परिमेय बिंदु: Difference between revisions

From Vigyanwiki
m (Abhishekkshukla moved page तर्कसंगत बिंदु to परिमेय बिंदु without leaving a redirect)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{More citations needed|date=April 2019}}
{{short description|In algebraic geometry, a point with rational coordinates}}
{{short description|In algebraic geometry, a point with rational coordinates}}
[[संख्या सिद्धांत]] और [[बीजगणितीय ज्यामिति]] में, विविधता का परिमेय बिंदु एक ऐसा बिंदु होता है जिसके निर्देशांक किसी दिए गए [[क्षेत्र (गणित)|क्षेत्र]] से संबंधित होते हैं। यदि क्षेत्र का उल्लेख नहीं किया जाता है, तो [[परिमेय संख्या]]ओं के क्षेत्र को सामान्यतः समझा जाता है। यदि क्षेत्र [[वास्तविक संख्या]]ओं का क्षेत्र है, तो एक परिमेय बिंदु को सामान्यतः [[वास्तविक बिंदु]] कहा जाता है।
[[संख्या सिद्धांत]] और बीजगणितीय ज्यामिति में, विविधता का '''परिमेय बिंदु''' एक ऐसा बिंदु होता है जिसके निर्देशांक किसी दिए गए क्षेत्र से संबंधित होते हैं। यदि क्षेत्र का उल्लेख नहीं किया जाता है, तो [[परिमेय संख्या]]ओं के क्षेत्र को सामान्यतः समझा जाता है। यदि क्षेत्र [[वास्तविक संख्या]]ओं का क्षेत्र है, तो एक परिमेय बिंदु को सामान्यतः वास्तविक बिंदु कहा जाता है।


परिमेय बिंदुओं को समझना संख्या सिद्धांत और [[डायोफैंटाइन ज्यामिति]] का एक केंद्रीय लक्ष्य है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय को इस प्रकार पुनर्कथित किया जा सकता है:  {{math|''n'' > 2}} के लिए, समीकरण का [[फर्मेट वक्र]] <math>x^n+y^n=1</math> के अतिरिक्त और कोई तर्कसंगत बिंदु नहीं है {{math|(1, 0)}}, {{math|(0, 1)}}, और यदि {{mvar|n}} सम है, {{math|(–1, 0)}} तथा {{math|(0, –1)}}.
परिमेय बिंदुओं को समझना संख्या सिद्धांत और डायोफैंटाइन ज्यामिति का एक केंद्रीय लक्ष्य है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय को इस प्रकार पुनर्कथित किया जा सकता है:  {{math|''n'' > 2}} के लिए, समीकरण का फर्मेट वक्र <math>x^n+y^n=1</math> के अतिरिक्त और कोई तर्कसंगत बिंदु नहीं है {{math|(1, 0)}}, {{math|(0, 1)}}, और यदि {{mvar|n}} सम है, {{math|(–1, 0)}} तथा {{math|(0, –1)}}.


== परिभाषा ==
== परिभाषा ==
Line 30: Line 29:
सामान्यतः, एक योजना ''X'' के लिए एक [[क्रमविनिमेय अंगूठी]] ''R'' और किसी भी विनिमेय ''R''- से जोड़नेवाला बीजगणित ''S'' के लिए, समूह ''X''(''S'' ) ''S''-''X'' के अंक का अर्थ है मोर्फिज्म स्पेस(''S'') → ''X'' ओवर  स्पेस(''R'') का समूह। योजना  ''X'' को 'S'' ↦ ''X''(''S'') द्वारा समरूपता तक निर्धारित किया जाता है; यह एक योजना को उसके कारकों के कारक के साथ पहचानने का दर्शन है। एक अन्य सूत्रीकरण यह है कि योजना ''X'' ''R'' के ऊपर एक योजना ''X'' निर्धारित करती है'' ''[[योजनाओं के फाइबर उत्पाद]] द्वारा S, पर और X के S-बिंदु (R से अधिक) को X के S-बिंदु के साथ पहचाना जा सकता है'' ''(S से अधिक)।''
सामान्यतः, एक योजना ''X'' के लिए एक [[क्रमविनिमेय अंगूठी]] ''R'' और किसी भी विनिमेय ''R''- से जोड़नेवाला बीजगणित ''S'' के लिए, समूह ''X''(''S'' ) ''S''-''X'' के अंक का अर्थ है मोर्फिज्म स्पेस(''S'') → ''X'' ओवर  स्पेस(''R'') का समूह। योजना  ''X'' को 'S'' ↦ ''X''(''S'') द्वारा समरूपता तक निर्धारित किया जाता है; यह एक योजना को उसके कारकों के कारक के साथ पहचानने का दर्शन है। एक अन्य सूत्रीकरण यह है कि योजना ''X'' ''R'' के ऊपर एक योजना ''X'' निर्धारित करती है'' ''[[योजनाओं के फाइबर उत्पाद]] द्वारा S, पर और X के S-बिंदु (R से अधिक) को X के S-बिंदु के साथ पहचाना जा सकता है'' ''(S से अधिक)।''


[[डायोफैंटाइन समीकरण|डायोफैंटाइन समीकरणों]] के सिद्धांत का पारंपरिक रूप से अर्थ है  'अभिन्न बिंदुओं' का अध्ययन है, जिसका अर्थ  परिमेय 'Q' के बदले [[पूर्णांक]] 'Z' में बहुपद समीकरणों का समाधान है। x जैसे सजातीय बहुपद समीकरणों के लिए''x''<sup>3</sup> + ''y''<sup>3</sup> = ''z''<sup>3, दो समस्याएं अनिवार्य रूप से समतुल्य हैं, क्योंकि प्रत्येक तर्कसंगत बिंदु को एक अभिन्न बिंदु बनने के लिए बढ़ाया जा सकता है।</sup>
[[डायोफैंटाइन समीकरण|डायोफैंटाइन समीकरणों]] के सिद्धांत का पारंपरिक रूप से अर्थ है  'अभिन्न बिंदुओं' का अध्ययन है, जिसका अर्थ  परिमेय 'Q' के बदले [[पूर्णांक]] 'Z' में बहुपद समीकरणों का समाधान है। x जैसे सजातीय बहुपद समीकरणों के लिए''x''<sup>3</sup> + ''y''<sup>3</sup> = ''z''<sup>3</sup>, दो समस्याएं अनिवार्य रूप से समतुल्य हैं, क्योंकि प्रत्येक तर्कसंगत बिंदु को एक अभिन्न बिंदु बनने के लिए बढ़ाया जा सकता है।</sup>
 
[[Category:All articles needing additional references]]
[[Category:Articles needing additional references from April 2019]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:Created On 24/11/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:डायोफैंटाइन ज्यामिति]]


== घटता पर तर्कसंगत बिंदु ==
== घटता पर तर्कसंगत बिंदु ==

Latest revision as of 15:20, 12 October 2023

संख्या सिद्धांत और बीजगणितीय ज्यामिति में, विविधता का परिमेय बिंदु एक ऐसा बिंदु होता है जिसके निर्देशांक किसी दिए गए क्षेत्र से संबंधित होते हैं। यदि क्षेत्र का उल्लेख नहीं किया जाता है, तो परिमेय संख्याओं के क्षेत्र को सामान्यतः समझा जाता है। यदि क्षेत्र वास्तविक संख्याओं का क्षेत्र है, तो एक परिमेय बिंदु को सामान्यतः वास्तविक बिंदु कहा जाता है।

परिमेय बिंदुओं को समझना संख्या सिद्धांत और डायोफैंटाइन ज्यामिति का एक केंद्रीय लक्ष्य है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय को इस प्रकार पुनर्कथित किया जा सकता है: n > 2 के लिए, समीकरण का फर्मेट वक्र के अतिरिक्त और कोई तर्कसंगत बिंदु नहीं है (1, 0), (0, 1), और यदि n सम है, (–1, 0) तथा (0, –1).

परिभाषा

एक क्षेत्र k दिया गया है, और k का एक बीजगणितीय रूप से बंद विस्तार K, एक अफ्फिने प्रकार X ऊपर k एक फलन के सामान्य शून्य का समूह है k में गुणांक वाले बहुपदों के संग्रह का:

ये सामान्य शून्य X के बिंदु कहलाते हैं।

X का एक k-'तर्कसंगत बिंदु' (या k-'बिंदु') X का एक बिंदु है जो kn से संबंधित है, एक अनुक्रम (a1,...,an) k के n तत्वों का ऐसा है कि fj(a1,...,an) = 0 सभी j के लिए। X के k-तर्कसंगत बिंदुओं के समुच्चय को अधिकांशतः X(k) से निरूपित किया जाता है।

कभी-कभी, जब क्षेत्र k को समझा जाता है, या जब k परिमेय संख्याओं का क्षेत्र 'Q' होता है, तो कोई k-तर्कसंगत बिंदु के अतिरिक्त परिमेय बिंदु कहलाता है।

उदाहरण के लिए, समीकरण के इकाई वृत्त के परिमेय बिंदु

परिमेय संख्याओं के युग्म हैं

जहां एक पायथागॉरियन ट्रिपल है।

अवधारणा अधिक सामान्य समायोजन में भी समझ में आती है। प्रक्षेपण स्थान 'Pn' में एक प्रक्षेपीय प्रकार xn एक क्षेत्र k पर चर x में सजातीय बहुपद समीकरणों के संग्रह द्वारा परिभाषित किया जा सकता हैप्रक्षेपीय0,...,xn. 'P' का एक k-बिंदुn, लिखा [a0,...,an], k के n+1 तत्वों के अनुक्रम द्वारा दिया जाता है, सभी शून्य नहीं, इस समझ के साथ कि सभी को गुणा करनाa0,...an k के समान अशून्य तत्व द्वारा प्रक्षेपी स्थान में समान बिंदु देता है। तब X के k-बिंदु का अर्थ है 'P' का k-बिंदुn जिस पर दिए गए बहुपद लुप्त हो जाते हैं।

सामान्यतः, x को एक क्षेत्र के ऊपर एक योजना होने दें। इसका अर्थ यह है कि योजना f: X → एक रिंग (k) का स्पेक्ट्रम दिया गया है। तब X के एक k-बिंदु का अर्थ इस आकारिकी का एक खंड है, अर्थात्, एक आकारिकी a: Spec(k) → X ऐसा है कि रचना fa, Spec(k) पर पहचान है। यह पिछली परिभाषाओं से सहमत है जब x एक एफ़िन या प्रोजेक्टिव विविधता है (के पर एक योजना के रूप में देखा जाता है)।

जब x बीजगणितीय रूप से बंद क्षेत्र पर एक विविधता है, तो x की अधिकांश संरचना को तर्कसंगत बिंदुओं के समूह x (k) द्वारा निर्धारित किया जाता है। एक सामान्य क्षेत्र k के लिए, चूंकि, X(k) X के बारे में केवल आंशिक जानकारी देता है। विशेष रूप से, एक क्षेत्र k पर विविधता X के लिए और k के किसी भी क्षेत्र विस्तार E के लिए, X, E- का समूह X(E) को भी निर्धारित करता है। X के 'तर्कसंगत बिंदु', जिसका अर्थ है E में मानों के साथ X को परिभाषित करने वाले समीकरणों के समाधानों का समूह है ।

उदाहरण: मान लीजिए कि X शांकव वक्र x2 + y2 = −1 है, एफाइन समतल A2 वास्तविक संख्या R पर। तब वास्तविक बिंदुओं का समूह X(R) खाली है, क्योंकि किसी भी वास्तविक संख्या का वर्ग गैर-ऋणात्मक है। दूसरी ओर, बीजगणितीय ज्यामिति की शब्दावली में, R के ऊपर बीजगणितीय प्रकार X खाली नहीं है, क्योंकि जटिल संख्या बिंदुओं का समूह X(C) खाली नहीं है।

सामान्यतः, एक योजना X के लिए एक क्रमविनिमेय अंगूठी R और किसी भी विनिमेय R- से जोड़नेवाला बीजगणित S के लिए, समूह X(S ) S-X के अंक का अर्थ है मोर्फिज्म स्पेस(S) → X ओवर स्पेस(R) का समूह। योजना X को 'SX(S) द्वारा समरूपता तक निर्धारित किया जाता है; यह एक योजना को उसके कारकों के कारक के साथ पहचानने का दर्शन है। एक अन्य सूत्रीकरण यह है कि योजना X R के ऊपर एक योजना X निर्धारित करती है योजनाओं के फाइबर उत्पाद द्वारा S, पर और X के S-बिंदु (R से अधिक) को X के S-बिंदु के साथ पहचाना जा सकता है (S से अधिक)।

डायोफैंटाइन समीकरणों के सिद्धांत का पारंपरिक रूप से अर्थ है 'अभिन्न बिंदुओं' का अध्ययन है, जिसका अर्थ परिमेय 'Q' के बदले पूर्णांक 'Z' में बहुपद समीकरणों का समाधान है। x जैसे सजातीय बहुपद समीकरणों के लिएx3 + y3 = z3, दो समस्याएं अनिवार्य रूप से समतुल्य हैं, क्योंकि प्रत्येक तर्कसंगत बिंदु को एक अभिन्न बिंदु बनने के लिए बढ़ाया जा सकता है।

घटता पर तर्कसंगत बिंदु

बहुत से संख्या सिद्धांत को बीजगणितीय प्रकार के तर्कसंगत बिंदुओं के अध्ययन के रूप में देखा जा सकता है, एक सुविधाजनक समायोजन चिकनी योजना प्रक्षेप्य प्रकार हैं। चिकनी प्रक्षेपी बीजगणितीय वक्र के लिए, तर्कसंगत बिंदुओं का व्यवहार वक्र के जीनस पर दृढ़ता से निर्भर करता है।

वंश 0

एक क्षेत्र k पर वंश शून्य का प्रत्येक चिकना प्रक्षेप्य वक्र X 'P' में एक शंकु (डिग्री 2) वक्र के लिए आइसोमोर्फिक है।2। यदि X का k-रेशनल पॉइंट है, तो यह 'P' के लिए आइसोमोर्फिक है1 k पर, और इसलिए इसके k-तर्कसंगत बिंदु पूरी तरह से समझ में आ गए हैं।[1] यदि k परिमेय संख्याओं का क्षेत्र 'Q' है (या अधिक सामान्यतः एक संख्या क्षेत्र), तो यह निर्धारित करने के लिए एक कलन विधि है कि क्या किसी दिए गए शंकु में एक परिमेय बिंदु है, जो हस्से सिद्धांत पर आधारित है: 'Q' पर एक शंकु का एक परिमेय बिंदु होता है। बिंदु अगर और केवल अगर यह 'Q' के सभी पूर्णताओं पर एक बिंदु है, यानी, 'आर' और सभी पी-एडिक फ़ील्ड पर। पी-एडिक फ़ील्ड 'क्यू'p.

वंश 1

यह निर्धारित करना कठिन है कि वंश एक वक्र का एक परिमेय बिंदु है या नहीं। हस सिद्धांत इस स्तिथि में विफल रहता है: उदाहरण के लिए, अर्न्स्ट सेजेरस्टेड सेल्मर द्वारा, घन वक्र 3x3 + 4y3 + 5z3 = 0 P2 का Q की सभी पूर्णताओं पर एक बिंदु है, लेकिन कोई परिमेय बिंदु नहीं है।[2] वंश 1 के घटता के लिए हस्से सिद्धांत की विफलता को टेट-शफारेविच समूह द्वारा मापा जाता है।

यदि X एक k-तर्कसंगत बिंदु p0 के साथ वंश 1 का वक्र है, तब X को k पर दीर्घवृत्ताकार वक्र कहा जाता है। इस स्तिथि में, X में एक क्रमविनिमेय बीजगणितीय समूह की संरचना है (P0 के साथ शून्य तत्व के रूप में), और इसलिए के-तर्कसंगत बिंदुओं का समूह X (K) एक एबेलियन समूह है। मोर्डेल-वेइल प्रमेय का कहना है कि एक अंडाकार वक्र (या, अधिकांश, एक एबेलियन प्रकार) X के लिए संख्या क्षेत्र के ऊपर, एबेलियन समूह X (K) अंततः एबेलियन समूह उत्पन्न होता है। कंप्यूटर बीजगणित कार्यक्रम कई उदाहरणों में मोर्डेल-वील समूह X (K) को निर्धारित कर सकते हैं, लेकिन यह ज्ञात नहीं है कि क्या कोई एल्गोरिदम है जो हमेशा इस समूह की गणना करने में सफल होता है। यह अनुमान से अनुसरण करेगा कि टेट-शफारेविच समूह परिमित है, या संबंधित बर्च-स्वाइनर्टन-डायर अनुमान से।[3]


वंश कम से कम 2

फाल्टिंग्स प्रमेय (पूर्व में मोर्डेल अनुमान) का कहना है कि वंश के किसी भी वक्र X के लिए कम से कम 2 एक संख्या क्षेत्र के ऊपर, समूह X (K) परिमित है।[4]

संख्या सिद्धांत की कुछ महान उपलब्धियाँ विशेष वक्रों पर तर्कसंगत बिंदुओं को निर्धारित करने के बराबर हैं। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय रिचर्ड टेलर (गणितज्ञ) और एंड्रयू विल्स द्वारा सिद्ध) इस कथन के बराबर है कि एक पूर्णांक n के लिए कम से कम 3, वक्र x के केवल परिमेय बिंदुxn + yn = zn 'P2' में Q के ऊपर स्पष्ट हैं: [0,1,1] और [1,0,1]; [0,1,−1] और [1,0,−1] n के लिए भी; और [1,−1,0] n विषम के लिए। कर्व X (P में डिग्री n के किसी भी स्मूथ कर्व की तरह का वंश (n − 1)(n − 2)/2 है।

यह ज्ञात नहीं है कि एक संख्या क्षेत्र पर कम से कम 2 वंश के मनमानी वक्र पर सभी तर्कसंगत बिंदुओं को खोजने के लिए एक एल्गोरिदम है या नहीं। एक एल्गोरिदम है जो कुछ स्थितियों में काम करता है। सामान्य रूप से इसकी समाप्ति अनुमानों से पालन करेगी कि एक संख्या क्षेत्र पर एक एबेलियन किस्म के टेट-शफारेविच समूह परिमित है और घटता  की स्तिथि में, ब्राउर-मैनिन बाधा हास सिद्धांत के लिए एकमात्र बाधा है।[5]

उच्च आयाम

कुछ तर्कसंगत बिंदुओं के प्रकार

उच्च आयामों में, एक एकीकृत लक्ष्य हेनरी बोम्बिएरी लैंग अनुमान है, जो किसी संख्या क्षेत्र k पर सामान्य प्रकार के X के लिए, k के तर्कसंगत बिंदुओं का समूह है। X X में 'X' ज़रिस्की सघन नहीं है। (अर्थात्, k-तर्कसंगत बिंदु X के निम्न-आयामी उपप्रकारों के परिमित संघ में समाहित हैं।) आयाम 1 में, यह वास्तव में फाल्टिंग का प्रमेय है, क्योंकि एक वक्र सामान्य प्रकार का होता है यदि और केवल तभी जब इसका जीनस कम से कम 2 हो। लैंग ने कोबायाशी मीट्रिक एनालॉजी विद नंबर थ्योरी के तर्कसंगत बिंदुओं की परिमितता से संबंधित बेहतर अनुमान भी लगाए।[6] उदाहरण के लिए, बॉम्बिएरी-लैंग अनुमान भविष्यवाणी करता है कि प्रक्षेपी अंतरिक्ष 'P' में डिग्री D की एक चिकनी ऊनविम पृष्ठn यदि d ≥ n + 2 है तो किसी संख्या क्षेत्र में ज़ारिस्की सघन परिमेय बिंदु नहीं होते हैं। उस स्थिति के बारे में अधिक जानकारी नहीं है। बॉम्बिएरी-लैंग अनुमान पर सबसे मजबूत ज्ञात परिणाम एबेलियन प्रकार की उप-प्रकारों पर फाल्टिंग का प्रमेय है। अर्थात्, यदि X एक संख्या क्षेत्र k पर एक एबेलियन प्रकार A की एक उप-प्रकार है, तो X के सभी k-तर्कसंगत बिंदु X में निहित एबेलियन उप-प्रकारों के अनुवाद के परिमित संघ में समाहित हैं।[7] (इसलिए यदि X में सकारात्मक आयाम की कोई अनुवादित एबेलियन उप-प्रकार नहीं हैं, तो X(k) परिमित है।)

कई तर्कसंगत बिंदुओं के साथ प्रकार

विपरीत दिशा में, संख्या क्षेत्र k पर एक विविधता X को 'संभावित रूप से सघन' परिमेय बिंदु कहा जाता है यदि k का परिमित विस्तार क्षेत्र E है जैसे कि X के E-तर्कसंगत बिंदु X में ज़रिस्की घने हैं। फ्रेडरिक कैंपाना ने अनुमान लगाया है कि एक प्रकार संभावित रूप से सघन है अगर और केवल अगर सामान्य प्रकार के सकारात्मक-आयामी ऑर्बिफोल्ड पर कोई तर्कसंगत कंपन नहीं है।[8] एक ज्ञात स्तिथि यह है कि P3 में हर घन सतह किसी संख्या क्षेत्र पर k में संभावित सघन तर्कसंगत बिंदु हैं, क्योंकि (अधिक दृढ़ता से) यह k के कुछ परिमित विस्तार पर तर्कसंगत विविधता बन जाता है (जब तक कि यह समतल घन वक्र पर प्रक्षेपी शंकु न हो)। कैम्पाना के अनुमान का अर्थ यह भी होगा कि एक K3 सतह X (जैसे 'P' में एक चिकनी क्वार्टिक सतह3) किसी संख्या क्षेत्र पर संभावित रूप से सघन परिमेय बिंदु होते हैं। यह केवल विशेष स्थितियों में ही जाना जाता है, उदाहरण के लिए यदि X में अण्डाकार कंपन है।[9] कोई यह पूछ सकता है कि आधार क्षेत्र का विस्तार किए बिना किसी किस्म का परिमेय बिंदु कब होता है। 'पी' में डिग्री डी की हाइपरसफेस एक्स के मामले मेंn किसी संख्या क्षेत्र में, जब d, n से बहुत छोटा होता है तो अच्छे परिणाम मिलते हैं, जो अक्सर हार्डी-लिटिलवुड सर्कल पद्धति पर आधारित होता है। उदाहरण के लिए, हस्से-मिन्कोव्स्की प्रमेय का कहना है कि हस सिद्धांत एक संख्या क्षेत्र (केस डी = 2) पर क्वाड्रिक हाइपरसर्फेस के लिए है। क्रिस्टोफर हूले ने 'Pn' में चिकने क्यूबिक हाइपरसर्फेस के लिए हस्से सिद्धांत को सिद्ध किया 'Q' के ऊपर जब n ≥ 8.[10] उच्च आयामों में, और भी अधिक सत्य है: P में प्रत्येक चिकना घनरोजर हीथ-ब्राउन द्वारा n ≥ 9 होने पर 'Q' के ऊपर n परिमेय बिंदु होता है।[11] सामान्यतः, बर्च की प्रमेय कहती है कि किसी भी विषम धनात्मक पूर्णांक d के लिए, एक पूर्णांक N होता है जैसे कि सभी n ≥ N के लिए, 'P' में डिग्री d की प्रत्येक हाइपरसफेसn 'Q' के ऊपर एक परिमेय बिंदु है।

छोटे आयाम (उनकी डिग्री के संदर्भ में) के हाइपरसर्फ्स के लिए, चीजें अधिक जटिल हो सकती हैं। उदाहरण के लिए, हस सिद्धांत चिकनी घन सतह 5x के लिए विफल रहता है5x3 + 9y3 + 10z3 + 12w3 = 0 में ओवर Q, जे. डब्ल्यू. एस. कैसल्स और रिचर्ड गाय द्वारा।[12] जीन-लुइस कोलियट-थेलेने ने अनुमान लगाया है कि क्यूबिक सतहों के लिए हस्से सिद्धांत के लिए ब्राउर-मैनिन बाधा ही एकमात्र बाधा है। सामान्यतः, यह एक संख्या क्षेत्र पर प्रत्येक तर्कसंगत रूप से जुड़ी विविधता के लिए होना चाहिए।[13] कुछ स्थितियों में, यह ज्ञात है कि जब भी X के पास एक होता है तो उसके कई परिमेय बिंदु होते हैं। उदाहरण के लिए, बेंजामिन सीक्रेट और यूरी मैनिन, जानोस कोल्लार ने दिखाया: एक्स के साथ कम से कम 2 आयाम वाले क्यूबिक हाइपरसफेस एक्स के लिए एक पूर्ण क्षेत्र के साथ एक्स शंकु नहीं है, एक्स अपरिमेय विविधता है, अगर इसमें के-तर्कसंगत बिंदु है।[14] (विशेष रूप से, k अनंत के लिए, अतार्किकता का तात्पर्य है कि k-तर्कसंगत बिंदुओं का सेट X में ज़ारिस्की सघन है।) मैनिन अनुमान एक अधिक सटीक कथन है जो एक पर परिबद्ध ऊंचाई फ़ंक्शन के तर्कसंगत बिंदुओं की संख्या के स्पर्शोन्मुखता का वर्णन करेगा। फानो किस्म

परिमित क्षेत्रों पर अंक गिनना

परिमित क्षेत्र k पर एक विविधता X में केवल बहुत से k-तर्कसंगत बिंदु हैं। आयाम 1 में एंड्रे वील द्वारा और किसी भी आयाम में पियरे डेलिग्ने द्वारा सिद्ध किया गया 'वील अनुमान', एक्स के ईटेल कोहोलॉजी के संदर्भ में के-पॉइंट्स की संख्या के लिए मजबूत अनुमान देता है। उदाहरण के लिए, यदि एक्स एक चिकनी प्रक्षेप्य वक्र है क्रम q (एक प्रमुख शक्ति) के एक क्षेत्र k पर जीनस g का, फिर

'पी' में डिग्री डी की चिकनी हाइपरसफेस एक्स के लिएn आदेश q के क्षेत्र k पर, डेलिन का प्रमेय सीमा देता है:[15]

इसके बारे में भी महत्वपूर्ण परिणाम हैं जब एक परिमित क्षेत्र k पर प्रक्षेपी विविधता में कम से कम एक k-तर्कसंगत बिंदु होता है। उदाहरण के लिए, चेवेली-चेतावनी प्रमेय का तात्पर्य है कि 'पी' में डिग्री डी का कोई हाइपरसफेस Xn एक परिमित क्षेत्र पर k का एक k-तर्कसंगत बिंदु है यदि d ≤ n। चिकने X के लिए, यह हेलेन एस्नॉल्ट के प्रमेय से भी अनुसरण करता है कि हर चिकनी प्रक्षेप्य तर्कसंगत रूप से जुड़ी विविधता प्रकार, उदाहरण के लिए हर फ़ानो प्रकार, एक परिमित क्षेत्र k पर एक k-तर्कसंगत बिंदु है।[16]


यह भी देखें

टिप्पणियाँ

  1. Hindry & Silverman (2000), Theorem A.4.3.1.
  2. Silverman (2009), Remark X.4.11.
  3. Silverman (2009), Conjecture X.4.13.
  4. Hindry & Silverman (2000), Theorem E.0.1.
  5. Skorobogatov (2001), section 6,3.
  6. Hindry & Silverman (2000), section F.5.2.
  7. Hindry & Silverman (2000), Theorem F.1.1.1.
  8. Campana (2004), Conjecture 9.20.
  9. Hassett (2003), Theorem 6.4.
  10. Hooley (1988), Theorem.
  11. Heath-Brown (1983), Theorem.
  12. Colliot-Thélène, Kanevsky & Sansuc (1987), section 7.
  13. Colliot-Thélène (2015), section 6.1.
  14. Kollár (2002), Theorem 1.1.
  15. Katz (1980), section II.
  16. Esnault (2003), Corollary 1.3.


संदर्भ


बाहरी संबंध