे से निकलने वाले सांद्रण (नमकीन जल) द्वारा सक्रिय होते हैं और इस सांद्रण के उच्च दाब में निहित ऊर्जा को आमतौर पर यंत्रवत् उच्च दाब वाले पंप में स्थानांतरित करते हैं। दाब विनिमयक में नमकीन जल में निहित ऊर्जा को हाइड्रॉलिक रूप से स्थानांतरित किया जाता है[1][2] और लगभग 98% की दक्षता के साथ फ़ीड में स्थानांतरित किया जाता है।[3] इससे आसवन प्रक्रिया के लिए ऊर्जा की मांग काफी कम हो जाती है और इस प्रकार परिचालन लागत में भी कमी आती है। इसके परिणामस्वरूप आर्थिक ऊर्जा पुनर्प्राप्ति होती है, ऐसी प्रणालियों के लिए परिशोधन समय संचालन के स्थान के आधार पर 2 से 4 साल के बीच भिन्न होता है।

कम ऊर्जा और पूंजीगत लागत का मतलब है कि पहली बार दुनिया भर में कई स्थानों पर समुद्री जल से 1 डॉलर प्रति घन मीटर से कम लागत पर पीने योग्य जल का उत्पादन करना संभव है। हालाँकि उच्च बिजली लागत वाले द्वीपों पर लागत थोड़ी अधिक हो सकती है, लेकिन पीई में समुद्री जल आसवन के लिए बाजार का तेजी से विस्तार करने की क्षमता है।

दाब विनिमय प्रणाली के अनुप्रयोग के माध्यम से, जो पहले से ही अन्य डोमेन में उपयोग किया जाता है, रिवर्स रनिंग पंप या टर्बाइन के उपयोग की तुलना में उत्क्रम परासरण सिस्टम की ऊर्जा पुनर्प्राप्ति की काफी उच्च दक्षता प्राप्त की जा सकती है। दाब विनिमय प्रणाली, सबसे ऊपर, बड़े संयंत्रों के लिए उपयुक्त है, अर्थात लगभग ≥ 2000 m3/d पर्मिट उत्पादन होता है।

यह भी देखें

  • रिचर्ड स्टोवर ने ऊर्जा पुनर्प्राप्ति उपकरण के विकास का बीड़ा उठाया है जो वर्तमान में अधिकांश समुद्री जल उत्क्रम परासरण आसवन संयंत्रों में उपयोग किया जाता है।

संदर्भ

  1. NO 870016, Leif J. Hauge 
  2. US patent 4887942, Leif J. Hauge, "Pressure exchanger for liquids", issued 1988-09-02 
  3. Reverse Osmosis System