लोपन और वेधन (ब्लैंकिंग और पियर्सिंग): Difference between revisions
(Created page with "{{short description|Shearing processes}} {{Redirect-distinguish|Nibbling|Nibling}} {{more citations needed|date=March 2020}} File:Blanking vs piercing.svg|thumb|ब्ल...") |
m (10 revisions imported from alpha:लोपन_और_वेधन_(ब्लैंकिंग_और_पियर्सिंग)) |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Shearing processes}} | {{short description|Shearing processes}} | ||
{{Redirect-distinguish| | {{Redirect-distinguish|निबलिंग|निबलिंग}} | ||
[[File:Blanking vs piercing.svg|thumb|ब्लैंकिंग के प्रति पियर्सिंग]]'''ब्लैंकिंग और पियर्सिंग''' ऐसी [[कतरनी (धातुकर्म)|शेरिंग]] प्रक्रियाएं हैं जिनमें कॉइल या शीट स्टॉक से भागों का उत्पादन करने के लिए [[पंच (धातुकर्म)|पंच]] और [[डाई (विनिर्माण)]] का उपयोग किया जाता है। रिक्त करने से घटक की बाहरी विशेषताएं उत्पन्न होती हैं, जबकि छिद्र से आंतरिक छिद्र या आकृतियाँ उत्पन्न होती हैं। वेब कई घटकों के उत्पादन के पश्चात बनाया जाता है और इसे स्क्रैप सामग्री माना जाता है। आंतरिक विशेषताओं को छिद्र करके बनाए गए स्लग को भी स्क्रैप माना जाता है। पियर्सिंग और पंचिंग शब्दों का प्रयोग परस्पर उपयोग किया जा सकता है। | |||
[[File:Blanking vs piercing.svg|thumb|ब्लैंकिंग | |||
==डाई रोल और | ==डाई रोल और बर फार्मेशन== | ||
बर और डाई रोल स्टाम्प घटकों की विशिष्ट विशेषताएं हैं। डाई रोल तब बनता है जब स्टाम्प की जाने वाली सामग्री को शेरिंग प्रारंभ होने से पूर्व कंप्रेस्ड किया जाता है। डाई रोल रिक्त स्थान के बाहरी किनारे और छिद्र किए गए छिद्रों के चारों ओर त्रिज्या का रूप ले लेता है। कंप्रेस्ड के पश्चात, भाग की मोटाई का लगभग 10% शेयर्स किया जाता है, और फिर पट्टी या शीट से फ्री हो जाता है। यह फ्रैक्चरिंग उभरी हुई, जग्गड एज उत्पन्न करती है जिसे बर कहा जाता है। बर सामान्यतः द्वितीयक प्रक्रिया में टंबलिंग द्वारा विस्थापित कर दी जाती है। बर की ऊँचाई का उपयोग उपकरण वियर के महत्वपूर्ण संकेतक के रूप में किया जा सकता है। | |||
==टूलिंग डिज़ाइन दिशानिर्देश== | ==टूलिंग डिज़ाइन दिशानिर्देश== | ||
सभी प्रक्रिया पैरामीटर्स के चयन पैरामीटर शीट की मोटाई और छिद्र की जाने वाली वर्क-पीस सामग्री के बल से नियंत्रित होते हैं। | |||
सभी प्रक्रिया | |||
पंच/डाई क्लीयरेंस | पंच/डाई क्लीयरेंस महत्वपूर्ण पैरामीटर है, जो उपकरण के कटिंग एज पर अनुभव किए गए भार या दबाव को निर्धारित करता है, जिसे सामान्यतः बिंदु दबाव के रूप में जाना जाता है। अत्यधिक बिंदु दबाव उपकरण के वियर को तीव्र कर सकता है। विभक्त किये गए भागों की सतह की गुणवत्ता भी निकासी से प्रभावित होती है। | ||
छिद्र व्यास, ब्रिज आकार, स्लॉट आयामों के न्यूनतम स्वीकार्य मानों को परिभाषित करने के लिए कंपनियों द्वारा सामग्री विशिष्ट डिजाइन दिशानिर्देश विकसित किए जाते हैं। इसी प्रकार, स्ट्रिप लेआउट (स्ट्रिप की चौड़ाई और पिच) निर्धारित किया जाना चाहिए। भागों के मध्य ब्रिज की चौड़ाई, भाग और पट्टी के किनारे के मध्य एज अलाउंस का भी चयन करना होगा। | |||
साधारण ऑपरेशन के लिए केवल [[ पैनकेक दिए |पैनकेक डाई]] की आवश्यकता हो सकती है। जबकि कई डाई एक साथ कठोर प्रक्रियाएँ निष्पादित करते हैं, पैनकेक डाई केवल सरल प्रक्रिया निष्पादित कर सकता है जिसमें तैयार उत्पाद को हाथ से विस्थापित किया जाता है। | |||
<ref>{{cite web |last1=Burg |first1=Doreen |title=How to do Designing and Machining? |url=https://www.eigenengineering.com/die-stamping-metal-how-designing-and-machining-with-it/ |website=Eigenengineering |date=13 February 2020 |publisher=Doreen}}</ref> | |||
[[File:FPL-Technology Teknofive Toolchange 02.ogv|thumb|विभिन्न उपकरणों का उपयोग करते हुए आधुनिक सीएनसी-निबलिंग-मशीन]] | [[File:FPL-Technology Teknofive Toolchange 02.ogv|thumb|विभिन्न उपकरणों का उपयोग करते हुए आधुनिक सीएनसी-निबलिंग-मशीन]] | ||
Line 26: | Line 23: | ||
===लांसिंग=== | ===लांसिंग=== | ||
लांसिंग | लांसिंग छिद्रन ऑपरेशन है जिसमें वर्कपीस को पासे के वार से शेयर और बेंट किया जाता है। इस प्रक्रिया का महत्वपूर्ण भाग यह है कि सामग्री में कमी नहीं होती है, केवल इसकी ज्यामिति में संशोधन होता है। इस ऑपरेशन का उपयोग टैब, वेंट और [[ लौवर |लूवर]] बनाने के लिए किया जाता है। | ||
लांसिंग में किया गया कट | लांसिंग में किया गया कट विवृत कट नहीं है, जैसे छिद्रन में, भले ही समान मशीन का उपयोग किया जाता है, किंतु एक ओर को तीव्रता से या अधिक गोलाकार विधि से बेंट करने के लिए जोड़ा जाता है। | ||
लांसिंग का उपयोग आंशिक रूपरेखा बनाने और उत्पादन लाइन के नीचे अन्य कार्यों के लिए सामग्री को | लांसिंग का उपयोग आंशिक रूपरेखा बनाने और उत्पादन लाइन के नीचे अन्य कार्यों के लिए सामग्री को फ्री करने के लिए किया जा सकता है। इन कारणों के साथ, लांसिंग का उपयोग टैब बनाने के लिए भी किया जाता है (जहां सामग्री 90 डिग्री के कोण पर बेंट होती है) वेंट (जहां बेंट लगभग 45 डिग्री है) और लूवर्स (जहां भाग गोल या क्यूप्ड होता है) लांसिंग बेलनाकार आकार पर शीट को विखंडित करने या सामान्य शेरिंग में भी सहायता करता है। | ||
सामान्यतः लांसिंग यांत्रिक प्रेस पर की जाती है, लांसिंग के लिए पंच और डाई के उपयोग की आवश्यकता होती है। भिन्न-भिन्न पंच और डाई सामग्री के नव निर्मित खंड के आकार और कोण (या वक्रता) को निर्धारित करते हैं। प्रक्रिया की पुनरुक्ति प्रकृति का सामना करने के लिए डाई और पंच को टूल स्टील से बनाया जाना आवश्यक है।<ref>{{Citation | last = Todd | title = Manufacturing Processes Reference Guide | pages = 84–85 | year = 1994 | isbn = 0-8311-3049-0 | publisher = Industrial Press | location = New York}}</ref> | |||
'''छिद्रण''' | |||
{{main|छिद्रण}} | |||
छिद्रण ऐसा उपकरण है जिसमें बड़ी संख्या में निकट स्थित छिद्रों को छिद्रित करना सम्मिलित है।<ref name=degarmo427>Degarmo, p. 427.</ref> | |||
'''नोचिंग''' | |||
{{main|नोचिंग}} | |||
नॉचिंग ऐसा छिद्रण ऑपरेशन है जो वर्कपीस के किनारे से सामग्री को विस्थापित कर देता है।<ref name=degarmo428>Degarmo, p. 428.</ref> | |||
'''निबलिंग''' | |||
निबलिंग प्रक्रिया ओवरलैपिंग स्लिट्स या नौच की श्रृंखला का निर्माण करके समोच्च को विभक्त करती है। ऐसा करने के लिए [[कुतरने वाला|निबलर]] को नियोजित किया जा सकता है। यह सरल उपकरणों का उपयोग करके 6 मिमी (0.25 इंच) मोटी शीट धातु में कठोर आकार बनाने की अनुमति देता है।<ref name=degarmo428/>यह मूलतः छोटा पंच और डाइक है जो शीघ्र प्रतिक्रिया प्रदान करता है; प्रति मिनट लगभग 300-900 बार पंच विभिन्न आकार और साइज़ में उपलब्ध हैं; आयताकार और आयताकार पंच साधारण हैं क्योंकि वे व्यर्थता को कम करते हैं और गोल पंच की तुलना में स्ट्रोक के मध्य अधिक दूरी की अनुमति देते हैं। निबलिंग सामग्री के बाहरी या आंतरिक भाग को निबलिंग कर सकता है, चूँकि आंतरिक कट के लिए उपकरण डालने के लिए छिद्र की आवश्यकता होती है।<ref>Todd, pp. 97–98.</ref> | |||
इस प्रक्रिया का उपयोग प्रायः उन भागों पर किया जाता है जिनमें ऐसी मात्रा नहीं होती जो समर्पित ब्लैंकिंग डाई को उचित माना जा सके। किनारे की स्मूथ्नेस कटिंग डाई के आकार और कट्स के ओवरलैप होने की मात्रा से निर्धारित होती है; स्वाभाविक रूप से जितने अधिक कट ओवरलैप होंगे, एज उतना ही साफ- सुथरा होगा। अतिरिक्त त्रुटिहीनता और स्मूथ्नेस के लिए, निबलिंग द्वारा बनाई गई अधिकांश आकृतियाँ पूर्ण होने के पश्चात फाइलिंग या ग्राइंडिंग की प्रक्रिया से हो कर निकलती हैं।<ref name="degarmo428" /> | |||
'''शेविंग''' | |||
शेविंग प्रक्रिया एक फिनिशिंग ऑपरेशन है जहां पहले से ही रिक्त भाग से अल्प मात्रा में धातु को विस्थापित कर दिया जाता है। इसका मुख्य उद्देश्य उत्तम आयामी त्रुटिहीनता प्राप्त करना है, किंतु द्वितीयक उद्देश्यों में किनारे को चौकोर करना और किनारे को स्मूथ करना सम्मिलित है। रिक्त भागों को 0.025 मिमी (0.001 इंच) तक की त्रुटिहीनता तक शेव किया जा सकता है।<ref name=degarmo428/>अतिरिक्त या स्क्रैप धातु को विस्थापित करने के लिए धातुओं की शेविंग की जाती है। साधारण, स्मूथ एज प्रदान किया जाता है और इसलिए शेविंग प्रायः उपकरण के भागों, घड़ी और घड़ी के भागों और इसी प्रकार की चीजों पर की जाती है। शेविंग विशेष रूप से इस उद्देश्य के लिए डिज़ाइन की गई शेविंग डाइज़ में पूर्ण की जाती है। | |||
शेविंग प्रक्रिया एक फिनिशिंग ऑपरेशन है जहां पहले से ही | |||
===ट्रिमिंग=== | ===ट्रिमिंग=== | ||
ट्रिमिंग ऑपरेशन अंतिम ऑपरेशन है, क्योंकि यह खींची गई शीट की दीवारों से अतिरिक्त या अवांछित अनियमित विशेषताओं को विभक्त कर देता है। | |||
ट्रिमिंग ऑपरेशन अंतिम ऑपरेशन है, क्योंकि यह खींची गई शीट की दीवारों से अतिरिक्त या अवांछित अनियमित विशेषताओं को | |||
=== | ===फाइन ब्लैंकिंग=== | ||
[[File:fineblanking.jpg|thumb|400px|right|विशिष्ट फाइन ब्लैंकिंग प्रेस क्रॉस सेक्शन]] | [[File:fineblanking.jpg|thumb|400px|right|विशिष्ट फाइन ब्लैंकिंग प्रेस क्रॉस सेक्शन]] | ||
[[File:FPL-Technology Multitool-Index.ogv|thumb|विभिन्न पंचों के साथ मल्टीटूल का उपयोग करना]]फाइन ब्लैंकिंग ब्लैंकिंग का | [[File:FPL-Technology Multitool-Index.ogv|thumb|विभिन्न पंचों के साथ मल्टीटूल का उपयोग करना]]फाइन ब्लैंकिंग ब्लैंकिंग का विशेष रूप है जहां शेरिंग करते समय कोई फ्रैक्चर क्षेत्र नहीं होता है। यह पूर्ण भाग को कंप्रेस्ड करके प्राप्त किया जाता है और फिर ऊपरी और निचले पंच से रिक्त स्थान निकाला जाता है।<ref name=degarmo425>Degarmo, p. 425.</ref> यह प्रक्रिया को अधिक कठोर सहनशीलता बनाए रखने की अनुमति देता है, और संभवतः द्वितीयक संचालन को समाप्त कर देता है। | ||
जिन सामग्रियों को उत्तम प्रकार से रिक्त किया जा सकता है उनमें [[ अल्युमीनियम |एल्युमीनियम]], [[पीतल]], तांबा और [[कार्बन स्टील]], मिश्र धातु स्टील और [[स्टेनलेस स्टील]] सम्मिलित हैं। | |||
फाइन ब्लैंकिंग प्रेस अन्य स्टैम्पिंग (मेटलवर्किंग) प्रेस के समान हैं, किंतु उनमें कुछ महत्वपूर्ण अतिरिक्त भाग होते हैं। विशिष्ट कंपाउंड फाइन ब्लैंकिंग प्रेस में कठोर डाई पंच (पुरुष), कठोर ब्लैंकिंग डाई (महिला), और ब्लैंकिंग डाई के समान आकार/आकार की गाइड प्लेट सम्मिलित होती है। गाइड प्लेट को सबसे पहले सामग्री पर लगाया जाता है, जो सामग्री को डाई ओपनिंग की परिधि के चारों ओर तीव्र प्रोट्रशन या डंक के साथ लगाती है। इसके पश्चात, पंच के विपरीत काउंटर दबाव प्रारम्भ किया जाता है, और अंत में डाई पंच सामग्री को डाई के उद्घाटन के माध्यम से विवश करता है। चूंकि गाइड प्लेट सामग्री को अधिक बलपूर्वक रूप से पकड़ती है, और चूंकि काउंटर दबाव लगाया जाता है, इसलिए सामग्री को सामान्य छिद्रण की तुलना में [[ बाहर निकालना |एक्सट्रूज़न]] के जैसे विखंडित किया जाता है। विभक्त किये गए भाग के यांत्रिक गुण उसी प्रकार से लाभान्वित होते हैं जैसे कि भाग के विभक्त किये हुए किनारे पर कठोर परत होती है।<ref>{{cite web | title=फाइनब्लैंकिंग 101| url=http://www.partechfineblanking.com/fineblanking101.htm | accessdate=2008-11-05 | archive-url=https://web.archive.org/web/20080514195023/http://www.partechfineblanking.com/fineblanking101.htm | archive-date=2008-05-14 | url-status=dead }}</ref> क्योंकि इस सेटअप में सामग्री को अधिक कसकर पकड़ा और नियंत्रित किया जाता है, आंशिक समतल अधिक सही रहता है, विरूपण लगभग समाप्त हो जाता है, और किनारे की बर न्यूनतम होती है। डाई और पंच के मध्य की दूरी सामान्यतः विभक्त हुई सामग्री की मोटाई का लगभग 1% होती है, जो सामान्यतः {{convert|0.5|-|13|mm|in|abbr=on}} के मध्य भिन्न होती है।<ref>{{cite book | last = Kalpakjian | first = Serope |author2=Schmid, Steven R. | title = विनिर्माण इंजीनियरिंग और प्रौद्योगिकी| publisher = Pearson Prentice Hall | edition = 5th | year = 2006 | location = Upper Saddle River, NJ | page = 429 | isbn = 0-13-148965-8 }}</ref> वर्तमान में {{convert|19|mm|in|abbr=on}} तक मोटे भागों को सूक्ष्म ब्लैंकिंग का उपयोग करके विभक्त किया जा सकता है।<ref>{{cite web|url=http://www.fineblanking.org/overview/history.html |title=बढ़िया ब्लैंकिंग इतिहास|accessdate=2008-11-05}}</ref> आधार सामग्री की मोटाई और तन्य शक्ति और भाग लेआउट के आधार पर ± {{convert|0.0003|-|0.002|in|mm|abbr=on}} के मध्य सहनशीलता संभव है।<ref>{{cite web |url=http://www.mpi-int.com/guidelines.pdf |title=दिशा-निर्देश|accessdate=2008-11-05 |last=MPI International, Incعلى احمد على |url-status=dead |archiveurl=https://web.archive.org/web/20061120075259/http://www.mpi-int.com/guidelines.pdf |archivedate=2006-11-20 }}</ref> | |||
मानक कंपाउंड फाइन ब्लैंकिंग प्रक्रियाओं के साथ, कई भागों को प्रायः एक ही ऑपरेशन में पूर्ण किया जा सकता है। प्रायः ऑपरेशन में भागों को आंशिक रूप से छिद्रित किया जा सकता है, और ऑफसेट (75° तक) एमबॉसड किया जा सकता है।<ref>Bralla, pp. 3.47–3.48.</ref> कुछ संयोजनों के लिए प्रगतिशील स्टैम्पिंग फाइन ब्लैंकिंग ऑपरेशन की आवश्यकता हो सकती है, जिसमें प्रेसिंग स्टेशन पर कई ऑपरेशन किए जाते हैं। उच्च जीवनकाल के कारण, ब्लैंकिंग पंच सामान्यतः पीवीडी सुरक्षात्मक कोटिंग्स द्वारा कवर किए जाते हैं।<ref>{{cite journal |title=प्रयोगशाला गतिशील प्रभाव परीक्षण और औद्योगिक फाइन ब्लैंकिंग प्रक्रिया में पीवीडी कोटिंग्स के जीवनकाल की तुलना|journal=Materials |year=2020 |volume=13 |issue=9 |page=2154 |doi=10.3390/ma13092154 |pmid=32384814 |pmc=7254225 |bibcode=2020Mate...13.2154D |doi-access=free |last1=Daniel |first1=Josef |last2=Žemlička |first2=Radek |last3=Grossman |first3=Jan |last4=Lümkemann |first4=Andreas |last5=Tapp |first5=Peter |last6=Galamand |first6=Christian |last7=Fořt |first7=Tomáš }}</ref> | |||
फाइन ब्लैंकिंग | फाइन ब्लैंकिंग के लाभ हैं: | ||
*प्रोडक्शन रन के माध्यम से उत्कृष्ट आयामी नियंत्रण, त्रुटिहीनता और पुनरुक्ति होती है। | |||
*उत्कृष्ट भाग की समतलता स्थिर रहती है। | |||
*प्रोडक्शन रन के माध्यम से उत्कृष्ट आयामी नियंत्रण, | *अन्य धातु स्टम्पिंग प्रक्रियाओं की तुलना में साधारण, उत्तम किनारे तैयार किये जाते है। | ||
*उत्कृष्ट भाग समतलता | *मशीन विवरण की अधिक कम आवश्यकता होती है। | ||
*अन्य धातु | *ऑपरेशन में कई सुविधाएँ जोड़ी जा सकती हैं।<ref name="fbb">{{cite web|url=http://www.fineblanking.org/overview/benefits.html |title=बारीक ब्लैंकिंग के फायदे|accessdate=2008-11-05}}</ref> | ||
*मशीन विवरण की | *जब अतिरिक्त मशीनिंग व्यय और समय (न्यूनतम 1000-20000 भाग, द्वितीयक मशीनिंग संचालन पर निर्भर करता है) को सम्मिलित किया जाता है, तो पारंपरिक संचालन की तुलना में बड़े उत्पादन के लिए यह अधिक लाभदायक होता है।<ref>Bralla, pp. 3.49–3.50.</ref> | ||
* | फाइन ब्लैंकिंग का मुख्य लाभ यह है कि स्लॉट या छिद्र को भाग के किनारों के अधिक समीप, या एक-दूसरे के समीप रखा जा सकता है। इसके अतिरिक्त, फाइन ब्लैंकिंग से ऐसे छिद्र बन सकते हैं जो पारंपरिक स्टम्पिंग की तुलना में अधिक छोटे होते हैं (सामग्री की मोटाई की तुलना में)। | ||
*जब अतिरिक्त मशीनिंग | |||
फाइन ब्लैंकिंग का | |||
हानि ये हैं: | |||
*पारंपरिक [[ छिद्रण ]] ऑपरेशन की तुलना में थोड़ा धीमा | *पारंपरिक [[ छिद्रण |पंचिंग]] ऑपरेशन की तुलना में थोड़ा धीमा होता है। | ||
* | * पारंपरिक पंचिंग ऑपरेशन की तुलना में उच्च टूलींग व्यय और प्रेस के लिए उच्च टन भार आवश्यकताओं के कारण उच्च उपकरण व्यय होता है। | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
'''ग्रन्थसूची''' | |||
*{{cite book | last = Bralla | first = James G. | title = Design for Manufacturability Handbook | publisher = McGraw-Hill | year = 1999 | location = New York, New York | isbn = 0-07-007139-X}} | *{{cite book | last = Bralla | first = James G. | title = Design for Manufacturability Handbook | publisher = McGraw-Hill | year = 1999 | location = New York, New York | isbn = 0-07-007139-X}} | ||
*{{Cite book | last1 = Degarmo | first1 = E. Paul | last2 = Black | first2 = J T. | last3 = Kohser | first3 = Ronald A. | title = Materials and Processes in Manufacturing | publisher = Wiley | year = 2003 | edition = 9th | isbn = 0-471-65653-4}} | *{{Cite book | last1 = Degarmo | first1 = E. Paul | last2 = Black | first2 = J T. | last3 = Kohser | first3 = Ronald A. | title = Materials and Processes in Manufacturing | publisher = Wiley | year = 2003 | edition = 9th | isbn = 0-471-65653-4}} | ||
Line 100: | Line 94: | ||
| url = https://books.google.com/books?id=6x1smAf_PAcC | | url = https://books.google.com/books?id=6x1smAf_PAcC | ||
}} | }} | ||
[[Category: धातु का गठन]] [[Category: निर्माण (धातु)]] [[Category: वीडियो क्लिप युक्त लेख]] | [[Category: धातु का गठन]] [[Category: निर्माण (धातु)]] [[Category: वीडियो क्लिप युक्त लेख]] | ||
Line 108: | Line 100: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 14/08/2023]] | [[Category:Created On 14/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:53, 10 October 2023
ब्लैंकिंग और पियर्सिंग ऐसी शेरिंग प्रक्रियाएं हैं जिनमें कॉइल या शीट स्टॉक से भागों का उत्पादन करने के लिए पंच और डाई (विनिर्माण) का उपयोग किया जाता है। रिक्त करने से घटक की बाहरी विशेषताएं उत्पन्न होती हैं, जबकि छिद्र से आंतरिक छिद्र या आकृतियाँ उत्पन्न होती हैं। वेब कई घटकों के उत्पादन के पश्चात बनाया जाता है और इसे स्क्रैप सामग्री माना जाता है। आंतरिक विशेषताओं को छिद्र करके बनाए गए स्लग को भी स्क्रैप माना जाता है। पियर्सिंग और पंचिंग शब्दों का प्रयोग परस्पर उपयोग किया जा सकता है।
डाई रोल और बर फार्मेशन
बर और डाई रोल स्टाम्प घटकों की विशिष्ट विशेषताएं हैं। डाई रोल तब बनता है जब स्टाम्प की जाने वाली सामग्री को शेरिंग प्रारंभ होने से पूर्व कंप्रेस्ड किया जाता है। डाई रोल रिक्त स्थान के बाहरी किनारे और छिद्र किए गए छिद्रों के चारों ओर त्रिज्या का रूप ले लेता है। कंप्रेस्ड के पश्चात, भाग की मोटाई का लगभग 10% शेयर्स किया जाता है, और फिर पट्टी या शीट से फ्री हो जाता है। यह फ्रैक्चरिंग उभरी हुई, जग्गड एज उत्पन्न करती है जिसे बर कहा जाता है। बर सामान्यतः द्वितीयक प्रक्रिया में टंबलिंग द्वारा विस्थापित कर दी जाती है। बर की ऊँचाई का उपयोग उपकरण वियर के महत्वपूर्ण संकेतक के रूप में किया जा सकता है।
टूलिंग डिज़ाइन दिशानिर्देश
सभी प्रक्रिया पैरामीटर्स के चयन पैरामीटर शीट की मोटाई और छिद्र की जाने वाली वर्क-पीस सामग्री के बल से नियंत्रित होते हैं।
पंच/डाई क्लीयरेंस महत्वपूर्ण पैरामीटर है, जो उपकरण के कटिंग एज पर अनुभव किए गए भार या दबाव को निर्धारित करता है, जिसे सामान्यतः बिंदु दबाव के रूप में जाना जाता है। अत्यधिक बिंदु दबाव उपकरण के वियर को तीव्र कर सकता है। विभक्त किये गए भागों की सतह की गुणवत्ता भी निकासी से प्रभावित होती है।
छिद्र व्यास, ब्रिज आकार, स्लॉट आयामों के न्यूनतम स्वीकार्य मानों को परिभाषित करने के लिए कंपनियों द्वारा सामग्री विशिष्ट डिजाइन दिशानिर्देश विकसित किए जाते हैं। इसी प्रकार, स्ट्रिप लेआउट (स्ट्रिप की चौड़ाई और पिच) निर्धारित किया जाना चाहिए। भागों के मध्य ब्रिज की चौड़ाई, भाग और पट्टी के किनारे के मध्य एज अलाउंस का भी चयन करना होगा।
साधारण ऑपरेशन के लिए केवल पैनकेक डाई की आवश्यकता हो सकती है। जबकि कई डाई एक साथ कठोर प्रक्रियाएँ निष्पादित करते हैं, पैनकेक डाई केवल सरल प्रक्रिया निष्पादित कर सकता है जिसमें तैयार उत्पाद को हाथ से विस्थापित किया जाता है।
प्रक्रिया वेरिएंट
ब्लैंकिंग और पियर्सिंग विभिन्न प्रकार के होते हैं: लांसिंग, परफोरेटिंग, नॉचिंग, निबलिंग, शेविंग, कटऑफ और डिंकिंग।
लांसिंग
लांसिंग छिद्रन ऑपरेशन है जिसमें वर्कपीस को पासे के वार से शेयर और बेंट किया जाता है। इस प्रक्रिया का महत्वपूर्ण भाग यह है कि सामग्री में कमी नहीं होती है, केवल इसकी ज्यामिति में संशोधन होता है। इस ऑपरेशन का उपयोग टैब, वेंट और लूवर बनाने के लिए किया जाता है।
लांसिंग में किया गया कट विवृत कट नहीं है, जैसे छिद्रन में, भले ही समान मशीन का उपयोग किया जाता है, किंतु एक ओर को तीव्रता से या अधिक गोलाकार विधि से बेंट करने के लिए जोड़ा जाता है।
लांसिंग का उपयोग आंशिक रूपरेखा बनाने और उत्पादन लाइन के नीचे अन्य कार्यों के लिए सामग्री को फ्री करने के लिए किया जा सकता है। इन कारणों के साथ, लांसिंग का उपयोग टैब बनाने के लिए भी किया जाता है (जहां सामग्री 90 डिग्री के कोण पर बेंट होती है) वेंट (जहां बेंट लगभग 45 डिग्री है) और लूवर्स (जहां भाग गोल या क्यूप्ड होता है) लांसिंग बेलनाकार आकार पर शीट को विखंडित करने या सामान्य शेरिंग में भी सहायता करता है।
सामान्यतः लांसिंग यांत्रिक प्रेस पर की जाती है, लांसिंग के लिए पंच और डाई के उपयोग की आवश्यकता होती है। भिन्न-भिन्न पंच और डाई सामग्री के नव निर्मित खंड के आकार और कोण (या वक्रता) को निर्धारित करते हैं। प्रक्रिया की पुनरुक्ति प्रकृति का सामना करने के लिए डाई और पंच को टूल स्टील से बनाया जाना आवश्यक है।[2]
छिद्रण
छिद्रण ऐसा उपकरण है जिसमें बड़ी संख्या में निकट स्थित छिद्रों को छिद्रित करना सम्मिलित है।[3]
नोचिंग
नॉचिंग ऐसा छिद्रण ऑपरेशन है जो वर्कपीस के किनारे से सामग्री को विस्थापित कर देता है।[4]
निबलिंग
निबलिंग प्रक्रिया ओवरलैपिंग स्लिट्स या नौच की श्रृंखला का निर्माण करके समोच्च को विभक्त करती है। ऐसा करने के लिए निबलर को नियोजित किया जा सकता है। यह सरल उपकरणों का उपयोग करके 6 मिमी (0.25 इंच) मोटी शीट धातु में कठोर आकार बनाने की अनुमति देता है।[4]यह मूलतः छोटा पंच और डाइक है जो शीघ्र प्रतिक्रिया प्रदान करता है; प्रति मिनट लगभग 300-900 बार पंच विभिन्न आकार और साइज़ में उपलब्ध हैं; आयताकार और आयताकार पंच साधारण हैं क्योंकि वे व्यर्थता को कम करते हैं और गोल पंच की तुलना में स्ट्रोक के मध्य अधिक दूरी की अनुमति देते हैं। निबलिंग सामग्री के बाहरी या आंतरिक भाग को निबलिंग कर सकता है, चूँकि आंतरिक कट के लिए उपकरण डालने के लिए छिद्र की आवश्यकता होती है।[5]
इस प्रक्रिया का उपयोग प्रायः उन भागों पर किया जाता है जिनमें ऐसी मात्रा नहीं होती जो समर्पित ब्लैंकिंग डाई को उचित माना जा सके। किनारे की स्मूथ्नेस कटिंग डाई के आकार और कट्स के ओवरलैप होने की मात्रा से निर्धारित होती है; स्वाभाविक रूप से जितने अधिक कट ओवरलैप होंगे, एज उतना ही साफ- सुथरा होगा। अतिरिक्त त्रुटिहीनता और स्मूथ्नेस के लिए, निबलिंग द्वारा बनाई गई अधिकांश आकृतियाँ पूर्ण होने के पश्चात फाइलिंग या ग्राइंडिंग की प्रक्रिया से हो कर निकलती हैं।[4]
शेविंग
शेविंग प्रक्रिया एक फिनिशिंग ऑपरेशन है जहां पहले से ही रिक्त भाग से अल्प मात्रा में धातु को विस्थापित कर दिया जाता है। इसका मुख्य उद्देश्य उत्तम आयामी त्रुटिहीनता प्राप्त करना है, किंतु द्वितीयक उद्देश्यों में किनारे को चौकोर करना और किनारे को स्मूथ करना सम्मिलित है। रिक्त भागों को 0.025 मिमी (0.001 इंच) तक की त्रुटिहीनता तक शेव किया जा सकता है।[4]अतिरिक्त या स्क्रैप धातु को विस्थापित करने के लिए धातुओं की शेविंग की जाती है। साधारण, स्मूथ एज प्रदान किया जाता है और इसलिए शेविंग प्रायः उपकरण के भागों, घड़ी और घड़ी के भागों और इसी प्रकार की चीजों पर की जाती है। शेविंग विशेष रूप से इस उद्देश्य के लिए डिज़ाइन की गई शेविंग डाइज़ में पूर्ण की जाती है।
ट्रिमिंग
ट्रिमिंग ऑपरेशन अंतिम ऑपरेशन है, क्योंकि यह खींची गई शीट की दीवारों से अतिरिक्त या अवांछित अनियमित विशेषताओं को विभक्त कर देता है।
फाइन ब्लैंकिंग
फाइन ब्लैंकिंग ब्लैंकिंग का विशेष रूप है जहां शेरिंग करते समय कोई फ्रैक्चर क्षेत्र नहीं होता है। यह पूर्ण भाग को कंप्रेस्ड करके प्राप्त किया जाता है और फिर ऊपरी और निचले पंच से रिक्त स्थान निकाला जाता है।[6] यह प्रक्रिया को अधिक कठोर सहनशीलता बनाए रखने की अनुमति देता है, और संभवतः द्वितीयक संचालन को समाप्त कर देता है।
जिन सामग्रियों को उत्तम प्रकार से रिक्त किया जा सकता है उनमें एल्युमीनियम, पीतल, तांबा और कार्बन स्टील, मिश्र धातु स्टील और स्टेनलेस स्टील सम्मिलित हैं।
फाइन ब्लैंकिंग प्रेस अन्य स्टैम्पिंग (मेटलवर्किंग) प्रेस के समान हैं, किंतु उनमें कुछ महत्वपूर्ण अतिरिक्त भाग होते हैं। विशिष्ट कंपाउंड फाइन ब्लैंकिंग प्रेस में कठोर डाई पंच (पुरुष), कठोर ब्लैंकिंग डाई (महिला), और ब्लैंकिंग डाई के समान आकार/आकार की गाइड प्लेट सम्मिलित होती है। गाइड प्लेट को सबसे पहले सामग्री पर लगाया जाता है, जो सामग्री को डाई ओपनिंग की परिधि के चारों ओर तीव्र प्रोट्रशन या डंक के साथ लगाती है। इसके पश्चात, पंच के विपरीत काउंटर दबाव प्रारम्भ किया जाता है, और अंत में डाई पंच सामग्री को डाई के उद्घाटन के माध्यम से विवश करता है। चूंकि गाइड प्लेट सामग्री को अधिक बलपूर्वक रूप से पकड़ती है, और चूंकि काउंटर दबाव लगाया जाता है, इसलिए सामग्री को सामान्य छिद्रण की तुलना में एक्सट्रूज़न के जैसे विखंडित किया जाता है। विभक्त किये गए भाग के यांत्रिक गुण उसी प्रकार से लाभान्वित होते हैं जैसे कि भाग के विभक्त किये हुए किनारे पर कठोर परत होती है।[7] क्योंकि इस सेटअप में सामग्री को अधिक कसकर पकड़ा और नियंत्रित किया जाता है, आंशिक समतल अधिक सही रहता है, विरूपण लगभग समाप्त हो जाता है, और किनारे की बर न्यूनतम होती है। डाई और पंच के मध्य की दूरी सामान्यतः विभक्त हुई सामग्री की मोटाई का लगभग 1% होती है, जो सामान्यतः 0.5–13 mm (0.020–0.512 in) के मध्य भिन्न होती है।[8] वर्तमान में 19 mm (0.75 in) तक मोटे भागों को सूक्ष्म ब्लैंकिंग का उपयोग करके विभक्त किया जा सकता है।[9] आधार सामग्री की मोटाई और तन्य शक्ति और भाग लेआउट के आधार पर ± 0.0003–0.002 in (0.0076–0.0508 mm) के मध्य सहनशीलता संभव है।[10]
मानक कंपाउंड फाइन ब्लैंकिंग प्रक्रियाओं के साथ, कई भागों को प्रायः एक ही ऑपरेशन में पूर्ण किया जा सकता है। प्रायः ऑपरेशन में भागों को आंशिक रूप से छिद्रित किया जा सकता है, और ऑफसेट (75° तक) एमबॉसड किया जा सकता है।[11] कुछ संयोजनों के लिए प्रगतिशील स्टैम्पिंग फाइन ब्लैंकिंग ऑपरेशन की आवश्यकता हो सकती है, जिसमें प्रेसिंग स्टेशन पर कई ऑपरेशन किए जाते हैं। उच्च जीवनकाल के कारण, ब्लैंकिंग पंच सामान्यतः पीवीडी सुरक्षात्मक कोटिंग्स द्वारा कवर किए जाते हैं।[12]
फाइन ब्लैंकिंग के लाभ हैं:
- प्रोडक्शन रन के माध्यम से उत्कृष्ट आयामी नियंत्रण, त्रुटिहीनता और पुनरुक्ति होती है।
- उत्कृष्ट भाग की समतलता स्थिर रहती है।
- अन्य धातु स्टम्पिंग प्रक्रियाओं की तुलना में साधारण, उत्तम किनारे तैयार किये जाते है।
- मशीन विवरण की अधिक कम आवश्यकता होती है।
- ऑपरेशन में कई सुविधाएँ जोड़ी जा सकती हैं।[13]
- जब अतिरिक्त मशीनिंग व्यय और समय (न्यूनतम 1000-20000 भाग, द्वितीयक मशीनिंग संचालन पर निर्भर करता है) को सम्मिलित किया जाता है, तो पारंपरिक संचालन की तुलना में बड़े उत्पादन के लिए यह अधिक लाभदायक होता है।[14]
फाइन ब्लैंकिंग का मुख्य लाभ यह है कि स्लॉट या छिद्र को भाग के किनारों के अधिक समीप, या एक-दूसरे के समीप रखा जा सकता है। इसके अतिरिक्त, फाइन ब्लैंकिंग से ऐसे छिद्र बन सकते हैं जो पारंपरिक स्टम्पिंग की तुलना में अधिक छोटे होते हैं (सामग्री की मोटाई की तुलना में)।
हानि ये हैं:
- पारंपरिक पंचिंग ऑपरेशन की तुलना में थोड़ा धीमा होता है।
- पारंपरिक पंचिंग ऑपरेशन की तुलना में उच्च टूलींग व्यय और प्रेस के लिए उच्च टन भार आवश्यकताओं के कारण उच्च उपकरण व्यय होता है।
संदर्भ
- ↑ Burg, Doreen (13 February 2020). "How to do Designing and Machining?". Eigenengineering. Doreen.
- ↑ Todd (1994), Manufacturing Processes Reference Guide, New York: Industrial Press, pp. 84–85, ISBN 0-8311-3049-0
- ↑ Degarmo, p. 427.
- ↑ 4.0 4.1 4.2 4.3 Degarmo, p. 428.
- ↑ Todd, pp. 97–98.
- ↑ Degarmo, p. 425.
- ↑ "फाइनब्लैंकिंग 101". Archived from the original on 2008-05-14. Retrieved 2008-11-05.
- ↑ Kalpakjian, Serope; Schmid, Steven R. (2006). विनिर्माण इंजीनियरिंग और प्रौद्योगिकी (5th ed.). Upper Saddle River, NJ: Pearson Prentice Hall. p. 429. ISBN 0-13-148965-8.
- ↑ "बढ़िया ब्लैंकिंग इतिहास". Retrieved 2008-11-05.
- ↑ MPI International, Incعلى احمد على. "दिशा-निर्देश" (PDF). Archived from the original (PDF) on 2006-11-20. Retrieved 2008-11-05.
- ↑ Bralla, pp. 3.47–3.48.
- ↑ Daniel, Josef; Žemlička, Radek; Grossman, Jan; Lümkemann, Andreas; Tapp, Peter; Galamand, Christian; Fořt, Tomáš (2020). "प्रयोगशाला गतिशील प्रभाव परीक्षण और औद्योगिक फाइन ब्लैंकिंग प्रक्रिया में पीवीडी कोटिंग्स के जीवनकाल की तुलना". Materials. 13 (9): 2154. Bibcode:2020Mate...13.2154D. doi:10.3390/ma13092154. PMC 7254225. PMID 32384814.
- ↑ "बारीक ब्लैंकिंग के फायदे". Retrieved 2008-11-05.
- ↑ Bralla, pp. 3.49–3.50.
ग्रन्थसूची
- Bralla, James G. (1999). Design for Manufacturability Handbook. New York, New York: McGraw-Hill. ISBN 0-07-007139-X.
- Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003). Materials and Processes in Manufacturing (9th ed.). Wiley. ISBN 0-471-65653-4.
- Todd, Robert H.; Dell K. Allen; Leo Alting (1994), Manufacturing Processes Reference Guide, Industrial Press Inc, ISBN 0-8311-3049-0