विविधता (साइबरनेटिक्स): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Number of states of a cybernetic system}} {{Use dmy dates|date=May 2014}} साइबरनेटिक्स में, विविधता शब...")
 
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Number of states of a cybernetic system}}
{{Short description|Number of states of a cybernetic system}}
{{Use dmy dates|date=May 2014}}
[[साइबरनेटिक्स|'''साइबरनेटिक्स''']] में, '''विविधता''' शब्द [[सेट (गणित)|समुच्चय (गणित)]] के भिन्न-भिन्न तत्वों की कुल संख्या को दर्शाता है, प्रायः फिनिट-स्टेट मशीन या परिवर्तन (फ़ंक्शन) के स्टेट्स, इनपुट या आउटपुट का समुच्चय, या समान मात्रा के बाइनरी लघुगणक है।<ref name="Ashby 1956">{{cite book
[[साइबरनेटिक्स]] में, विविधता शब्द एक [[सेट (गणित)]] के अलग-अलग तत्वों की कुल संख्या को दर्शाता है, अक्सर एक परिमित-राज्य मशीन या परिवर्तन (फ़ंक्शन) के राज्यों, इनपुट या आउटपुट का सेट, या उसी के बाइनरी लघुगणक मात्रा।<ref name="Ashby 1956">{{cite book
  |last= Ashby
  |last= Ashby
  |first= William Ross
  |first= William Ross
  |date= 1956
  |date= 1956
  |title= An Introduction to Cybernetics
  |title= An Introduction to Cybernetics
}}</ref> विविधता का उपयोग साइबरनेटिक्स में एक [[सूचना सिद्धांत]] के रूप में किया जाता है जो आसानी से [[नियतात्मक परिमित ऑटोमेटा]] से संबंधित होता है, और संगठन, विनियमन और स्थिरता के बारे में सोचने के लिए एक वैचारिक उपकरण के रूप में कम औपचारिक होता है। यह [[ऑटोमेटा सिद्धांत]], जटिल प्रणालियों में [[जटिलता]] का एक प्रारंभिक सिद्धांत है,<ref name="Ashby 1956"/>{{rp|6}} और संचालन अनुसंधान।<ref name="Ashby 1958">{{cite journal
}}</ref> विविधता का उपयोग साइबरनेटिक्स में [[सूचना सिद्धांत|इनफार्मेशन थ्योरी]] के रूप में किया जाता है जो सरलता से [[नियतात्मक परिमित ऑटोमेटा|डेटर्मीनिस्टिक फिनिट ऑटोमेटा]] से संबंधित होता है, संगठन, विनियमन और स्थिरता के बारे में सोचने के लिए वैचारिक उपकरण के रूप में कम औपचारिक होता है। यह [[ऑटोमेटा सिद्धांत]], काम्प्लेक्स प्रणालियों में [[जटिलता|कॉम्प्लेक्सिटी]] का प्रारंभिक सिद्धांत है।<ref name="Ashby 1956"/>{{rp|6}} <ref name="Ashby 1958">{{cite journal
| last1      = Ashby
| last1      = Ashby
| first1    = William Ross
| first1    = William Ross
Line 17: Line 16:
}}</ref>
}}</ref>


== अवलोकन ==
विविधता शब्द को डब्ल्यू. रॉस एशबी ने मशीनों के अपने विश्लेषण को उनके संभावित व्यवहारों के समुच्चय तक विस्तारित करने के लिए प्रस्तुत की थी।<ref>{{harvnb|Ashby|1956|p=121}}: "In Part I we considered the main properties of the machine, usually with the assumption that we had before us the actual thing ... To progress in cybernetics, however, we shall have to extend our range of consideration. The fundamental questions in regulation and control can be answered only when we are able to consider the broader set of what it ''might'' do..."</ref>{{rp|121}} एशबी कहते हैं:<ref name="Ashby 1956"/>{{rp|126}}


== सिंहावलोकन ==
भिन्न-भिन्न तत्वों के समुच्चय के संबंध विविधता शब्द का उपयोग या तो (i) भिन्न-भिन्न तत्वों की संख्या, या (ii) संख्या के आधार 2 के लघुगणक, संदर्भ में उपयोग किए गए अर्थ को प्रदर्शित करने के लिए किया जाएगा।
विविधता शब्द की शुरुआत डब्ल्यू. रॉस एशबी ने मशीनों के अपने विश्लेषण को उनके संभावित व्यवहारों के सेट तक विस्तारित करने के लिए की थी।<ref>{{harvnb|Ashby|1956|p=121}}: "In Part I we considered the main properties of the machine, usually with the assumption that we had before us the actual thing ... To progress in cybernetics, however, we shall have to extend our range of consideration. The fundamental questions in regulation and control can be answered only when we are able to consider the broader set of what it ''might'' do..."</ref>{{rp|121}} एशबी कहते हैं:<ref name="Ashby 1956"/>{{rp|126}}
<ब्लॉककोट>
शब्द <em>विविधता</em>, अलग-अलग तत्वों के एक सेट के संबंध में, या तो (i) अलग-अलग तत्वों की संख्या, या (ii) संख्या के आधार 2 के लघुगणक के लिए उपयोग किया जाएगा। प्रयुक्त अर्थ को इंगित करने वाला प्रसंग। <!-- emphasis in original -->
</ब्लॉककोट>


दूसरे मामले में, विविधता को [[ अंश ]] में मापा जाता है। उदाहरण के लिए, राज्यों वाली एक मशीन <math>\{a,b,c,d\}</math> इसमें चार अवस्थाओं या दो बिट्स की विविधता होती है। किसी [[अनुक्रम]] या [[मल्टीसेट]] की विविधता उसमें विशिष्ट प्रतीकों की संख्या है। उदाहरण के लिए, अनुक्रम <math>a,b,c,c,c,d</math> चार की एक किस्म है. अनिश्चितता के माप के रूप में, विविधता का सीधा संबंध सूचना से है: <math>\text{Uncertainty} = - \text{Information}</math>.<ref name="Pask 1961">{{cite book
दूसरी स्तिथि में, विविधता को [[ अंश |बिट्स]] में मापा जाता है। उदाहरण के लिए, स्टेट्स मशीन <math>\{a,b,c,d\}</math> में विभिन्न प्रकार की चार स्टेटएं या दो बिट होते हैं। किसी [[अनुक्रम]] या [[मल्टीसेट]] की विविधता उसमें विशिष्ट प्रतीकों की संख्या है। उदाहरण के लिए, अनुक्रम <math>a,b,c,c,c,d</math> की विविधता चार है। अनिश्चितता के माप के रूप में, विविधता का सरल संबंध सूचना से है: <math>\text{Uncertainty} = - \text{Information}</math>.<ref name="Pask 1961">{{cite book
  |last= Pask
  |last= Pask
  |first= Gordon
  |first= Gordon
Line 31: Line 28:
}}</ref>{{rp|26}}
}}</ref>{{rp|26}}


चूँकि अलग-अलग तत्वों की संख्या पर्यवेक्षक और सेट दोनों पर निर्भर करती है, यदि विविधता को अच्छी तरह से परिभाषित करना है तो पर्यवेक्षक और उसकी भेदभाव की शक्तियों को निर्दिष्ट करना पड़ सकता है।<ref name="Ashby 1956"/>{{rp|125}} [[गॉर्डन पास्क]] ने चुने गए संदर्भ फ्रेम की विविधता और पर्यवेक्षक द्वारा संदर्भ फ्रेम के भीतर बनाई गई प्रणाली की विविधता के बीच अंतर किया। संदर्भ फ़्रेम में एक राज्य स्थान और पर्यवेक्षक के लिए उपलब्ध माप का सेट होता है, जिसमें कुल विविधता होती है <math>\log_2(n)</math>, कहाँ <math>n</math> राज्य क्षेत्र में राज्यों की संख्या है। पर्यवेक्षक जो प्रणाली बनाता है वह संपूर्ण विविधता से शुरू होती है <math>\log_2(n)</math>, जो कम हो जाता है क्योंकि पर्यवेक्षक प्रणाली की भविष्यवाणी करना सीखकर राज्य के बारे में अनिश्चितता खो देता है। यदि पर्यवेक्षक दिए गए संदर्भ फ्रेम में सिस्टम को एक नियतात्मक मशीन के रूप में देख सकता है, तो अवलोकन विविधता को शून्य तक कम कर सकता है क्योंकि मशीन पूरी तरह से पूर्वानुमानित हो जाती है।<ref name="Pask 1961"/>{{rp|27}}
चूँकि भिन्न-भिन्न तत्वों की संख्या पर्यवेक्षक और समुच्चय दोनों पर निर्भर करती है, यदि विविधता को उत्तम रूप से परिभाषित करना है तो पर्यवेक्षक और उसकी भेदभाव की शक्तियों को निर्दिष्ट करना होता है।<ref name="Ashby 1956" />{{rp|125}} [[गॉर्डन पास्क]] ने विविधता के मध्य अंतर किया। चयन किये गए संदर्भ फ्रेम की विविधता जिसे पर्यवेक्षक संदर्भ फ़्रेम के भीतर बनाता है। संदर्भ फ़्रेम में स्टेट स्थान और पर्यवेक्षक के लिए उपलब्ध माप का समुच्चय होता है, जिसमें कुल विविधता <math>\log_2(n)</math> होती है, जहाँ <math>n</math> स्टेट क्षेत्र में स्टेटों की संख्या है। पर्यवेक्षक जो प्रणाली बनाता है वह संपूर्ण विविधता से प्रारंभ होती है, <math>\log_2(n)</math> जो कम हो जाता है क्योंकि पर्यवेक्षक प्रणाली की भविष्यवाणी करना स्टेट के बारे में अनिश्चितता को लुप्त कर देती है। यदि पर्यवेक्षक दिए गए संदर्भ फ्रेम में सिस्टम को डेटर्मीनिस्टिक मशीन के रूप में देख सकता है, तो अवलोकन विविधता को शून्य तक कम कर सकता है क्योंकि मशीन पूर्ण रूप से पूर्वानुमानित हो जाती है।<ref name="Pask 1961" />{{rp|27}}


प्रकृति के नियम कुछ व्यवहारों की अनुमति न देकर घटनाओं की विविधता को रोकते हैं।<ref name="Ashby 1956"/>{{rp|130}} एशबी ने दो अवलोकन किए, जिन पर उन्होंने प्रकृति के नियम, अनुभव के नियम और अपेक्षित विविधता के नियम पर विचार किया। अनुभव का नियम यह मानता है कि इनपुट के तहत मशीनें अपनी मूल स्थिति के बारे में जानकारी खो देती हैं, और अपेक्षित विविधता का कानून एक नियामक के लिए एक आवश्यक, हालांकि पर्याप्त नहीं, शर्त बताता है कि वह अपने वर्तमान इनपुट पर प्रतिक्रिया देकर प्रत्याशित नियंत्रण स्थापित कर सके (बजाय) पिछला आउटपुट जैसा कि Negative_feedback#Error-controlled_regulation|error-controlled विनियमन)।
प्रकृति के नियम कुछ व्यवहारों को अस्वीकार करके घटनाओं की विविधता को बाधित करते हैं।<ref name="Ashby 1956" />{{rp|130}} एशबी ने दो अवलोकन किए, जिन पर उन्होंने प्रकृति के नियम, अनुभव के नियम और अपेक्षित विविधता के नियम पर विचार किया। अनुभव का नियम यह मानता है कि इनपुट के अनुसार मशीनें अपनी मूल स्थिति के बारे में जानकारी लुप्त कर देती हैं, और अपेक्षित विविधता का नियम नियामक के लिए आवश्यक, चूँकि पर्याप्त नहीं, नियम बताता है कि वह अपने वर्तमान इनपुट पर प्रतिक्रिया देकर प्रत्याशित नियंत्रण स्थापित कर सके (अतिरिक्त) त्रुटि-नियंत्रित विनियमन के अनुसार पिछला आउटपुट)।


==अनुभव का नियम==
==अनुभव का नियम==
अनुभव का नियम इस अवलोकन को संदर्भित करता है कि अलगाव में एक नियतिवादी मशीन द्वारा प्रदर्शित राज्यों की विविधता में वृद्धि नहीं हो सकती है, और समान इनपुट वाले समान मशीनों का एक सेट राज्यों की बढ़ती विविधता को प्रदर्शित नहीं कर सकता है, और इसके बजाय सिंक्रनाइज़ होता है।<ref>
अनुभव का नियम इस अवलोकन को संदर्भित करता है कि पृथक्करण में डेटर्मीनिस्टिक मशीन द्वारा प्रदर्शित स्टेटों की विविधता में वृद्धि नहीं हो सकती है, और समान इनपुट वाले समान मशीनों का समुच्चय स्टेटों की बढ़ती विविधता को प्रदर्शित नहीं कर सकता है, और इसके अतिरिक्त सिंक्रनाइज़ होने की प्रवृत्ति रखता है।<ref>
{{harvnb|Ashby|1956|p=138}}: "It is easy to see, therefore, that, provided the same change is made to all, change of parameter-value to the whole set cannot increase the set's variety ... change of parameter value makes possible a fall to a new, and low, minimum ... Since this will often happen we can make the looser, but more vivid statement that a uniform change at the inputs of a set of transducers tends to drive the set's variety down."</ref>
{{harvnb|Ashby|1956|p=138}}: "It is easy to see, therefore, that, provided the same change is made to all, change of parameter-value to the whole set cannot increase the set's variety ... change of parameter value makes possible a fall to a new, and low, minimum ... Since this will often happen we can make the looser, but more vivid statement that a uniform change at the inputs of a set of transducers tends to drive the set's variety down."</ref>
<ब्लॉककोट>
कोई नाम आवश्यक है जिससे इस घटना का उल्लेख किया जा सके। मैं इसे <em>अनुभव का नियम</em> कहूंगा। इसे इस कथन द्वारा अधिक स्पष्ट रूप से वर्णित किया जा सकता है कि किसी पैरामीटर पर परिवर्तन द्वारा डाली गई जानकारी सिस्टम की प्रारंभिक स्थिति के बारे में जानकारी को नष्ट और प्रतिस्थापित कर देती है।<ref name="Ashby 1956"/>{{rp|139}}<!--emphasis in original-->
</ब्लॉककोट>


यह विविधता के क्षय का परिणाम है: एक नियतात्मक परिवर्तन किसी सेट की विविधता को नहीं बढ़ा सकता है। परिणामस्वरूप, मशीन की स्थिति के बारे में एक पर्यवेक्षक की अनिश्चितता या तो स्थिर रहती है या समय के साथ कम हो जाती है। एशबी दिखाता है कि यह बात इनपुट वाली मशीनों पर भी लागू होती है। किसी भी निरंतर इनपुट के तहत <math>P_1</math> मशीनों की स्थितियाँ किसी भी आकर्षित करने वाले की ओर बढ़ती हैं जो संबंधित परिवर्तन में मौजूद होती हैं और कुछ इन बिंदुओं पर सिंक्रनाइज़ हो सकती हैं। यदि इनपुट किसी अन्य इनपुट में बदल जाता है <math>P_2</math> और मशीनों का व्यवहार एक अलग परिवर्तन करता है, इनमें से एक से अधिक आकर्षितकर्ता आकर्षण के एक ही बेसिन में बैठ सकते हैं <math>P_2</math>. वे राज्य जो आये और संभवत: उन आकर्षितकर्ताओं के अंतर्गत समन्वयित हुए <math>P_1</math> फिर आगे सिंक्रनाइज़ करें <math>P_2</math>. दूसरे शब्दों में, एशबी कहते हैं, एक ट्रांसड्यूसर के इनपुट में परिवर्तन सिस्टम की स्थिति (किसी निश्चित समय पर) को ट्रांसड्यूसर की व्यक्तिगत प्रारंभिक स्थिति पर कम निर्भर करता है और इनपुट के रूप में उपयोग किए जाने वाले पैरामीटर-मानों के विशेष अनुक्रम पर अधिक निर्भर करता है।<ref name="Ashby 1956"/>{{rp|136-138}}
कोई नाम आवश्यक है जिससे इस घटना का उल्लेख किया जा सके। मैं इसे अनुभव का नियम कहूंगा। इसे इस कथन द्वारा अधिक स्पष्ट रूप से वर्णित किया जा सकता है कि किसी पैरामीटर पर परिवर्तन द्वारा उत्पन्न की गई जानकारी सिस्टम की प्रारंभिक स्थिति के बारे में जानकारी को नष्ट और प्रतिस्थापित कर देती है।<ref name="Ashby 1956" />{{rp|139}}


जबकि गैर-वृद्धि का नियम है, केवल घटने की प्रवृत्ति है, क्योंकि यदि सेट एक इंजेक्शन फ़ंक्शन से गुजरता है तो विविधता घटे बिना स्थिर रह सकती है | एक-से-एक परिवर्तन, या यदि राज्य एक उपसमूह में सिंक्रनाइज़ हो गए हैं जिसके लिए यह मामला है। परिमित मशीनों के [[औपचारिक भाषा]] विश्लेषण में, एक इनपुट अनुक्रम जो समान मशीनों को सिंक्रनाइज़ करता है (चाहे उनकी प्रारंभिक अवस्थाओं की विविधता कुछ भी हो) को [[तुल्यकालिक शब्द]] कहा जाता है।
यह विविधता के क्षय का परिणाम है: डेटर्मीनिस्टिक परिवर्तन किसी समुच्चय की विविधता को नहीं बढ़ा सकता है। परिणामस्वरूप, मशीन की स्थिति के बारे में पर्यवेक्षक की अनिश्चितता या तो स्थिर रहती है या समय के साथ कम हो जाती है। एशबी दिखाता है कि यह बात इनपुट वाली मशीनों पर भी प्रारम्भ होती है। किसी भी निरंतर इनपुट के अनुसार <math>P_1</math> मशीनों की स्थितियाँ किसी भी आकर्षित करने वाले की ओर बढ़ती हैं जो संबंधित परिवर्तन में उपस्थित होती हैं और कुछ इन बिंदुओं पर सिंक्रनाइज़ हो सकती हैं। यदि इनपुट किसी अन्य इनपुट में परिवर्तित हो जाता है तो <math>P_2</math> और मशीनों का व्यवहार भिन्न परिवर्तन करता है, इनमें अधिक आकर्षितकर्ता आकर्षण के बेसिन <math>P_2</math> हो सकते हैं वे स्टेट जो आये और संभवत: उन आकर्षितकर्ताओं के अंतर्गत <math>P_1</math> समन्वयित हुए फिर आगे <math>P_2</math> सिंक्रनाइज़ किया जाता है। दूसरे शब्दों में, एशबी कहते हैं, ट्रांसड्यूसर के इनपुट में परिवर्तन सिस्टम की स्थिति (किसी निश्चित समय पर) को ट्रांसड्यूसर की व्यक्तिगत प्रारंभिक स्थिति पर कम निर्भर करता है और पैरामीटर-मानों के विशेष अनुक्रम पर अधिक निर्भर करता है जिसका उपयोग इनपुट में किया जाता है।<ref name="Ashby 1956" />{{rp|136-138}}
 
जबकि अवृद्धि का नियम है, केवल घटने की प्रवृत्ति है, क्योंकि यदि समुच्चय परिवर्तन से निकलता है या यदि स्टेट उपसमुच्चय में सिंक्रनाइज़ हो गए हैं, तो विविधता घटे बिना स्थिर रह सकती है, जिसके लिए यह स्तिथि है फिनिट मशीनों के [[औपचारिक भाषा]] विश्लेषण में, इनपुट अनुक्रम जो समान मशीनों को सिंक्रनाइज़ करता है (चाहे उनकी प्रारंभिक स्टेटस की विविधता कुछ भी हो) को [[तुल्यकालिक शब्द|सिंक्रोनाइज़िंग शब्द]] कहा जाता है।


==अपेक्षित विविधता का नियम==
==अपेक्षित विविधता का नियम==
[[File:LRV game.svg|thumb|D विक्षोभ उत्सर्जित करता है, जिस पर R प्रतिक्रियाएँ उत्सर्जित करता है। तालिका टी डी और आर के आउटपुट के बीच बातचीत का वर्णन करती है, और इस बातचीत का परिणाम में व्यक्त किया गया है।<ref name="Ashby 1956"/>{{rp|210}}]]एशबी ने दो-खिलाड़ियों के खेल सिद्धांत पर विचार करके [[विनियमन]] की समस्या का विश्लेषण करने के लिए विविधता का उपयोग किया, जहां एक खिलाड़ी, <math>D</math>, गड़बड़ी की आपूर्ति करता है जो एक अन्य खिलाड़ी, <math>R</math>, स्वीकार्य परिणाम सुनिश्चित करने के लिए इसे विनियमित करना चाहिए। <math>D</math> और <math>R</math> प्रत्येक के पास उपलब्ध चालों का एक सेट होता है, जो अधिक से अधिक पंक्तियों वाली तालिका से परिणाम चुनता है <math>D</math> इसमें चालें और उतने ही कॉलम हैं <math>R</math> चालें हैं. <math>R</math> की पूर्ण जानकारी की अनुमति है <math>D</math>की चाल, और प्रतिक्रिया में चालें चुननी चाहिए ताकि परिणाम स्वीकार्य हो।<ref name="Ashby 1956"/>{{rp|202}}
[[File:LRV game.svg|thumb|D विक्षोभ उत्सर्जित करता है, जिस पर R प्रतिक्रियाएँ उत्सर्जित करता है। सरणी T, D और R के आउटपुट के मध्य सम्बन्ध का वर्णन करती है, और इस सम्बन्ध का परिणाम E में व्यक्त किया गया है।<ref name="Ashby 1956"/>{{rp|210}}]]एशबी ने दो-खिलाड़ियों के खेल सिद्धांत पर विचार करके [[विनियमन]] की समस्या का विश्लेषण करने के लिए विविधता का उपयोग किया, जहां खिलाड़ी, <math>D</math>, डिस्टर्बेंस की आपूर्ति करता है जो अन्य खिलाड़ी, <math>R</math>, को स्वीकार्य परिणाम सुनिश्चित करने के लिए इसे विनियमित करना चाहिए। <math>D</math> और <math>R</math> प्रत्येक के पास उपलब्ध मूव्स का समुच्चय होता है, जो अधिक से अधिक पंक्तियों वाली सरणी से परिणाम का चयन करता है <math>D</math> मूव्स में उतने ही कॉलम हैं और <math>R</math> के पास मूव्स हैं, <math>R</math> को इसकी पूर्ण जानकारी दी गई है <math>D</math> की मूव्स, और प्रतिक्रिया में मूव्स का चयन किया चाहिए जिससे परिणाम स्वीकार्य हो।<ref name="Ashby 1956"/>{{rp|202}}


चूँकि कई खेलों में कोई कठिनाई नहीं होती <math>R</math>, तालिका को इसलिए चुना गया है ताकि किसी भी कॉलम में कोई भी परिणाम दोहराया न जाए, जो यह सुनिश्चित करता है कि संबंधित गेम में कोई भी बदलाव हो <math>D</math>के इस कदम का मतलब परिणाम में बदलाव है, जब तक <math>R</math> परिणाम को बदलने से रोकने के लिए एक कदम उठाया है। इस प्रतिबंध के साथ, यदि <math>R</math> कभी भी चाल नहीं बदलता, परिणाम पूरी तरह से इस पर निर्भर करता है <math>D</math>की पसंद, जबकि यदि एकाधिक चालें उपलब्ध हैं <math>R</math> यह परिणामों की विविधता को कम कर सकता है, यदि तालिका इसकी अनुमति देती है, तो अपनी विभिन्न चालों से विभाजित करके।<ref name="Ashby 1956"/>{{rp|204}}
चूँकि कई खेलों में कोई कठिनाई नहीं होती <math>R</math>, सरणी का इसलिए चयन किया गया है जिससे किसी भी कॉलम में कोई भी परिणाम दोहराया न जाए, जो यह सुनिश्चित करता है कि संबंधित गेम में कोई भी परिवर्तन हो <math>D</math> के इस चरण का तात्पर्य परिणाम में परिवर्तन है, जब तक परिणाम को परिवर्तन से बाधित करने के लिए <math>R</math> के पास मूव्स है। इस प्रतिबंध के साथ, यदि <math>R</math> कभी भी मूव नहीं परिवर्तित करता, परिणाम पूर्ण रूप से इस पर निर्भर करता है <math>D</math> का चयन, जबकि यदि एकाधिक मूव उपलब्ध हैं <math>R</math>परिणामों की विविधता को कम कर सकता है, यदि सरणी इसकी अनुमति देती है, तो अपनी स्वयं की मूव्स की विविधता से विभाजित करते है।<ref name="Ashby 1956"/>{{rp|204}}


  <math>
  <math>
Line 71: Line 67:
\end{array}
\end{array}
</math>
</math>
अपेक्षित विविधता का नियम एक निर्धारक रणनीति है <math>R</math> अधिक से अधिक परिणामों में विविधता को सीमित कर सकता है <math>\tfrac{D\text{'s variety}}{R\text{'s variety}}</math>, और केवल विविधता जोड़ रहा है <math>R</math>के कदम परिणामों की विविधता को कम कर सकते हैं: <em>केवल विविधता ही विविधता को नष्ट कर सकती है</em>।<ref name="Ashby 1956"/>{{rp|207}}<!-- emphasis in original--> उदाहरण के लिए, उपरोक्त तालिका में, <math>R</math> परिणामों में विविधता को कम करने के लिए एक रणनीति (बोल्ड में दिखाई गई) है <math>|\{a,b\}| = 2 = \tfrac{6}{3}</math>, जो है <math>\tfrac{D\text{'s variety}}{R\text{'s variety}}</math> इस मामले में। एशबी ने इसे विनियमन के सिद्धांत का एक मौलिक अवलोकन माना।
अपेक्षित विविधता का नियम निर्धारक योजना है <math>R</math> अधिक से अधिक परिणामों में विविधता को सीमित कर सकता है <math>\tfrac{D\text{'s variety}}{R\text{'s variety}}</math>, और इसमें केवल विविधता जोड़ रहे है <math>R</math> की मूव्स परिणामों की विविधता को कम कर सकते हैं: केवल विविधता ही विविधता को नष्ट कर सकती है।<ref name="Ashby 1956"/>{{rp|207}} उदाहरण के लिए, उपरोक्त सरणी में, परिणामों में विविधता को कम करने के लिए <math>R</math> योजना है। (बोल्ड में दिखाया गया है) <math>|\{a,b\}| = 2 = \tfrac{6}{3}</math>, जो है <math>\tfrac{D\text{'s variety}}{R\text{'s variety}}</math> इस स्तिथि में एशबी ने इसे विनियमन के सिद्धांत को मौलिक अवलोकन माना।
 
यह संभव नहीं है <math>R</math> परिणामों को और कम करने के लिए और अभी भी सभी संभावित चरणों का उत्तर देने के लिए <math>D</math>, किंतु यह संभव है कि उसी आकार की कोई अन्य सरणी अनुमति नहीं देगी <math>R</math> उत्तम करने के लिए अपेक्षित विविधता आवश्यक है, किंतु परिणामों को नियंत्रित करने के लिए पर्याप्त नहीं है। यदि <math>R</math> और <math>D</math> मशीनें हैं, वे संभवतः अपने पास उपस्थित स्टेटों से अधिक मूव्स नहीं चयन कर सकते हैं। इस प्रकार, आदर्श नियामक के पास कम से कम उतनी भिन्न-भिन्न स्थितियाँ होनी चाहिए जितनी घटना को विनियमित करने का आशय है (सरणी चौकोर, या चौड़ी होनी चाहिए)।
 
भागों में नियम को <math>V_O \ge V_D - V_R</math> कहा गया है, शैनन के सूचना सिद्धांत में, <math>D</math>, <math>R</math>, और <math>E</math> सूचना स्रोत हैं। नियम यह है कि यदि <math>R</math>  कभी भी मूव्स नहीं परिवर्तित करता है, परिणामों में अनिश्चितता कम नहीं होती है <math>D</math> की मूव को इस प्रकार व्यक्त किया गया है <math>H(E|R) \ge H(D|R)</math>, और तबसे <math>R</math> की योजना डेटर्मीनिस्टिक कार्य है <math>D</math> सेट <math>H(R|D) = 0</math> खेल के नियमों को इस प्रकार व्यक्त करके, यह <math>H(E) \ge H(D) - H(R)</math> दिखाया जा सकता है। <ref name="Ashby 1956"/>{{rp|207–208}} एशबी ने अपेक्षित विविधता के नियम को शैनन के गणितीय संचार सिद्धांत (1948) में दसवें प्रमेय से संबंधित बताया:<ref>W. R. Ashby (1960), [https://archive.org/details/designforbrainor00ashb/ "Design for a Brain"], p. 229.</ref>


के लिए यह संभव नहीं है <math>R</math> परिणामों को और कम करने के लिए और अभी भी सभी संभावित कदमों का जवाब देने के लिए <math>D</math>, लेकिन यह संभव है कि उसी आकार की कोई अन्य तालिका अनुमति न दे <math>R</math> इतना अच्छा करने के लिए. अपेक्षित विविधता आवश्यक है, लेकिन परिणामों को नियंत्रित करने के लिए पर्याप्त नहीं है। अगर <math>R</math> और <math>D</math> मशीनें हैं, वे संभवतः अपने पास मौजूद राज्यों से अधिक चालें नहीं चुन सकते हैं। इस प्रकार, एक आदर्श नियामक के पास कम से कम उतनी अलग-अलग स्थितियाँ होनी चाहिए जितनी घटना को विनियमित करने का उसका इरादा है (तालिका चौकोर, या चौड़ी होनी चाहिए)।
यह नियम (जिसमें नॉइज़ के दमन से संबंधित शैनन की प्रमेय के 10 विशेष केस है) कहता है कि यदि नियामक द्वारा निश्चित मात्रा में डिस्टर्बेंस को कुछ आवश्यक चर तक पहुंचने से बाधित किया जाता है, तो उस नियामक को चयन करने में कम से कम उस मात्रा को प्रारम्भ करने में सक्षम होना चाहिए।


टुकड़ों में कहा गया है, कानून है <math>V_O \ge V_D - V_R</math>. शैनन के सूचना सिद्धांत में, <math>D</math>, <math>R</math>, और <math>E</math> सूचना स्रोत हैं. शर्त यह है कि अगर <math>R</math> कभी चालें नहीं बदलतीं, परिणामों में अनिश्चितता, अनिश्चितता से कम नहीं होती <math>D</math>की चाल को इस प्रकार व्यक्त किया गया है <math>H(E|R) \ge H(D|R)</math>, और तबसे <math>R</math>की रणनीति एक नियतात्मक कार्य है <math>D</math> तय करना <math>H(R|D) = 0</math>. खेल के नियमों को इस प्रकार व्यक्त करके, यह दिखाया जा सकता है <math>H(E) \ge H(D) - H(R)</math>.<ref name="Ashby 1956"/>{{rp|207–208}} एशबी ने अपेक्षित विविधता के नियम को शैनन के गणितीय संचार सिद्धांत (1948) में दसवें प्रमेय से संबंधित बताया:<ref>W. R. Ashby (1960), [https://archive.org/details/designforbrainor00ashb/ "Design for a Brain"], p. 229.</ref>
एशबी ने यह भी माना कि अपेक्षित विविधता का नियम विनियमन की माप की अनुमति देता है, अर्थात् उत्तम रूप से कार्य करने वाले विनियमन की आवश्यकता यह है कि नियामक या नियामकों को उन सभी संभावित स्थितियों के लिए डिज़ाइन किया गया है जिनमें चर या परिवर्तनीय हैं विनियमित किया जा सकता है, जिससे यह सुनिश्चित किया जा सके कि परिणाम सदैव स्वीकार्य सीमा के भीतर हो।<ref name="Ashby 1956" />{{rp|209}} एशबी ने इस नियम को [[समस्थिति]] जैसी जीव विज्ञान की समस्याओं और संभावित अनुप्रयोगों के भंडार" के लिए प्रासंगिक माना। पश्चात में, 1970 में, कॉनेंट ने एशबी के साथ कार्य करते हुए अच्छे नियामक प्रमेय का निर्माण किया<ref>Conant 1970</ref> जिसके लिए [[स्वायत्त]] प्रणालियों को स्थिरता बनाए रखने और प्राप्त करने के लिए अपने पर्यावरण का आंतरिक मॉडल प्राप्त करने की आवश्यकता थी (उदाहरण के लिए [[नाइक्विस्ट स्थिरता मानदंड|नाइक्विस्ट स्थिरता क्रिटेरियन]]) या [[गतिशील संतुलन]] है।
<ब्लॉककोट>
यह कानून (जिसमें शोर के दमन से संबंधित शैनन का प्रमेय 10 एक विशेष मामला है) कहता है कि यदि नियामक द्वारा एक निश्चित मात्रा में गड़बड़ी को कुछ आवश्यक चर तक पहुंचने से रोका जाता है, तो उस नियामक को कम से कम उस मात्रा को लागू करने में सक्षम होना चाहिए चयन का.
</ब्लॉककोट>


एशबी ने यह भी माना कि अपेक्षित विविधता का कानून विनियमन की माप की अनुमति देता है, अर्थात् एक अच्छी तरह से काम करने वाले विनियमन की आवश्यकता यह है कि नियामक या नियामकों को उन सभी संभावित स्थितियों के लिए डिज़ाइन किया गया है जिनमें चर या परिवर्तनीय हैं विनियमित किया जा सकता है, ताकि यह सुनिश्चित किया जा सके कि परिणाम हमेशा स्वीकार्य सीमा के भीतर हो।<ref name="Ashby 1956"/>{{rp|209}} एशबी ने इस कानून को [[समस्थिति]] जैसी जीव विज्ञान की समस्याओं और संभावित अनुप्रयोगों के लिए प्रासंगिक माना। बाद में, 1970 में, कॉनेंट ने एशबी के साथ काम करते हुए अच्छे नियामक प्रमेय का निर्माण किया<ref>Conant 1970</ref> जिसके लिए [[स्वायत्त]] प्रणालियों को स्थिरता बनाए रखने और प्राप्त करने के लिए अपने पर्यावरण का एक आंतरिक मॉडल प्राप्त करने की आवश्यकता होती है (उदाहरण के लिए [[नाइक्विस्ट स्थिरता मानदंड]]) या [[गतिशील संतुलन]]।
बोइसोट और मैककेल्वे ने इस नियम को अपेक्षित कॉम्प्लेक्सिटी के नियम में अद्यतन किया, जो मानता है कि, प्रभावी रूप से अनुकूली होने के लिए, किसी सिस्टम की आंतरिक कॉम्प्लेक्सिटी को उसके सामने आने वाली बाहरी कॉम्प्लेक्सिटी से युग्मित होना चाहिए। इस नियम का व्यावहारिक अनुप्रयोग यह विचार है कि सूचना [[प्रणाली]] (आईएस) संरेखण सतत सह-विकासवादी प्रक्रिया है जो व्यवसाय के सभी घटकों को सचेत रूप से और सुसंगत रूप से परस्पर जोड़ने की ऊपर से नीचे 'तर्कसंगत डिजाइन' और नीचे से ऊपर की 'आकस्मिक प्रक्रियाओं' को एकत्र करती है। समय के साथ किसी संगठन के प्रदर्शन में योगदान देने के लिए आईएस संबंध है।<ref>{{Cite journal |last1=Benbya |first1=H. |last2=McKelvey |first2=B. |date=2006 |title=Using coevolutionary and complexity theories to improve IS alignment: a multi-level approach |journal=Journal of Information Technology |language=en |volume=21 |issue=4 |pages=284–298 |doi=10.1057/palgrave.jit.2000080 |s2cid=15214275}}</ref><ref>{{Cite journal |last1=Boisot |first1=M. |last2=McKelvey |first2=B. |date=2011 |title=Complexity and organization-environment relations: revisiting Ashby's law of requisite variety |journal=P. Allen, the Sage Handbook of Complexity and Management |language=en |pages=279–298}}</ref>


बोइसोट और मैककेल्वे ने इस कानून को अपेक्षित जटिलता के कानून में अद्यतन किया, जो मानता है कि, प्रभावी ढंग से अनुकूली होने के लिए, किसी सिस्टम की आंतरिक जटिलता को उसके सामने आने वाली बाहरी जटिलता से मेल खाना चाहिए। इस कानून का एक और व्यावहारिक अनुप्रयोग यह विचार है कि सूचना [[प्रणाली]] (आईएस) संरेखण एक निरंतर सह-विकासवादी प्रक्रिया है जो व्यवसाय के सभी घटकों को सचेत रूप से और सुसंगत रूप से परस्पर जोड़ने की ऊपर से नीचे 'तर्कसंगत डिजाइन' और नीचे से ऊपर की 'आकस्मिक प्रक्रियाओं' को समेटती है। समय के साथ किसी संगठन के प्रदर्शन में योगदान देने के लिए आईएस संबंध।
अपेक्षित कॉम्प्लेक्सिटी के नियम के परियोजना प्रबंधन में अनुप्रयोग स्टीफन मोरकोव द्वारा प्रस्तावित धनात्मक, उचित और ऋणात्मक कॉम्प्लेक्सिटी का मॉडल है।
<ref>{{Cite journal |last1=Benbya |first1=H. |last2=McKelvey |first2=B. |date=2006 |title=Using coevolutionary and complexity theories to improve IS alignment: a multi-level approach |journal=Journal of Information Technology |language=en |volume=21 |issue=4 |pages=284–298 |doi=10.1057/palgrave.jit.2000080 |s2cid=15214275}}</ref><ref>{{Cite journal |last1=Boisot |first1=M. |last2=McKelvey |first2=B. |date=2011 |title=Complexity and organization-environment relations: revisiting Ashby's law of requisite variety |journal=P. Allen, the Sage Handbook of Complexity and Management |language=en |pages=279–298}}</ref>
अपेक्षित जटिलता के कानून के परियोजना प्रबंधन में अनुप्रयोग स्टीफन मोरकोव द्वारा प्रस्तावित परियोजना जटिलता | सकारात्मक, उचित और नकारात्मक जटिलता का मॉडल है।


== अनुप्रयोग ==
== अनुप्रयोग ==


एशबी के लिए संगठन और प्रबंधन के अनुप्रयोग तुरंत स्पष्ट हो गए थे। एक निहितार्थ यह है कि व्यक्तियों के पास जानकारी संसाधित करने की एक सीमित क्षमता होती है, और इस सीमा से परे व्यक्तियों के बीच संगठन मायने रखता है।<ref name="Ashby 1958"/><ब्लॉककोट>
एशबी के लिए संगठन और प्रबंधन के अनुप्रयोग शीघ्र स्पष्ट हो गए थे। निहितार्थ यह है कि व्यक्तियों के पास जानकारी संसाधित करने की सीमित क्षमता होती है, और इस सीमा से भिन्न जो आशय रखता है। वह व्यक्तियों के मध्य का संगठन है।<ref name="Ashby 1958"/>
इस प्रकार n पुरुषों की एक टीम पर जो सीमा लागू होती है, वह व्यक्तिगत व्यक्ति पर लागू सीमा से कहीं अधिक, शायद n गुना अधिक हो सकती है। हालाँकि, उच्च सीमा का उपयोग करने के लिए, टीम को कुशलतापूर्वक संगठित किया जाना चाहिए; और हाल तक संगठन के बारे में हमारी समझ दयनीय रूप से छोटी रही है।
 
</ब्लॉककोट>
इस प्रकार n पुरुषों की टीम पर जो सीमा प्रारम्भ होती है, वह व्यक्तिगत व्यक्ति पर प्रारम्भ सीमा से कहीं अधिक, संभवतः n गुना अधिक हो सकती है। चूँकि, उच्च सीमा का उपयोग करने के लिए, टीम को कुशलतापूर्वक संगठित किया जाना चाहिए; और वर्तमान में संगठन के बारे में हमारी समझ दयनीय रूप से छोटी रही है।
[[स्टैफ़ोर्ड बीयर]] ने [[प्रबंधन साइबरनेटिक्स]] पर अपने लेखन में इस विश्लेषण को उठाया। बीयर विविधता को किसी प्रणाली या किसी प्रणाली के तत्व की संभावित अवस्थाओं की कुल संख्या के रूप में परिभाषित करता है।<ref name="Beer 1981">Beer (1981)</ref> बीयर अपेक्षित विविधता के नियम को दोहराती है क्योंकि विविधता विविधता को अवशोषित करती है।<ref>Beer (1979) p286</ref> अधिक सरलता से कहा जाए तो, विविधता का लघुगणकीय माप [[अनिश्चितता]] को हल करने के लिए आवश्यक विकल्पों की न्यूनतम संख्या ([[बाइनरी चॉप]] द्वारा) का प्रतिनिधित्व करता है। बीयर ने इसका उपयोग प्रक्रिया व्यवहार्यता बनाए रखने के लिए आवश्यक प्रबंधन संसाधनों को आवंटित करने के लिए किया।


साइबरनेटिशियन [[फ्रैंक हनीविल जॉर्ज]] ने फुटबॉल या रग्बी जैसे खेलों में गोल करने या प्रयास करने के लिए प्रतिस्पर्धा करने वाली टीमों की विविधता पर चर्चा की। ऐसा कहा जा सकता है कि एक विजेता शतरंज खिलाड़ी के पास अपने हारने वाले प्रतिद्वंद्वी की तुलना में अधिक विविधता होती है। यहाँ एक सरल [[क्रम (समूह सिद्धांत)]] निहित है। प्रबंधन में स्टैफ़ोर्ड बीयर के काम में विविधता का [[क्षीणन]] और प्रवर्धक प्रमुख विषय थे <ref name="Beer 1981"/>(नियंत्रण का पेशा, जैसा कि उन्होंने इसे कहा था)। टेलीफोन का जवाब देने, भीड़ को नियंत्रित करने या मरीजों की देखभाल करने के लिए आवश्यक कर्मचारियों की संख्या इसके स्पष्ट उदाहरण हैं।
[[स्टैफ़ोर्ड बीयर]] ने [[प्रबंधन साइबरनेटिक्स]] पर अपने लेखन में इस विश्लेषण को उठाया। बीयर विविधता को किसी प्रणाली की संभावित स्टेटओं की कुल संख्या, या किसी प्रणाली के तत्व की कुल संख्या" के रूप में परिभाषित करती है।<ref name="Beer 1981">Beer (1981)</ref> बीयर अपेक्षित विविधता के नियम को दोहराती है कि "विविधता स्वयं विविधता को अवशोषित करती है।"<ref>Beer (1979) p286</ref> बीयर ने इसका उपयोग प्रक्रिया व्यवहार्यता बनाए रखने के लिए आवश्यक प्रबंधन संसाधनों को आवंटित करने के लिए किया।


विविधता विश्लेषण के लिए प्राकृतिक और एनालॉग संकेतों के अनुप्रयोग के लिए एशबी की भेदभाव की शक्तियों के अनुमान की आवश्यकता होती है (ऊपर उद्धरण देखें)। गतिशील प्रणालियों के [[तितली प्रभाव]] को देखते हुए मात्रात्मक उपायों का उत्पादन करने से पहले देखभाल की जानी चाहिए। छोटी मात्रा, जिसे अनदेखा किया जा सकता है, बड़े प्रभाव डाल सकती है। अपनी डिज़ाइनिंग फ़्रीडम स्टैफ़ोर्ड बीयर में एक अस्पताल में बुखार का संकेत देने वाले तापमान वाले मरीज़ की चर्चा की गई है।<ref>Beer (1974)</ref> मरीज को आइसोलेट करने की कार्रवाई तुरंत की जानी चाहिए। यहां मरीजों के औसत तापमान को रिकॉर्ड करने वाली कोई भी किस्म इस छोटे संकेत का पता नहीं लगा पाएगी जिसका बड़ा प्रभाव हो सकता है। इस प्रकार विविधता को बढ़ाने वाले व्यक्तियों पर निगरानी की आवश्यकता होती है ([[व्यवहार्य सिस्टम मॉडल]] या वीएसएम में अल्गेडोनिक अलर्ट देखें)। प्रबंधन साइबरनेटिक्स और वीएसएम में बीयर का काम काफी हद तक विविध इंजीनियरिंग पर आधारित है।
साइबरनेटिशियन [[फ्रैंक हनीविल जॉर्ज]] ने फुटबॉल या रग्बी जैसे खेलों में गोल करने या प्रयास करने के लिए प्रतिस्पर्धा करने वाली टीमों की विविधता पर वर्णन किया है। ऐसा कहा जा सकता है कि  विजेता शतरंज खिलाड़ी के पास अपने हारने वाले प्रतिद्वंद्वी की तुलना में अधिक विविधता होती है। यहाँ सरल [[क्रम (समूह सिद्धांत)]] निहित है। प्रबंधन में स्टैफ़ोर्ड बीयर के कार्य में विविधता का [[क्षीणन]] और प्रवर्धक प्रमुख विषय थे <ref name="Beer 1981" />(नियंत्रण का व्यवसाय, जैसा कि उन्होंने इसे कहा था)। टेलीफोन का उत्तर देना, भीड़ को नियंत्रित करने या मरीजों का निरीक्षण करने के लिए आवश्यक कर्मचारियों की संख्या इसके स्पष्ट उदाहरण हैं।


राज्य गणना के बारे में एशबी के दृष्टिकोण से जुड़े अन्य अनुप्रयोगों में डिजिटल [[बैंडविड्थ (कंप्यूटिंग)]] आवश्यकताओं का विश्लेषण, [[निरर्थक कोड]] और [[ सॉफ़्टवेयर ब्लोट ]], डेटा प्रकारों और [[ बी-वृक्ष ]] का बिट प्रतिनिधित्व, [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]], परिमित राज्य मशीनों पर सीमाएं और शामिल हैं। [[आधार - सामग्री संकोचन]]। यह भी देखें, उदाहरण के लिए, उत्तेजित अवस्था, अवस्था (कंप्यूटर विज्ञान), अवस्था पैटर्न, अवस्था (नियंत्रण) और [[सेलुलर ऑटोमेटन]]। चैतिन के [[एल्गोरिथम सूचना सिद्धांत]] में अपेक्षित विविधता देखी जा सकती है जहां एक लंबा, उच्च विविधता कार्यक्रम या परिमित राज्य मशीन अधिक विविधता या सूचना सामग्री के साथ असम्पीडित आउटपुट उत्पन्न करती है।
विविधता विश्लेषण के लिए प्राकृतिक और एनालॉग संकेतों के अनुप्रयोग के लिए एशबी की भेदभाव की शक्तियों के अनुमान की आवश्यकता होती है (ऊपर उद्धरण देखें)। गतिशील प्रणालियों के [[तितली प्रभाव]] को देखते हुए मात्रात्मक उपायों का उत्पादन करने से पहले निरीक्षण किया जाना चाहिए। छोटी मात्रा, जिसे अप्रत्यक्ष किया जा सकता है, बड़े प्रभाव उत्पन्न कर सकती है। अपनी डिज़ाइनिंग फ़्रीडम स्टैफ़ोर्ड बीयर में अस्पताल में बुखार का संकेत देने वाले तापमान वाले मरीज़ का वर्णन किया गया है।<ref>Beer (1974)</ref> मरीज को आइसोलेट करने की कार्रवाई शीघ्र की जानी चाहिए। यहां मरीजों के औसत तापमान को रिकॉर्ड करने वाली कोई भी प्रकार इस छोटे संकेत को ज्ञात नहीं कर पाएगी जिसका बड़ा प्रभाव हो सकता है। इस प्रकार विविधता को बढ़ाने वाले व्यक्तियों पर निरीक्षण की आवश्यकता होती है ([[व्यवहार्य सिस्टम मॉडल|विअबल सिस्टम मॉडल]] या वीएसएम में अल्गेडोनिक अलर्ट देखें)प्रबंधन साइबरनेटिक्स और वीएसएम में बीयर का कार्य अधिक सीमा तक विविध इंजीनियरिंग पर आधारित है।


सामान्य तौर पर आवश्यक इनपुट और आउटपुट का विवरण स्थापित किया जाता है और फिर आवश्यक न्यूनतम विविधता के साथ एन्कोड किया जाता है। इनपुट बिट्स को आउटपुट बिट्स में मैप करने से वांछित [[नियंत्रण प्रणाली]] व्यवहार उत्पन्न करने के लिए आवश्यक न्यूनतम हार्डवेयर या सॉफ़्टवेयर घटकों का अनुमान लगाया जा सकता है; उदाहरण के लिए, [[कंप्यूटर सॉफ्टवेयर]] या [[कंप्यूटर हार्डवेयर]] के एक टुकड़े में।
स्टेट गणना के बारे में एशबी के दृष्टिकोण से जुड़े अन्य अनुप्रयोगों में डिजिटल [[बैंडविड्थ (कंप्यूटिंग)]] आवश्यकताओं, रिडण्डेन्सी और[[ सॉफ़्टवेयर ब्लोट | सॉफ़्टवेयर ब्लोट]] का विश्लेषण, डेटा टाइप्स और [[निरर्थक कोड|इंडेक्स बिट]] रिप्रेजेंटेशन, [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण|एनॉलॉग टू डिजिटल कन्वर्शन,]] फिनिट स्टेट मशीनों पर बाउंसड और डेटा कम्प्रेशन सम्मिलित हैं। यह भी देखें, उदाहरण के लिए, एक्ससिटेड स्टेट, स्टेट (कंप्यूटर विज्ञान), स्टेट पैटर्न, स्टेट (कंट्रोल्स) और [[सेलुलर ऑटोमेटन]] है। चैतिन के [[एल्गोरिथम सूचना सिद्धांत]] में अपेक्षित विविधता देखी जा सकती है जहां लंबा, उच्च विविधता कार्यक्रम या फिनिट स्टेट मशीन अधिक विविधता या सूचना सामग्री के साथ इंसोम्प्रेसिब्ल आउटपुट उत्पन्न करती है।


विविधता उन नौ आवश्यकताओं में से एक है जो एक [[नैतिक नियामक]] के लिए आवश्यक हैं।<ref>M. Ashby, [http://ashby.de/Ethical%20Regulators.pdf "Ethical Regulators and Super-Ethical Systems"], 2017</ref>
सामान्य रूप से आवश्यक इनपुट और आउटपुट का विवरण स्थापित किया जाता है और फिर आवश्यक न्यूनतम विविधता के साथ एन्कोड किया जाता है। इनपुट बिट्स को आउटपुट बिट्स में मैप करने से डिजायर [[नियंत्रण प्रणाली|कण्ट्रोल]] बेहेवियर उत्पन्न करने के लिए आवश्यक न्यूनतम हार्डवेयर या सॉफ़्टवेयर घटकों का अनुमान लगाया जा सकता है; उदाहरण के लिए, [[कंप्यूटर सॉफ्टवेयर]] या [[कंप्यूटर हार्डवेयर]] के भाग है।


विविधता उन नौ आवश्यकताओं में से है जो [[नैतिक नियामक]] के लिए आवश्यक हैं।<ref>M. Ashby, [http://ashby.de/Ethical%20Regulators.pdf "Ethical Regulators and Super-Ethical Systems"], 2017</ref>


== यह भी देखें ==
== यह भी देखें ==
* [[प्रमुखता]]
* [[प्रमुखता]]
* जटिलता
* कॉम्प्लेक्सिटी
* [[स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)]]
* [[स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)]]
* [[सत्ता स्थापित]]
* [[सत्ता स्थापित|पॉवर सेट]]  
* [[कार्यान्वयन]]
* [[कार्यान्वयन]]
* वाटरबेड सिद्धांत
* वाटरबेड सिद्धांत
* अच्छा नियामक
* गुड रेगुलेटर
*नैतिक नियामक
*नैतिक नियामक
* राज्य (कंप्यूटर विज्ञान)|राज्य (कंप्यूटर विज्ञान)
* स्टेट (कंप्यूटर विज्ञान)
* मायहिल-नेरोड प्रमेय
* मायहिल-नेरोड प्रमेय
* [[अंतरिक्ष जटिलता]]
* [[अंतरिक्ष जटिलता|अंतरिक्ष कॉम्प्लेक्सिटी]]
*परियोजना_प्रबंधन#परियोजना जटिलता
*परियोजना कॉम्प्लेक्सिटी


== संदर्भ ==
== संदर्भ ==
<references/>
<references/>


== अग्रिम पठन ==
== अग्रिम पठन ==
Line 133: Line 127:
* Conant, R. 1981, Mechanisms of Intelligence: Ross Ashby's papers and writings, Intersystems Publications, {{ISBN|1-127-19770-3}}.
* Conant, R. 1981, Mechanisms of Intelligence: Ross Ashby's papers and writings, Intersystems Publications, {{ISBN|1-127-19770-3}}.


 
== बाहरी संबंध ==
==बाहरी संबंध==
{{Wiktionary|variety}}
{{Wiktionary|variety}}


Line 150: Line 143:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 16/08/2023]]
[[Category:Created On 16/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:23, 13 October 2023

साइबरनेटिक्स में, विविधता शब्द समुच्चय (गणित) के भिन्न-भिन्न तत्वों की कुल संख्या को दर्शाता है, प्रायः फिनिट-स्टेट मशीन या परिवर्तन (फ़ंक्शन) के स्टेट्स, इनपुट या आउटपुट का समुच्चय, या समान मात्रा के बाइनरी लघुगणक है।[1] विविधता का उपयोग साइबरनेटिक्स में इनफार्मेशन थ्योरी के रूप में किया जाता है जो सरलता से डेटर्मीनिस्टिक फिनिट ऑटोमेटा से संबंधित होता है, संगठन, विनियमन और स्थिरता के बारे में सोचने के लिए वैचारिक उपकरण के रूप में कम औपचारिक होता है। यह ऑटोमेटा सिद्धांत, काम्प्लेक्स प्रणालियों में कॉम्प्लेक्सिटी का प्रारंभिक सिद्धांत है।[1]: 6  [2]

अवलोकन

विविधता शब्द को डब्ल्यू. रॉस एशबी ने मशीनों के अपने विश्लेषण को उनके संभावित व्यवहारों के समुच्चय तक विस्तारित करने के लिए प्रस्तुत की थी।[3]: 121  एशबी कहते हैं:[1]: 126 

भिन्न-भिन्न तत्वों के समुच्चय के संबंध विविधता शब्द का उपयोग या तो (i) भिन्न-भिन्न तत्वों की संख्या, या (ii) संख्या के आधार 2 के लघुगणक, संदर्भ में उपयोग किए गए अर्थ को प्रदर्शित करने के लिए किया जाएगा।

दूसरी स्तिथि में, विविधता को बिट्स में मापा जाता है। उदाहरण के लिए, स्टेट्स मशीन में विभिन्न प्रकार की चार स्टेटएं या दो बिट होते हैं। किसी अनुक्रम या मल्टीसेट की विविधता उसमें विशिष्ट प्रतीकों की संख्या है। उदाहरण के लिए, अनुक्रम की विविधता चार है। अनिश्चितता के माप के रूप में, विविधता का सरल संबंध सूचना से है: .[4]: 26 

चूँकि भिन्न-भिन्न तत्वों की संख्या पर्यवेक्षक और समुच्चय दोनों पर निर्भर करती है, यदि विविधता को उत्तम रूप से परिभाषित करना है तो पर्यवेक्षक और उसकी भेदभाव की शक्तियों को निर्दिष्ट करना होता है।[1]: 125  गॉर्डन पास्क ने विविधता के मध्य अंतर किया। चयन किये गए संदर्भ फ्रेम की विविधता जिसे पर्यवेक्षक संदर्भ फ़्रेम के भीतर बनाता है। संदर्भ फ़्रेम में स्टेट स्थान और पर्यवेक्षक के लिए उपलब्ध माप का समुच्चय होता है, जिसमें कुल विविधता होती है, जहाँ स्टेट क्षेत्र में स्टेटों की संख्या है। पर्यवेक्षक जो प्रणाली बनाता है वह संपूर्ण विविधता से प्रारंभ होती है, जो कम हो जाता है क्योंकि पर्यवेक्षक प्रणाली की भविष्यवाणी करना स्टेट के बारे में अनिश्चितता को लुप्त कर देती है। यदि पर्यवेक्षक दिए गए संदर्भ फ्रेम में सिस्टम को डेटर्मीनिस्टिक मशीन के रूप में देख सकता है, तो अवलोकन विविधता को शून्य तक कम कर सकता है क्योंकि मशीन पूर्ण रूप से पूर्वानुमानित हो जाती है।[4]: 27 

प्रकृति के नियम कुछ व्यवहारों को अस्वीकार करके घटनाओं की विविधता को बाधित करते हैं।[1]: 130  एशबी ने दो अवलोकन किए, जिन पर उन्होंने प्रकृति के नियम, अनुभव के नियम और अपेक्षित विविधता के नियम पर विचार किया। अनुभव का नियम यह मानता है कि इनपुट के अनुसार मशीनें अपनी मूल स्थिति के बारे में जानकारी लुप्त कर देती हैं, और अपेक्षित विविधता का नियम नियामक के लिए आवश्यक, चूँकि पर्याप्त नहीं, नियम बताता है कि वह अपने वर्तमान इनपुट पर प्रतिक्रिया देकर प्रत्याशित नियंत्रण स्थापित कर सके (अतिरिक्त) त्रुटि-नियंत्रित विनियमन के अनुसार पिछला आउटपुट)।

अनुभव का नियम

अनुभव का नियम इस अवलोकन को संदर्भित करता है कि पृथक्करण में डेटर्मीनिस्टिक मशीन द्वारा प्रदर्शित स्टेटों की विविधता में वृद्धि नहीं हो सकती है, और समान इनपुट वाले समान मशीनों का समुच्चय स्टेटों की बढ़ती विविधता को प्रदर्शित नहीं कर सकता है, और इसके अतिरिक्त सिंक्रनाइज़ होने की प्रवृत्ति रखता है।[5]

कोई नाम आवश्यक है जिससे इस घटना का उल्लेख किया जा सके। मैं इसे अनुभव का नियम कहूंगा। इसे इस कथन द्वारा अधिक स्पष्ट रूप से वर्णित किया जा सकता है कि किसी पैरामीटर पर परिवर्तन द्वारा उत्पन्न की गई जानकारी सिस्टम की प्रारंभिक स्थिति के बारे में जानकारी को नष्ट और प्रतिस्थापित कर देती है।[1]: 139 

यह विविधता के क्षय का परिणाम है: डेटर्मीनिस्टिक परिवर्तन किसी समुच्चय की विविधता को नहीं बढ़ा सकता है। परिणामस्वरूप, मशीन की स्थिति के बारे में पर्यवेक्षक की अनिश्चितता या तो स्थिर रहती है या समय के साथ कम हो जाती है। एशबी दिखाता है कि यह बात इनपुट वाली मशीनों पर भी प्रारम्भ होती है। किसी भी निरंतर इनपुट के अनुसार मशीनों की स्थितियाँ किसी भी आकर्षित करने वाले की ओर बढ़ती हैं जो संबंधित परिवर्तन में उपस्थित होती हैं और कुछ इन बिंदुओं पर सिंक्रनाइज़ हो सकती हैं। यदि इनपुट किसी अन्य इनपुट में परिवर्तित हो जाता है तो और मशीनों का व्यवहार भिन्न परिवर्तन करता है, इनमें अधिक आकर्षितकर्ता आकर्षण के बेसिन हो सकते हैं वे स्टेट जो आये और संभवत: उन आकर्षितकर्ताओं के अंतर्गत समन्वयित हुए फिर आगे सिंक्रनाइज़ किया जाता है। दूसरे शब्दों में, एशबी कहते हैं, ट्रांसड्यूसर के इनपुट में परिवर्तन सिस्टम की स्थिति (किसी निश्चित समय पर) को ट्रांसड्यूसर की व्यक्तिगत प्रारंभिक स्थिति पर कम निर्भर करता है और पैरामीटर-मानों के विशेष अनुक्रम पर अधिक निर्भर करता है जिसका उपयोग इनपुट में किया जाता है।[1]: 136–138 

जबकि अवृद्धि का नियम है, केवल घटने की प्रवृत्ति है, क्योंकि यदि समुच्चय परिवर्तन से निकलता है या यदि स्टेट उपसमुच्चय में सिंक्रनाइज़ हो गए हैं, तो विविधता घटे बिना स्थिर रह सकती है, जिसके लिए यह स्तिथि है फिनिट मशीनों के औपचारिक भाषा विश्लेषण में, इनपुट अनुक्रम जो समान मशीनों को सिंक्रनाइज़ करता है (चाहे उनकी प्रारंभिक स्टेटस की विविधता कुछ भी हो) को सिंक्रोनाइज़िंग शब्द कहा जाता है।

अपेक्षित विविधता का नियम

D विक्षोभ उत्सर्जित करता है, जिस पर R प्रतिक्रियाएँ उत्सर्जित करता है। सरणी T, D और R के आउटपुट के मध्य सम्बन्ध का वर्णन करती है, और इस सम्बन्ध का परिणाम E में व्यक्त किया गया है।[1]: 210 

एशबी ने दो-खिलाड़ियों के खेल सिद्धांत पर विचार करके विनियमन की समस्या का विश्लेषण करने के लिए विविधता का उपयोग किया, जहां खिलाड़ी, , डिस्टर्बेंस की आपूर्ति करता है जो अन्य खिलाड़ी, , को स्वीकार्य परिणाम सुनिश्चित करने के लिए इसे विनियमित करना चाहिए। और प्रत्येक के पास उपलब्ध मूव्स का समुच्चय होता है, जो अधिक से अधिक पंक्तियों वाली सरणी से परिणाम का चयन करता है मूव्स में उतने ही कॉलम हैं और के पास मूव्स हैं, को इसकी पूर्ण जानकारी दी गई है की मूव्स, और प्रतिक्रिया में मूव्स का चयन किया चाहिए जिससे परिणाम स्वीकार्य हो।[1]: 202 

चूँकि कई खेलों में कोई कठिनाई नहीं होती , सरणी का इसलिए चयन किया गया है जिससे किसी भी कॉलम में कोई भी परिणाम दोहराया न जाए, जो यह सुनिश्चित करता है कि संबंधित गेम में कोई भी परिवर्तन हो के इस चरण का तात्पर्य परिणाम में परिवर्तन है, जब तक परिणाम को परिवर्तन से बाधित करने के लिए के पास मूव्स है। इस प्रतिबंध के साथ, यदि कभी भी मूव नहीं परिवर्तित करता, परिणाम पूर्ण रूप से इस पर निर्भर करता है का चयन, जबकि यदि एकाधिक मूव उपलब्ध हैं परिणामों की विविधता को कम कर सकता है, यदि सरणी इसकी अनुमति देती है, तो अपनी स्वयं की मूव्स की विविधता से विभाजित करते है।[1]: 204 


अपेक्षित विविधता का नियम निर्धारक योजना है अधिक से अधिक परिणामों में विविधता को सीमित कर सकता है , और इसमें केवल विविधता जोड़ रहे है की मूव्स परिणामों की विविधता को कम कर सकते हैं: केवल विविधता ही विविधता को नष्ट कर सकती है।[1]: 207  उदाहरण के लिए, उपरोक्त सरणी में, परिणामों में विविधता को कम करने के लिए योजना है। (बोल्ड में दिखाया गया है) , जो है इस स्तिथि में एशबी ने इसे विनियमन के सिद्धांत को मौलिक अवलोकन माना।

यह संभव नहीं है परिणामों को और कम करने के लिए और अभी भी सभी संभावित चरणों का उत्तर देने के लिए , किंतु यह संभव है कि उसी आकार की कोई अन्य सरणी अनुमति नहीं देगी उत्तम करने के लिए अपेक्षित विविधता आवश्यक है, किंतु परिणामों को नियंत्रित करने के लिए पर्याप्त नहीं है। यदि और मशीनें हैं, वे संभवतः अपने पास उपस्थित स्टेटों से अधिक मूव्स नहीं चयन कर सकते हैं। इस प्रकार, आदर्श नियामक के पास कम से कम उतनी भिन्न-भिन्न स्थितियाँ होनी चाहिए जितनी घटना को विनियमित करने का आशय है (सरणी चौकोर, या चौड़ी होनी चाहिए)।

भागों में नियम को कहा गया है, शैनन के सूचना सिद्धांत में, , , और सूचना स्रोत हैं। नियम यह है कि यदि कभी भी मूव्स नहीं परिवर्तित करता है, परिणामों में अनिश्चितता कम नहीं होती है की मूव को इस प्रकार व्यक्त किया गया है , और तबसे की योजना डेटर्मीनिस्टिक कार्य है सेट खेल के नियमों को इस प्रकार व्यक्त करके, यह दिखाया जा सकता है। [1]: 207–208  एशबी ने अपेक्षित विविधता के नियम को शैनन के गणितीय संचार सिद्धांत (1948) में दसवें प्रमेय से संबंधित बताया:[6]

यह नियम (जिसमें नॉइज़ के दमन से संबंधित शैनन की प्रमेय के 10 विशेष केस है) कहता है कि यदि नियामक द्वारा निश्चित मात्रा में डिस्टर्बेंस को कुछ आवश्यक चर तक पहुंचने से बाधित किया जाता है, तो उस नियामक को चयन करने में कम से कम उस मात्रा को प्रारम्भ करने में सक्षम होना चाहिए।

एशबी ने यह भी माना कि अपेक्षित विविधता का नियम विनियमन की माप की अनुमति देता है, अर्थात् उत्तम रूप से कार्य करने वाले विनियमन की आवश्यकता यह है कि नियामक या नियामकों को उन सभी संभावित स्थितियों के लिए डिज़ाइन किया गया है जिनमें चर या परिवर्तनीय हैं विनियमित किया जा सकता है, जिससे यह सुनिश्चित किया जा सके कि परिणाम सदैव स्वीकार्य सीमा के भीतर हो।[1]: 209  एशबी ने इस नियम को समस्थिति जैसी जीव विज्ञान की समस्याओं और संभावित अनुप्रयोगों के भंडार" के लिए प्रासंगिक माना। पश्चात में, 1970 में, कॉनेंट ने एशबी के साथ कार्य करते हुए अच्छे नियामक प्रमेय का निर्माण किया[7] जिसके लिए स्वायत्त प्रणालियों को स्थिरता बनाए रखने और प्राप्त करने के लिए अपने पर्यावरण का आंतरिक मॉडल प्राप्त करने की आवश्यकता थी (उदाहरण के लिए नाइक्विस्ट स्थिरता क्रिटेरियन) या गतिशील संतुलन है।

बोइसोट और मैककेल्वे ने इस नियम को अपेक्षित कॉम्प्लेक्सिटी के नियम में अद्यतन किया, जो मानता है कि, प्रभावी रूप से अनुकूली होने के लिए, किसी सिस्टम की आंतरिक कॉम्प्लेक्सिटी को उसके सामने आने वाली बाहरी कॉम्प्लेक्सिटी से युग्मित होना चाहिए। इस नियम का व्यावहारिक अनुप्रयोग यह विचार है कि सूचना प्रणाली (आईएस) संरेखण सतत सह-विकासवादी प्रक्रिया है जो व्यवसाय के सभी घटकों को सचेत रूप से और सुसंगत रूप से परस्पर जोड़ने की ऊपर से नीचे 'तर्कसंगत डिजाइन' और नीचे से ऊपर की 'आकस्मिक प्रक्रियाओं' को एकत्र करती है। समय के साथ किसी संगठन के प्रदर्शन में योगदान देने के लिए आईएस संबंध है।[8][9]

अपेक्षित कॉम्प्लेक्सिटी के नियम के परियोजना प्रबंधन में अनुप्रयोग स्टीफन मोरकोव द्वारा प्रस्तावित धनात्मक, उचित और ऋणात्मक कॉम्प्लेक्सिटी का मॉडल है।

अनुप्रयोग

एशबी के लिए संगठन और प्रबंधन के अनुप्रयोग शीघ्र स्पष्ट हो गए थे। निहितार्थ यह है कि व्यक्तियों के पास जानकारी संसाधित करने की सीमित क्षमता होती है, और इस सीमा से भिन्न जो आशय रखता है। वह व्यक्तियों के मध्य का संगठन है।[2]

इस प्रकार n पुरुषों की टीम पर जो सीमा प्रारम्भ होती है, वह व्यक्तिगत व्यक्ति पर प्रारम्भ सीमा से कहीं अधिक, संभवतः n गुना अधिक हो सकती है। चूँकि, उच्च सीमा का उपयोग करने के लिए, टीम को कुशलतापूर्वक संगठित किया जाना चाहिए; और वर्तमान में संगठन के बारे में हमारी समझ दयनीय रूप से छोटी रही है।

स्टैफ़ोर्ड बीयर ने प्रबंधन साइबरनेटिक्स पर अपने लेखन में इस विश्लेषण को उठाया। बीयर विविधता को किसी प्रणाली की संभावित स्टेटओं की कुल संख्या, या किसी प्रणाली के तत्व की कुल संख्या" के रूप में परिभाषित करती है।[10] बीयर अपेक्षित विविधता के नियम को दोहराती है कि "विविधता स्वयं विविधता को अवशोषित करती है।"[11] बीयर ने इसका उपयोग प्रक्रिया व्यवहार्यता बनाए रखने के लिए आवश्यक प्रबंधन संसाधनों को आवंटित करने के लिए किया।

साइबरनेटिशियन फ्रैंक हनीविल जॉर्ज ने फुटबॉल या रग्बी जैसे खेलों में गोल करने या प्रयास करने के लिए प्रतिस्पर्धा करने वाली टीमों की विविधता पर वर्णन किया है। ऐसा कहा जा सकता है कि विजेता शतरंज खिलाड़ी के पास अपने हारने वाले प्रतिद्वंद्वी की तुलना में अधिक विविधता होती है। यहाँ सरल क्रम (समूह सिद्धांत) निहित है। प्रबंधन में स्टैफ़ोर्ड बीयर के कार्य में विविधता का क्षीणन और प्रवर्धक प्रमुख विषय थे [10](नियंत्रण का व्यवसाय, जैसा कि उन्होंने इसे कहा था)। टेलीफोन का उत्तर देना, भीड़ को नियंत्रित करने या मरीजों का निरीक्षण करने के लिए आवश्यक कर्मचारियों की संख्या इसके स्पष्ट उदाहरण हैं।

विविधता विश्लेषण के लिए प्राकृतिक और एनालॉग संकेतों के अनुप्रयोग के लिए एशबी की भेदभाव की शक्तियों के अनुमान की आवश्यकता होती है (ऊपर उद्धरण देखें)। गतिशील प्रणालियों के तितली प्रभाव को देखते हुए मात्रात्मक उपायों का उत्पादन करने से पहले निरीक्षण किया जाना चाहिए। छोटी मात्रा, जिसे अप्रत्यक्ष किया जा सकता है, बड़े प्रभाव उत्पन्न कर सकती है। अपनी डिज़ाइनिंग फ़्रीडम स्टैफ़ोर्ड बीयर में अस्पताल में बुखार का संकेत देने वाले तापमान वाले मरीज़ का वर्णन किया गया है।[12] मरीज को आइसोलेट करने की कार्रवाई शीघ्र की जानी चाहिए। यहां मरीजों के औसत तापमान को रिकॉर्ड करने वाली कोई भी प्रकार इस छोटे संकेत को ज्ञात नहीं कर पाएगी जिसका बड़ा प्रभाव हो सकता है। इस प्रकार विविधता को बढ़ाने वाले व्यक्तियों पर निरीक्षण की आवश्यकता होती है (विअबल सिस्टम मॉडल या वीएसएम में अल्गेडोनिक अलर्ट देखें)। प्रबंधन साइबरनेटिक्स और वीएसएम में बीयर का कार्य अधिक सीमा तक विविध इंजीनियरिंग पर आधारित है।

स्टेट गणना के बारे में एशबी के दृष्टिकोण से जुड़े अन्य अनुप्रयोगों में डिजिटल बैंडविड्थ (कंप्यूटिंग) आवश्यकताओं, रिडण्डेन्सी और सॉफ़्टवेयर ब्लोट का विश्लेषण, डेटा टाइप्स और इंडेक्स बिट रिप्रेजेंटेशन, एनॉलॉग टू डिजिटल कन्वर्शन, फिनिट स्टेट मशीनों पर बाउंसड और डेटा कम्प्रेशन सम्मिलित हैं। यह भी देखें, उदाहरण के लिए, एक्ससिटेड स्टेट, स्टेट (कंप्यूटर विज्ञान), स्टेट पैटर्न, स्टेट (कंट्रोल्स) और सेलुलर ऑटोमेटन है। चैतिन के एल्गोरिथम सूचना सिद्धांत में अपेक्षित विविधता देखी जा सकती है जहां लंबा, उच्च विविधता कार्यक्रम या फिनिट स्टेट मशीन अधिक विविधता या सूचना सामग्री के साथ इंसोम्प्रेसिब्ल आउटपुट उत्पन्न करती है।

सामान्य रूप से आवश्यक इनपुट और आउटपुट का विवरण स्थापित किया जाता है और फिर आवश्यक न्यूनतम विविधता के साथ एन्कोड किया जाता है। इनपुट बिट्स को आउटपुट बिट्स में मैप करने से डिजायर कण्ट्रोल बेहेवियर उत्पन्न करने के लिए आवश्यक न्यूनतम हार्डवेयर या सॉफ़्टवेयर घटकों का अनुमान लगाया जा सकता है; उदाहरण के लिए, कंप्यूटर सॉफ्टवेयर या कंप्यूटर हार्डवेयर के भाग है।

विविधता उन नौ आवश्यकताओं में से है जो नैतिक नियामक के लिए आवश्यक हैं।[13]

यह भी देखें

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Ashby, William Ross (1956). An Introduction to Cybernetics.
  2. 2.0 2.1 Ashby, William Ross (1958). "Requisite Variety and its Implications for the Control of Complex Systems" (PDF). Cybernetica. 1 (2).
  3. Ashby 1956, p. 121: "In Part I we considered the main properties of the machine, usually with the assumption that we had before us the actual thing ... To progress in cybernetics, however, we shall have to extend our range of consideration. The fundamental questions in regulation and control can be answered only when we are able to consider the broader set of what it might do..."
  4. 4.0 4.1 Pask, Gordon (1961). An Approach to Cybernetics.
  5. Ashby 1956, p. 138: "It is easy to see, therefore, that, provided the same change is made to all, change of parameter-value to the whole set cannot increase the set's variety ... change of parameter value makes possible a fall to a new, and low, minimum ... Since this will often happen we can make the looser, but more vivid statement that a uniform change at the inputs of a set of transducers tends to drive the set's variety down."
  6. W. R. Ashby (1960), "Design for a Brain", p. 229.
  7. Conant 1970
  8. Benbya, H.; McKelvey, B. (2006). "Using coevolutionary and complexity theories to improve IS alignment: a multi-level approach". Journal of Information Technology (in English). 21 (4): 284–298. doi:10.1057/palgrave.jit.2000080. S2CID 15214275.
  9. Boisot, M.; McKelvey, B. (2011). "Complexity and organization-environment relations: revisiting Ashby's law of requisite variety". P. Allen, the Sage Handbook of Complexity and Management (in English): 279–298.
  10. 10.0 10.1 Beer (1981)
  11. Beer (1979) p286
  12. Beer (1974)
  13. M. Ashby, "Ethical Regulators and Super-Ethical Systems", 2017

अग्रिम पठन

  • Ashby, W. R. 1956, An Introduction to Cybernetics, Chapman & Hall, 1956, ISBN 0-416-68300-2 (also available in electronic form as a PDF from Principia Cybernetica)
  • Ashby, W. R. 1958, Requisite Variety and its implications for the control of complex systems, Cybernetica (Namur) Vol. 1, No. 2, 1958.
  • Ashby, W. R. 1960, Design for a brain; the origin of adaptive behavior, 2nd ed. (Electronic versions on Internet Archive).
  • Beer, S. 1974, Designing Freedom, CBC Learning Systems, Toronto, 1974; and John Wiley, London and New York, 1975. Translated into Spanish and Japanese.
  • Beer, S. 1975, Platform for Change, John Wiley, London and New York. Reprinted with corrections 1978.
  • Beer, S. 1979, The Heart of Enterprise, John Wiley, London and New York. Reprinted with corrections 1988.
  • Beer, S. 1981, Brain of the Firm; Second Edition (much extended), John Wiley, London and New York. Reprinted 1986, 1988. Translated into Russian.
  • Beer, S. 1985, Diagnosing the System for Organisations; John Wiley, London and New York. Translated into Italian and Japanese. Reprinted 1988, 1990, 1991.
  • Conant, R. 1981, Mechanisms of Intelligence: Ross Ashby's papers and writings, Intersystems Publications, ISBN 1-127-19770-3.

बाहरी संबंध