रीमैन-स्टिल्टजेस इंटीग्रल: Difference between revisions

From Vigyanwiki
(Created page with "{{Use American English|date = March 2019}} {{Short description|Generalization of the Riemann integral}} गणित में, रीमैन-स्टिल्टजेस...")
 
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Use American English|date = March 2019}}
 
{{Short description|Generalization of the Riemann integral}}
{{Short description|Generalization of the Riemann integral}}
गणित में, रीमैन-स्टिल्टजेस इंटीग्रल, [[ रीमैन अभिन्न ]] का एक सामान्यीकरण है, जिसका नाम [[बर्नहार्ड रीमैन]] और [[थॉमस जोआन्स स्टिटजेस]] के नाम पर रखा गया है। इस इंटीग्रल की परिभाषा पहली बार 1894 में स्टिल्टजेस द्वारा प्रकाशित की गई थी।{{sfnp|Stieltjes|1894|pp=68–71}} यह [[लेब्सग इंटीग्रल]] के एक शिक्षाप्रद और उपयोगी अग्रदूत के रूप में कार्य करता है, और सांख्यिकीय प्रमेयों के समतुल्य रूपों को एकीकृत करने में एक अमूल्य उपकरण है जो अलग और निरंतर संभाव्यता पर लागू होता है।
गणित में, '''रीमैन-स्टिल्टजेस इंटीग्रल''', [[ रीमैन अभिन्न |रीमैन अभिन्न]] का सामान्यीकरण है, जिसका नाम [[बर्नहार्ड रीमैन]] और [[थॉमस जोआन्स स्टिटजेस]] के नाम पर रखा गया है। इस इंटीग्रल की परिभाषा पहली बार 1894 में स्टिल्टजेस द्वारा प्रकाशित की गई थी।{{sfnp|Stieltjes|1894|pp=68–71}} यह [[लेब्सग इंटीग्रल]] के शिक्षाप्रद और उपयोगी अग्रदूत के रूप में कार्य करता है, और सांख्यिकीय प्रमेयों के समतुल्य रूपों को एकीकृत करने में अमूल्य उपकरण है जो अलग और निरंतर संभाव्यता पर प्रयुक्त होता है।


==औपचारिक परिभाषा==
==औपचारिक परिभाषा==
रीमैन-स्टिल्टजेस एक वास्तविक-मूल्यवान फ़ंक्शन का [[अभिन्न]] अंग है <math>f</math> अंतराल पर एक वास्तविक चर का <math>[a,b]</math> किसी अन्य वास्तविक-से-वास्तविक फ़ंक्शन के संबंध में <math>g</math> द्वारा निरूपित किया जाता है
एक अन्य वास्तविक-से-वास्तविक फलन <math>g</math> के संबंध में अंतराल <math>[a,b]</math> पर एक वास्तविक वेरिएबल के वास्तविक-मूल्यवान फलन <math>f</math> का रीमैन-स्टिल्टजेस अभिन्न अंग द्वारा दर्शाया गया है


:<math>\int_{x=a}^b f(x) \, \mathrm{d}g(x).</math>
:<math>\int_{x=a}^b f(x) \, \mathrm{d}g(x).</math>
इसकी परिभाषा एक अंतराल के विभाजन के अनुक्रम का उपयोग करती है <math>P</math> अंतराल का <math>[a,b]</math>
इसकी परिभाषा अंतराल <math>[a,b]</math> के विभाजन <math>P</math> के अनुक्रम का उपयोग करती है।
:<math>P=\{ a = x_0 < x_1 < \cdots < x_n = b\}.</math>
:<math>P=\{ a = x_0 < x_1 < \cdots < x_n = b\}.</math>
तब, अभिन्न को सीमा के रूप में परिभाषित किया जाता है, क्योंकि अंतराल का विभाजन#विभाजन का मानदंड (विभाजन के सबसे लंबे उपअंतराल की लंबाई) निकट आता है <math> 0 </math>, अनुमानित राशि का
:
तब, अभिन्न को सीमा के रूप में परिभाषित किया जाता है, क्योंकि विभाजन का जाल (सबसे लंबे उपअंतराल की लंबाई) अनुमानित योग के <math> 0 </math> तक पहुंच जाता है।


:<math>S(P,f,g) = \sum_{i=0}^{n-1} f(c_i)\left[ g(x_{i+1}) - g(x_i) \right]</math>
:<math>S(P,f,g) = \sum_{i=0}^{n-1} f(c_i)\left[ g(x_{i+1}) - g(x_i) \right]</math>
कहाँ <math>c_i</math> में है <math>i</math>-वें उपअंतराल <math>[x_i;x_{i+1}]</math>. दो कार्य <math>f</math> और <math>g</math> क्रमशः इंटीग्रैंड और इंटीग्रेटर कहलाते हैं। आम तौर पर <math>g</math> इसे [[मोनोटोनिक फ़ंक्शन]] (या कम से कम सीमित भिन्नता) और अर्ध-निरंतरता | सही-अर्धनिरंतर (हालांकि यह अंतिम अनिवार्य रूप से सम्मेलन है) के रूप में लिया जाता है। हमें विशेष रूप से इसकी आवश्यकता नहीं है <math>g</math> निरंतर होना, जो बिंदु द्रव्यमान पदों वाले अभिन्नों की अनुमति देता है।
जहां <math>c_i</math>, <math>i</math>-वें उपअंतराल <math>[x_i;x_{i+1}]</math> में है। दो फलन <math>f</math> और <math>g</math> को क्रमशः इंटीग्रैंड और इंटीग्रेटर कहा जाता है। जो कि समान्य रूप से <math>g</math> को मोनोटोन (या कम से कम सीमित भिन्नता) और दाएं-अर्धविराम के रूप में लिया जाता है (चूँकि यह अंतिम अनिवार्य रूप से सम्मेलन है)हमें विशिष्ट रूप से <math>g</math> के सतत होने की आवश्यकता नहीं है, जो बिंदु द्रव्यमान पदों वाले अभिन्नों की अनुमति देता है।


यहां सीमा को एक संख्या (रीमैन-स्टिल्टजेस इंटीग्रल का मान) के रूप में समझा जाता है, जैसे कि प्रत्येक ε > 0 के लिए, δ> 0 मौजूद होता है, जैसे कि प्रत्येक विभाजन पी के लिए मानदंड (पी) < δ, और प्रत्येक के लिए अंकों का चयन सी<sub>''i''</sub> में [x<sub>''i''</sub>, एक्स<sub>''i''+1</sub>],
यहां "सीमा" को एक संख्या ''A'' (रीमैन-स्टिल्टजेस इंटीग्रल का मान) के रूप में समझा जाता है, जैसे कि प्रत्येक ε > 0 के लिए, δ > 0 उपस्थित होता है, जैसे कि मानक (''P'') < ''δ'' के साथ प्रत्येक विभाजन p के लिए, और [''x<sub>i</sub>'', ''x<sub>i</sub>''<sub>+1</sub>], में प्रत्येक बिंदु ''c<sub>i</sub>'' का प्रत्येक विकल्प है
 
:<math>|S(P,f,g)-A| < \varepsilon. \, </math>


: <math>|S(P,f,g)-A| < \varepsilon. \, </math>


==गुण==
==गुण==
Line 25: Line 25:
और किसी भी अभिन्न का अस्तित्व दूसरे के अस्तित्व को दर्शाता है।{{sfnp|Hille|Phillips|1974|loc=§3.3}}
और किसी भी अभिन्न का अस्तित्व दूसरे के अस्तित्व को दर्शाता है।{{sfnp|Hille|Phillips|1974|loc=§3.3}}


दूसरी ओर, एक शास्त्रीय परिणाम{{sfnp|Young|1936}} दिखाता है कि इंटीग्रल अच्छी तरह से परिभाषित है यदि f α-होल्डर निरंतर है और g β-होल्डर निरंतर है {{nowrap|''α'' + ''β'' > 1}} .
दूसरी ओर, एक मौलिक परिणाम {{sfnp|Young|1936}} से पता चलता है कि अभिन्न अच्छी तरह से परिभाषित है यदि f α-होल्डर निरंतर है और जी {{nowrap|''α'' + ''β'' > 1}} के साथ β-होल्डर निरंतर है।


अगर <math>f(x)</math> पर सीमाबद्ध है <math>[a,b]</math>, <math>g(x)</math> नीरस रूप से बढ़ता है, और <math>g'(x)</math> रीमैन इंटीग्रेबल है, तो रीमैन-स्टिल्टजेस इंटीग्रल रीमैन इंटीग्रल से संबंधित है
यदि <math>f(x)</math> को <math>[a,b]</math> पर परिबद्ध किया गया है, जो <math>g(x)</math> नीरस रूप से बढ़ता है, और <math>g'(x)</math> रीमैन इंटीग्रेबल है, तो रीमैन-स्टिल्टजेस इंटीग्रल रीमैन इंटीग्रल से संबंधित है
<math display=block>\int_a^b f(x) \, \mathrm{d}g(x) = \int_a^b f(x) g'(x) \, \mathrm{d}x</math>
<math display=block>\int_a^b f(x) \, \mathrm{d}g(x) = \int_a^b f(x) g'(x) \, \mathrm{d}x</math>
एक चरण समारोह के लिए
एक चरणीय कार्य के लिए
<math display=block>g(x) = \begin{cases}
<math display=block>g(x) = \begin{cases}
Line 36: Line 36:
   1 & \text{if } x > s \\
   1 & \text{if } x > s \\
  \end{cases}</math> कहाँ <math>a < s < b</math>, अगर <math>f</math> पर निरंतर है <math>s</math>, तब
  \end{cases}</math> जहाँ <math>a < s < b</math>, यदि <math>f</math>,<math>s</math> पर निरंतर है, तब
<math display=block>\int_a^b f(x) \, \mathrm{d}g(x) = f(s)</math>
<math display=block>\int_a^b f(x) \, \mathrm{d}g(x) = f(s)</math><br />
 
==संभाव्यता सिद्धांत का अनुप्रयोग==
 
यदि g एक यादृच्छिक वेरिएबल X का संचयी संभाव्यता वितरण फलन है जिसमें लेबेस्ग माप के संबंध में संभाव्यता घनत्व फलन है, और f कोई फलन है जिसके लिए अपेक्षित मान <math>\operatorname{E}\left[\,\left|f(X)\right|\,\right]</math> परिमित है, तो X की संभाव्यता घनत्व फलन g का व्युत्पन्न है और हमारे पास है
==संभाव्यता सिद्धांत का अनुप्रयोग==<!-- This section is linked from [[Probability distribution]] -->
यदि g एक यादृच्छिक चर <math>\operatorname{E}\left[\,\left|f(X)\right|\,\right]</math> परिमित है, तो X का संभाव्यता घनत्व फलन g का व्युत्पन्न है और हमारे पास है


:<math>\operatorname{E}[f(X)]=\int_{-\infty}^\infty f(x)g'(x)\,\mathrm{d}x.</math>
:<math>\operatorname{E}[f(X)]=\int_{-\infty}^\infty f(x)g'(x)\,\mathrm{d}x.</math>
लेकिन यह सूत्र काम नहीं करता है यदि एक्स के पास लेबेस्ग माप के संबंध में संभाव्यता घनत्व फ़ंक्शन नहीं है। विशेष रूप से, यह काम नहीं करता है यदि [[पूर्ण निरंतरता]] (फिर से, [[कैंटर फ़ंक्शन]] इस विफलता के उदाहरण के रूप में काम कर सकता है)। लेकिन पहचान
किन्तु यह सूत्र काम नहीं करता है यदि X के पास लेबेस्ग माप के संबंध में संभाव्यता घनत्व फलन नहीं है। जो कि विशेष रूप से, यह काम नहीं करता है यदि X का वितरण अलग है (अथार्त , सभी संभावनाओं को बिंदु-द्रव्यमान के आधार पर माना जाता है), और तथापि संचयी वितरण फलन g निरंतर है, यदि g बिल्कुल निरंतर होने में विफल रहता है तो यह काम नहीं करता है (फिर से, कैंटर फलन इस विफलता के उदाहरण के रूप में कार्य कर सकता है)। किन्तु पहचान


:<math>\operatorname{E}[f(X)]=\int_{-\infty}^\infty f(x)\, \mathrm{d}g(x)</math>
:<math>\operatorname{E}[f(X)]=\int_{-\infty}^\infty f(x)\, \mathrm{d}g(x)</math>
यदि g वास्तविक रेखा पर कोई संचयी संभाव्यता वितरण फ़ंक्शन है, तो इससे कोई फर्क नहीं पड़ता कि कितना बुरा व्यवहार किया गया है। विशेष रूप से, कोई फर्क नहीं पड़ता कि यादृच्छिक चर X का संचयी वितरण फ़ंक्शन g कितना खराब व्यवहार करता है, यदि [[क्षण (गणित)]] E(X<sup>n</sup>) मौजूद है, तो यह बराबर है
यदि g वास्तविक रेखा पर कोई संचयी संभाव्यता वितरण फलन है, तो इससे कोई अंतर नहीं पड़ता कि कितना बुरा व्यवहार किया गया है। जिसमे विशेष रूप से, कोई अंतर नहीं पड़ता कि यादृच्छिक वेरिएबल X का संचयी वितरण फलन g कितना खराब व्यवहार करता है, यदि [[क्षण (गणित)]] E(X<sup>n</sup>) उपस्थिति है, तो यह समान है


: <math>\operatorname{E}\left[X^n\right] = \int_{-\infty}^\infty x^n\,\mathrm{d}g(x). </math>
: <math>\operatorname{E}\left[X^n\right] = \int_{-\infty}^\infty x^n\,\mathrm{d}g(x). </math>
Line 53: Line 51:


==कार्यात्मक विश्लेषण के लिए आवेदन==
==कार्यात्मक विश्लेषण के लिए आवेदन==
रीमैन-स्टिल्टजेस इंटीग्रल रीज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय|एफ के मूल सूत्रीकरण में प्रकट होता है। रिज़्ज़ का प्रमेय जो एक अंतराल [,बी] में निरंतर कार्यों के [[बनच स्थान]] सी[,बी] के दोहरे स्थान का प्रतिनिधित्व करता है, जैसा कि रीमैन-स्टिल्टजेस बंधे हुए भिन्नता के कार्यों के खिलाफ अभिन्न होता है। बाद में, उस प्रमेय को उपायों के संदर्भ में दोबारा तैयार किया गया।
रीमैन-स्टिल्टजेस इंटीग्रल रीज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय या एफ के मूल सूत्रीकरण में प्रकट होता है। रिज़्ज़ का प्रमेय जो अंतराल [''a'',''b''] में निरंतर कार्यों के [[बनच स्थान|बनच समष्टि]] ''C''[''a'',''b''] के दोहरे समष्टि का प्रतिनिधित्व करता है, जैसा कि रीमैन-स्टिल्टजेस बंधे हुए भिन्नता के कार्यों के विपरीत अभिन्न होता है। इसके पश्चात् में, उस प्रमेय को उपायों के संदर्भ में दोबारा तैयार किया गया था।
 
रीमैन-स्टिल्टजेस इंटीग्रल हिल्बर्ट स्पेस में (गैर-कॉम्पैक्ट) स्व-सहायक (या अधिक सामान्यतः, सामान्य) ऑपरेटरों के लिए [[वर्णक्रमीय प्रमेय]] के निर्माण में भी दिखाई देता है। इस प्रमेय में, अनुमानों के वर्णक्रमीय परिवार के संबंध में अभिन्न पर विचार किया जाता है।<ref>See {{harvp|Riesz|Sz. Nagy|1990}} for details.</ref>
 


रीमैन-स्टिल्टजेस इंटीग्रल हिल्बर्ट स्थान में (गैर-कॉम्पैक्ट) स्व-सहायक (या अधिक सामान्यतः, सामान्य) ऑपरेटरों के लिए [[वर्णक्रमीय प्रमेय]] के निर्माण में भी दिखाई देता है। इस प्रमेय में, अनुमानों के वर्णक्रमीय वर्ग के संबंध में अभिन्न पर विचार किया जाता है।<ref>See {{harvp|Riesz|Sz. Nagy|1990}} for details.</ref>
==अभिन्न का अस्तित्व==
==अभिन्न का अस्तित्व==
सर्वोत्तम सरल अस्तित्व प्रमेय में कहा गया है कि यदि एफ निरंतर है और जी [, बी] पर सीमित भिन्नता का है, तो अभिन्न अस्तित्व मौजूद है।{{sfnp|Johnsonbaugh|Pfaffenberger|2010|p=219}}{{sfnp|Rudin|1964|pp=121–122}}{{sfnp|Kolmogorov|Fomin|1975|p=368}} एक फ़ंक्शन g सीमित भिन्नता वाला होता है यदि और केवल यदि यह दो (सीमाबद्ध) मोनोटोन फ़ंक्शन के बीच का अंतर है। यदि g सीमित भिन्नता का नहीं है, तो ऐसे निरंतर कार्य होंगे जिन्हें g के संबंध में एकीकृत नहीं किया जा सकता है। सामान्य तौर पर, अभिन्न को अच्छी तरह से परिभाषित नहीं किया जाता है यदि एफ और जी [[असंततता (गणित)]] के किसी भी बिंदु को साझा करते हैं, लेकिन अन्य मामले भी हैं।
सर्वोत्तम सरल अस्तित्व प्रमेय में कहा गया है कि यदि ''f'' निरंतर है और ''g'' [''a'', ''b''] पर सीमित भिन्नता का है, तो अभिन्न अस्तित्व उपस्थिति है।{{sfnp|Johnsonbaugh|Pfaffenberger|2010|p=219}}{{sfnp|Rudin|1964|pp=121–122}}{{sfnp|Kolmogorov|Fomin|1975|p=368}} जिसमे फलन g सीमित भिन्नता वाला होता है यदि और केवल यदि यह दो (सीमाबद्ध) मोनोटोन फलन के मध्य का अंतर है। यदि g सीमित भिन्नता का नहीं है, तो ऐसे निरंतर कार्य होंगे जिन्हें g के संबंध में एकीकृत नहीं किया जा सकता है। जो कि समान्य रूप से, अभिन्न को अच्छी तरह से परिभाषित नहीं किया जाता है यदि f और g [[असंततता (गणित)]] के किसी भी बिंदु को साझा करते हैं, किन्तु अन्य स्थिति भी हैं।


==ज्यामितीय व्याख्या==
==ज्यामितीय व्याख्या==
एक 3डी प्लॉट, के साथ <math>x</math>, <math>f(x)</math>, और <math>g(x)</math> सभी ओर्थोगोनल अक्षों के साथ, रीमैन-स्टिल्टजेस इंटीग्रल की एक ज्यामितीय व्याख्या की ओर ले जाता है।<ref>{{harvp|Bullock|1988}}</ref> [[File:Basic geometry of riemann-stieljes integral f g x.png|thumb|right|500x600px|रीमैन-स्टिल्टजेस इंटीग्रल की मूल ज्यामिति।]]यदि <math>g</math>-<math>x</math> समतल क्षैतिज है और <math>f</math>-दिशा ऊपर की ओर इशारा कर रही है, तो विचार की जाने वाली सतह एक घुमावदार बाड़ की तरह है। बाड़ द्वारा अनुरेखित वक्र का अनुसरण करती है <math>g(x)</math>, और बाड़ की ऊंचाई दी गई है <math>f(x)</math>. बाड़ का खंड है <math>g</math>-शीट (यानी, <math>g</math> वक्र के साथ विस्तारित <math>f</math> अक्ष) जो के बीच घिरा है <math>g</math>-<math>x</math> विमान और <math>f</math>-चादर। रीमैन-स्टिल्टजेस इंटीग्रल इस बाड़ के प्रक्षेपण का क्षेत्र है <math>f</math>-<math>g</math> समतल - वास्तव में, इसकी छाया।
एक 3d प्लॉट, के साथ <math>x</math>, <math>f(x)</math>, और <math>g(x)</math> सभी ओर्थोगोनल अक्षों के साथ, रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामितीय व्याख्या की ओर ले जाता है।<ref>{{harvp|Bullock|1988}}</ref> [[File:Basic geometry of riemann-stieljes integral f g x.png|thumb|right|500x600px|रीमैन-स्टिल्टजेस इंटीग्रल की मूल ज्यामिति।]]


 
यदि <math>g</math>-<math>x</math> विमान क्षैतिज है और <math>f</math>-दिशा ऊपर की ओर संकेत कर रही है, तो विचार की जाने वाली सतह एक घुमावदार फेंस की तरह है। जो फेंस <math>g(x)</math> द्वारा अनुरेखित वक्र का अनुसरण करती है, और फेंस की ऊंचाई <math>f(x)</math> द्वारा दी गई है। फेंस <math>g</math>-शीट का खंड है (अथार्त , <math>f</math>अक्ष के साथ विस्तारित <math>g</math> वक्र) जो <math>g</math>-<math>x</math> विमान और <math>f</math>-शीट के मध्य घिरा हुआ है। रीमैन-स्टीलजेस इंटीग्रल <math>f</math>-<math>g</math> प्लेन पर इस फेंस के प्रक्षेपण का क्षेत्र है - वास्तव में, इसकी "छाया" है ।
की ढलान <math>g(x)</math> प्रक्षेपण के क्षेत्र को भारित करता है। के मूल्य <math>x</math> जिसके लिए <math>g(x)</math> सबसे तीव्र ढलान है <math>g'(x)</math> correspond to regions of the fence with the greater projection and thereby carry the most weight in the integral. [[File:Curvature effects on geometry of riemann-stieljes integral f g x.png|thumb|right|500x600px|वक्रता के प्रभाव <math>g(x)</math> रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामिति पर।]]कब <math>g</math> एक चरणीय कार्य है
<math>g(x)</math> का स्लोप प्रक्षेपण के क्षेत्र पर भार डालता है। <math>x</math> का मान जिसके लिए <math>g(x)</math> में सबसे तीव्र स्लोप है जो <math>g'(x)</math>अधिक प्रक्षेपण वाले फेंस के क्षेत्रों के अनुरूप है और इस प्रकार अभिन्न अंग में सबसे अधिक भार रखता है। [[File:Curvature effects on geometry of riemann-stieljes integral f g x.png|thumb|right|500x600px|वक्रता के प्रभाव <math>g(x)</math> रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामिति पर।]]कब <math>g</math> चरणीय कार्य है
<math display=block>g(x) = \begin{cases}
<math display=block>g(x) = \begin{cases}
   0 & \text{if } x \leq s \\
   0 & \text{if } x \leq s \\
   1 & \text{if } x > s \\
   1 & \text{if } x > s \\
  \end{cases}</math>
  \end{cases}</math>
बाड़ में एक आयताकार गेट है जिसकी चौड़ाई 1 और ऊंचाई बराबर है <math>f(s)</math>. इस प्रकार गेट और उसके प्रक्षेपण का क्षेत्रफल बराबर है <math>f(s)</math>, the value of the Riemann-Stieljes integral. [[File:Step function effect on geometry of riemann-stieljes integral f g x.png|thumb|right|500x200px|एक चरण फ़ंक्शन का प्रभाव <math>g(x)</math> रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामिति पर।]]
फेंस में एक आयताकार "गेट" है जिसकी चौड़ाई 1 और ऊंचाई <math>f(s)</math> के समान है। इस प्रकार गेट और उसके प्रक्षेपण का क्षेत्रफल <math>f(s)</math> के समान है, जो रीमैन-स्टीलजेस इंटीग्रल का मान है। [[File:Step function effect on geometry of riemann-stieljes integral f g x.png|thumb|right|500x200px|एक चरण फलन का प्रभाव <math>g(x)</math> रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामिति पर।]]


==सामान्यीकरण==
==सामान्यीकरण==
एक महत्वपूर्ण सामान्यीकरण लेब्सेग-स्टिल्टजेस इंटीग्रल है, जो रीमैन-स्टिल्टजेस इंटीग्रल को एक तरह से सामान्यीकृत करता है, जिस तरह से लेबेस्ग इंटीग्रल रीमैन इंटीग्रल को सामान्य बनाता है। यदि अनुचित इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की अनुमति है, तो लेबेस्ग इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की तुलना में सख्ती से अधिक सामान्य नहीं है।
एक महत्वपूर्ण सामान्यीकरण लेब्सेग-स्टिल्टजेस इंटीग्रल है, जो रीमैन-स्टिल्टजेस इंटीग्रल को तरह से सामान्यीकृत करता है, जिस तरह से लेबेस्ग इंटीग्रल रीमैन इंटीग्रल को सामान्य बनाता है। यदि अनुचित इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की अनुमति है, तो लेबेस्ग इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की तुलना में दृढ़ता से अधिक सामान्य नहीं है।


रीमैन-स्टिल्टजेस इंटीग्रल भी सामान्यीकरण करता है{{citation needed|date=March 2019}} उस स्थिति में जब या तो इंटीग्रैंड ˒ या इंटीग्रेटर जी बनच स्पेस में मान लेते हैं। अगर {{nowrap|''g'' : [''a'',''b''] &rarr; ''X''}} बैनाच स्पेस एक्स में मान लेता है, तो यह मान लेना स्वाभाविक है कि यह 'दृढ़ता से सीमित भिन्नता' का है, जिसका अर्थ है कि
रीमैन-स्टिल्टजेस इंटीग्रल उस स्थिति को भी सामान्यीकृत करता है जब या तो इंटीग्रैंड या इंटीग्रेटर जी बनच स्थान में मान लेते हैं। यदि {{nowrap|''g'' : [''a'',''b''] &rarr; ''X''}} बनच स्थान X में मान लेता है, तो यह मान लेना स्वाभाविक है कि यह दृढ़ता से सीमित भिन्नता का है, जिसका अर्थ है कि


:<math>\sup \sum_i \|g(t_{i-1})-g(t_i)\|_X < \infty </math>
:<math>\sup \sum_i \|g(t_{i-1})-g(t_i)\|_X < \infty </math>
सर्वोच्च को सभी परिमित विभाजनों पर ले लिया जा रहा है
सर्वोच्च को सभी परिमित विभाजनों पर ले लिया जा रहा है
:<math>a=t_0\le t_1\le\cdots\le t_n=b</math>
:<math>a=t_0\le t_1\le\cdots\le t_n=b</math>
अंतराल का [,बी]यह सामान्यीकरण लाप्लास-स्टिल्टजेस परिवर्तन के माध्यम से [[c0-अर्धसमूह]] के अध्ययन में एक भूमिका निभाता है।
अंतराल का [''a'',''b'']. यह सामान्यीकरण लाप्लास-स्टिल्टजेस परिवर्तन के माध्यम से [[c0-अर्धसमूह]] के अध्ययन में भूमिका निभाता है।


इटो कैलकुलस|इटो इंटीग्रल, इंटीग्रैंड्स और इंटीग्रेटर्स को शामिल करने के लिए रीमैन-स्टीटजेस इंटीग्रल का विस्तार करता है जो सरल कार्यों के बजाय स्टोकेस्टिक प्रक्रियाएं हैं; [[स्टोकेस्टिक कैलकुलस]] भी देखें।
इटो कैलकुलस|इटो इंटीग्रल, इंटीग्रैंड्स और इंटीग्रेटर्स को सम्मिलित करने के लिए रीमैन-स्टीटजेस इंटीग्रल का विस्तार करता है जो सरल कार्यों के अतिरिक्त स्टोकेस्टिक प्रक्रियाएं हैं; [[स्टोकेस्टिक कैलकुलस]] भी देखें।


===सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल===
===सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल===
थोड़ा सा सामान्यीकरण<ref>Introduced by {{harvp|Pollard|1920}} and now standard in analysis.</ref> उपरोक्त परिभाषा में विभाजन P पर विचार करना है जो दूसरे विभाजन P को परिष्कृत करता है<sub>''ε''</sub>, जिसका अर्थ है कि P, P से उत्पन्न होता है<sub>''ε''</sub> महीन जाली वाले विभाजन के बजाय, बिंदुओं को जोड़कर। विशेष रूप से, ''जी'' के संबंध में ''एफ'' का सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल एक संख्या ''ए'' है जैसे कि प्रत्येक ''ε'' > 0 के लिए एक विभाजन ''पी'' मौजूद है<sub>''ε''</sub> ऐसा कि प्रत्येक विभाजन P के लिए जो P को परिष्कृत करता है<sub>''ε''</sub>,
एक समान्य सामान्यीकरण<ref>Introduced by {{harvp|Pollard|1920}} and now standard in analysis.</ref> उपरोक्त परिभाषा विभाजन p में विचार करना है जो एक और विभाजन ''P<sub>ε</sub>'' को परिष्कृत करता है, जिसका अर्थ है कि ''P'' एक महीन जाल के साथ विभाजन के अतिरिक्त बिंदुओं के योग से ''P<sub>ε</sub>'' से उत्पन्न होता है। जो कि विशेष रूप से, g के संबंध में f का सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल एक संख्या A है, जैसे कि प्रत्येक ε > 0 के लिए एक विभाजन ''P<sub>ε</sub>'' उपस्थित होता है, जैसे कि प्रत्येक विभाजन P के लिए जो ''P<sub>ε</sub>'' को परिष्कृत करता है,


:<math>|S(P,f,g) - A| < \varepsilon \, </math>
:<math>|S(P,f,g) - A| < \varepsilon \, </math>
अंकों के प्रत्येक विकल्प के लिए c<sub>''i''</sub> में [x<sub>''i''</sub>, एक्स<sub>''i''+1</sub>].
[''x<sub>i</sub>'', ''x<sub>i</sub>''<sub>+1</sub>] में बिंदु ''c<sub>i</sub>'' के प्रत्येक विकल्प के लिए।


यह सामान्यीकरण [, बी] के विभाजन के [[निर्देशित सेट]] पर मूर-स्मिथ सीमा के रूप में रीमैन-स्टिल्टजेस अभिन्न अंग को प्रदर्शित करता है।{{sfnp|McShane|1952}}<ref>{{harvp|Hildebrandt|1938}} calls it  the '''Pollard–Moore–Stieltjes integral'''.</ref>
यह सामान्यीकरण [''a'', ''b''] के विभाजन के [[निर्देशित सेट]] पर मूर-स्मिथ सीमा के रूप में रीमैन-स्टिल्टजेस अभिन्न अंग को प्रदर्शित करता है।{{sfnp|McShane|1952}}<ref>{{harvp|Hildebrandt|1938}} calls it  the '''Pollard–Moore–Stieltjes integral'''.</ref>
एक परिणाम यह है कि इस परिभाषा के साथ, अभिन्न <math display="inline"> \int_a^b f(x)\,\mathrm{d}g(x) </math> अभी भी उन मामलों में परिभाषित किया जा सकता है जहां एफ और जी में असंततता का बिंदु समान है।
 
एक परिणाम यह है कि इस परिभाषा के साथ, अभिन्न <math display="inline"> \int_a^b f(x)\,\mathrm{d}g(x) </math> अभी भी उन स्थितियों में परिभाषित किया जा सकता है जहां f और g में असंततता का बिंदु समान है।


===[[डारबौक्स योग]]===
===[[डारबौक्स योग]]===
रीमैन-स्टिल्टजेस इंटीग्रल को डार्बौक्स रकम के उचित सामान्यीकरण का उपयोग करके कुशलतापूर्वक नियंत्रित किया जा सकता है। एक विभाजन पी और एक गैर-घटते फ़ंक्शन जी के लिए [, बी] पर जी के संबंध में एफ के ऊपरी डार्बौक्स योग को परिभाषित करें
रीमैन-स्टिल्टजेस इंटीग्रल को डार्बौक्स रकम के उचित सामान्यीकरण का उपयोग करके कुशलतापूर्वक नियंत्रित किया जा सकता है। विभाजन p और गैर-घटते फलन g के लिए [''a'', ''b''] पर g के संबंध में f के ऊपरी डार्बौक्स योग को परिभाषित करें


:<math>U(P,f,g) = \sum_{i=1}^n \,\, [\,g(x_i)-g(x_{i-1})\,] \,\sup_{x\in [x_{i-1},x_i]} f(x)</math>
:<math>U(P,f,g) = \sum_{i=1}^n \,\, [\,g(x_i)-g(x_{i-1})\,] \,\sup_{x\in [x_{i-1},x_i]} f(x)</math>
और कम राशि द्वारा
और कम योग द्वारा


:<math>L(P,f,g) = \sum_{i=1}^n \,\, [\,g(x_i)-g(x_{i-1})\,] \,\inf_{x\in [x_{i-1},x_i]} f(x).</math>
:<math>L(P,f,g) = \sum_{i=1}^n \,\, [\,g(x_i)-g(x_{i-1})\,] \,\inf_{x\in [x_{i-1},x_i]} f(x).</math>
फिर g के संबंध में f का सामान्यीकृत रीमैन-स्टिल्टजेस मौजूद है यदि और केवल यदि, प्रत्येक ε > 0 के लिए, एक विभाजन P मौजूद है जैसे कि
फिर g के संबंध में f का सामान्यीकृत रीमैन-स्टिल्टजेस उपस्थिति है यदि और केवल यदि, प्रत्येक ε > 0 के लिए, विभाजन P उपस्थिति है जैसे कि


:<math>U(P,f,g)-L(P,f,g) < \varepsilon.</math>
:<math>U(P,f,g)-L(P,f,g) < \varepsilon.</math>
इसके अलावा, एफ रीमैन-स्टिल्टजेस जी के संबंध में पूर्णांक है (शास्त्रीय अर्थ में) यदि
इसके अतिरिक्त , f रीमैन-स्टिल्टजेस g के संबंध में पूर्णांक है (मौलिक अर्थ में) यदि


:<math>\lim_{\operatorname{mesh}(P)\to 0} [\,U(P,f,g)-L(P,f,g)\,] = 0.\quad</math>{{sfnp|Graves|1946|loc=Chap. XII, §3}}
:<math>\lim_{\operatorname{mesh}(P)\to 0} [\,U(P,f,g)-L(P,f,g)\,] = 0.\quad</math>{{sfnp|Graves|1946|loc=Chap. XII, §3}}


==उदाहरण और विशेष मामले==
==उदाहरण और विशेष स्थिति ==


=== अवकलनीय g(x) ===
=== अवकलनीय g(x) ===
दिया गया ए <math>g(x)</math> जो लगातार भिन्न कार्य करता है <math>\mathbb{R}</math> यह दिखाया जा सकता है कि समानता है
एक <math>g(x)</math> दिया गया है जो <math>\mathbb{R}</math> पर निरंतर भिन्न है, यह दिखाया जा सकता है कि समानता है
:<math>
:<math>
\int_a^b f(x) \, \mathrm{d}g(x) = \int_a^b f(x)g'(x) \, \mathrm{d}x
\int_a^b f(x) \, \mathrm{d}g(x) = \int_a^b f(x)g'(x) \, \mathrm{d}x
</math>
</math>
जहां दाहिनी ओर का इंटीग्रल मानक रीमैन इंटीग्रल है, यह मानते हुए <math>f</math> रीमैन-स्टिल्टजेस इंटीग्रल द्वारा एकीकृत किया जा सकता है।
जहां दाहिनी ओर का इंटीग्रल मानक रीमैन इंटीग्रल है, यह मानते हुए कि <math>f</math> को रीमैन-स्टिल्टजेस इंटीग्रल द्वारा एकीकृत किया जा सकता है।


अधिक आम तौर पर, रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल के बराबर होता है <math>g</math> इसके व्युत्पन्न का लेब्सग इंटीग्रल है; इस मामले में <math>g</math> कहा जाता है कि यह [[बिल्कुल निरंतर]] है।
अधिक समान्य रूप से, रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल के समान होता है यदि <math>g</math> इसके व्युत्पन्न का लेबेस्ग इंटीग्रल है; इस स्थिति में <math>g</math> को पूर्णतः सतत कहा जाता है।


ऐसा भी हो सकता है <math>g</math> जम्प असंततताएं हैं, या निरंतर और बढ़ते हुए भी लगभग हर जगह व्युत्पन्न शून्य हो सकता है (उदाहरण के लिए, <math>g</math> कैंटर फ़ंक्शन या "शैतान की सीढ़ी") हो सकता है, इनमें से किसी भी मामले में रीमैन-स्टिल्टजेस इंटीग्रल को जी के डेरिवेटिव से जुड़े किसी भी अभिव्यक्ति द्वारा कैप्चर नहीं किया गया है।
यह स्थिति हो सकता है कि <math>g</math> में जंप डिसकंटीनिटीज़ हैं, या लगभग प्रत्येक समष्टि व्युत्पन्न शून्य हो सकता है जबकि अभी भी निरंतर और बढ़ रहा है (उदाहरण के लिए, <math>g</math> कैंटर फलन या "शैतान की सीढ़ी" हो सकता है), इनमें से किसी भी स्थिति में रीमैन-स्टिल्टजेस इंटीग्रल को <math>g</math> के डेरिवेटिव से जुड़े किसी भी अभिव्यक्ति द्वारा कैप्चर नहीं किया जाता है।


=== रीमैन इंटीग्रल ===
=== रीमैन इंटीग्रल ===
मानक रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल का एक विशेष मामला है <math>g(x) = x</math>.
मानक रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल का विशेष स्थिति है जहाँ <math>g(x) = x</math>.


=== दिष्टकारी ===
=== सुधारक ===
फ़ंक्शन पर विचार करें <math>g(x) = \max\{ 0, x \}</math> [[तंत्रिका नेटवर्क]] के अध्ययन में उपयोग किया जाता है, जिसे रेक्टिफायर (तंत्रिका नेटवर्क) | रेक्टिफाइड लीनियर यूनिट (ReLU) कहा जाता है। तब रीमैन-स्टिल्टजेस का मूल्यांकन इस प्रकार किया जा सकता है
तंत्रिका नेटवर्क के अध्ययन में उपयोग किए जाने वाले फलन <math>g(x) = \max\{ 0, x \}</math>पर विचार करें, जिसे रेक्टिफाइड लीनियर यूनिट (आरईएलयू) कहा जाता है। तब रीमैन-स्टिल्टजेस का मूल्यांकन इस प्रकार किया जा सकता है
:<math>
:<math>
\int_a^b f(x)\,\mathrm{d}g(x) = \int_{g(a)}^{g(b)}f(x)\,\mathrm{d}x
\int_a^b f(x)\,\mathrm{d}g(x) = \int_{g(a)}^{g(b)}f(x)\,\mathrm{d}x
Line 131: Line 128:


===कैवेलियरी एकीकरण===
===कैवेलियरी एकीकरण===
फ़ाइल: रीमैन-Stieltjes integral.png|thumb|right|434x434px|फ़ंक्शन के लिए कैवलियरे इंटीग्रल का विज़ुअलाइज़ेशन <math>f(x)=(2x+8)^3</math>कैवलियरी के सिद्धांत का उपयोग रीमैन-स्टिल्टजेस इंटीग्रल्स का उपयोग करके वक्रों से घिरे क्षेत्रों की गणना करने के लिए किया जा सकता है।<ref>T. L. Grobler, E. R. Ackermann, A. J. van Zyl & J. C. Olivier
'''फ़ाइल: रीमैन-Stieltjes integral.png|thumb|right|434x434px|फलन के लिए कैवलियरे इंटीग्रल का विज़ुअलाइज़ेशन <math>f(x)=(2x+8)^3</math>'''
[http://researchspace.csir.co.za/dspace/bitstream/handle/10204/5267/Grobler5_2011.pdf;jsessionid=C0A9818B6A46CA5AD17AD91DFD982F3A?sequence=1 Cavaliere integration] from [[Council for Scientific and Industrial Research]]</ref> रीमैन एकीकरण की एकीकरण स्ट्रिप्स को उन स्ट्रिप्स से बदल दिया गया है जो आकार में गैर-आयताकार हैं। विधि एक परिवर्तन के साथ कैवलियरे क्षेत्र को बदलने की है <math>h</math>, या उपयोग करने के लिए <math>g = h^{-1}</math> इंटीग्रैंड के रूप में।


किसी दिए गए फ़ंक्शन के लिए <math>f(x)</math> एक अंतराल पर <math>[a,b]</math>, एक अनुवादात्मक कार्य <math>a(y)</math> प्रतिच्छेद करना चाहिए <math>(x,f(x ))</math> अंतराल में किसी भी बदलाव के लिए ठीक एक बार। फिर एक कैवलियरे क्षेत्र से घिरा है  <math>f(x),a(y)</math>, <math>x</math>-अक्ष, और <math>b(y) = a(y) + (b-a)</math>. क्षेत्र का क्षेत्रफल तब है
कैवलियरी के सिद्धांत का उपयोग रीमैन-स्टिल्टजेस इंटीग्रल्स का उपयोग करके वक्रों से घिरे क्षेत्रों की गणना करने के लिए किया जा सकता है। रीमैन एकीकरण की एकीकरण स्ट्रिप्स को उन स्ट्रिप्स से परिवर्तित कर दिया गया है जो आकार में गैर-आयताकार हैं। विधि एक "कैवलियरे क्षेत्र" को रूपांतरण <math>h</math> के साथ बदलना है, या <math>g = h^{-1}</math> को इंटीग्रैंड के रूप में उपयोग करना है।
 
किसी अंतराल <math>[a,b]</math> पर किसी दिए गए फलन <math>f(x)</math> के लिए, एक "अनुवादात्मक फलन " <math>a(y)</math> को अंतराल में किसी भी परिवर्तन के लिए बिल्कुल एक बार <math>(x,f(x ))</math> को काटना चाहिए। एक "कैवेलियरे क्षेत्र" तब <math>f(x),a(y)</math>, <math>x</math>-अक्ष और <math>b(y) = a(y) + (b-a)</math> से घिरा होता है। क्षेत्र का क्षेत्रफल तब है
:<math>\int_{a(y)}^{b(y)} f(x) \, dx \ = \ \int_{a'}^{b'} f(x) \, dg(x) ,</math>
:<math>\int_{a(y)}^{b(y)} f(x) \, dx \ = \ \int_{a'}^{b'} f(x) \, dg(x) ,</math>
कहाँ <math>a'</math> और <math>b'</math> हैं <math>x</math>-मूल्य कहाँ  <math>a(y)</math> और <math>b(y)</math> इंटरसेक्ट <math>f(x)</math>.
जहाँ <math>a'</math> और <math>b'</math> हैं <math>x</math>-मूल्य जहाँ <math>a(y)</math> और <math>b(y)</math> प्रतिच्छेद <math>f(x)</math>.है


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 157: Line 155:
* {{cite book |last=Stroock |first=Daniel W. |year=1998 |title=A Concise Introduction to the Theory of Integration |url=https://archive.org/details/conciseintroduct0000stro_q5r9 |url-access=registration |publisher=Birkhauser |edition=3rd |isbn=0-8176-4073-8}}
* {{cite book |last=Stroock |first=Daniel W. |year=1998 |title=A Concise Introduction to the Theory of Integration |url=https://archive.org/details/conciseintroduct0000stro_q5r9 |url-access=registration |publisher=Birkhauser |edition=3rd |isbn=0-8176-4073-8}}
* {{cite journal |last=Young |first=L.C. |title=An inequality of the Hölder type, connected with Stieltjes integration |journal=Acta Mathematica |volume=67 |year=1936 |issue=1 |pages=251–282 |doi=10.1007/bf02401743 |doi-access=free }}
* {{cite journal |last=Young |first=L.C. |title=An inequality of the Hölder type, connected with Stieltjes integration |journal=Acta Mathematica |volume=67 |year=1936 |issue=1 |pages=251–282 |doi=10.1007/bf02401743 |doi-access=free }}
{{integral}}
{{Bernhard Riemann}}


{{DEFAULTSORT:Riemann-Stieltjes integral}}[[Category: गणितीय एकीकरण की परिभाषाएँ]] [[Category: बर्नहार्ड रीमैन]]  
{{DEFAULTSORT:Riemann-Stieltjes integral}}[[Category: गणितीय एकीकरण की परिभाषाएँ]] [[Category: बर्नहार्ड रीमैन]]  
Line 167: Line 162:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/08/2023]]
[[Category:Created On 17/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:11, 16 October 2023

गणित में, रीमैन-स्टिल्टजेस इंटीग्रल, रीमैन अभिन्न का सामान्यीकरण है, जिसका नाम बर्नहार्ड रीमैन और थॉमस जोआन्स स्टिटजेस के नाम पर रखा गया है। इस इंटीग्रल की परिभाषा पहली बार 1894 में स्टिल्टजेस द्वारा प्रकाशित की गई थी।[1] यह लेब्सग इंटीग्रल के शिक्षाप्रद और उपयोगी अग्रदूत के रूप में कार्य करता है, और सांख्यिकीय प्रमेयों के समतुल्य रूपों को एकीकृत करने में अमूल्य उपकरण है जो अलग और निरंतर संभाव्यता पर प्रयुक्त होता है।

औपचारिक परिभाषा

एक अन्य वास्तविक-से-वास्तविक फलन के संबंध में अंतराल पर एक वास्तविक वेरिएबल के वास्तविक-मूल्यवान फलन का रीमैन-स्टिल्टजेस अभिन्न अंग द्वारा दर्शाया गया है

इसकी परिभाषा अंतराल के विभाजन के अनुक्रम का उपयोग करती है।

तब, अभिन्न को सीमा के रूप में परिभाषित किया जाता है, क्योंकि विभाजन का जाल (सबसे लंबे उपअंतराल की लंबाई) अनुमानित योग के तक पहुंच जाता है।

जहां , -वें उपअंतराल में है। दो फलन और को क्रमशः इंटीग्रैंड और इंटीग्रेटर कहा जाता है। जो कि समान्य रूप से को मोनोटोन (या कम से कम सीमित भिन्नता) और दाएं-अर्धविराम के रूप में लिया जाता है (चूँकि यह अंतिम अनिवार्य रूप से सम्मेलन है)। हमें विशिष्ट रूप से के सतत होने की आवश्यकता नहीं है, जो बिंदु द्रव्यमान पदों वाले अभिन्नों की अनुमति देता है।

यहां "सीमा" को एक संख्या A (रीमैन-स्टिल्टजेस इंटीग्रल का मान) के रूप में समझा जाता है, जैसे कि प्रत्येक ε > 0 के लिए, δ > 0 उपस्थित होता है, जैसे कि मानक (P) < δ के साथ प्रत्येक विभाजन p के लिए, और [xi, xi+1], में प्रत्येक बिंदु ci का प्रत्येक विकल्प है

गुण

रीमैन-स्टिल्टजेस इंटीग्रल फॉर्म में भागों द्वारा एकीकरण को स्वीकार करता है

और किसी भी अभिन्न का अस्तित्व दूसरे के अस्तित्व को दर्शाता है।[2]

दूसरी ओर, एक मौलिक परिणाम [3] से पता चलता है कि अभिन्न अच्छी तरह से परिभाषित है यदि f α-होल्डर निरंतर है और जी α + β > 1 के साथ β-होल्डर निरंतर है।

यदि को पर परिबद्ध किया गया है, जो नीरस रूप से बढ़ता है, और रीमैन इंटीग्रेबल है, तो रीमैन-स्टिल्टजेस इंटीग्रल रीमैन इंटीग्रल से संबंधित है

एक चरणीय कार्य के लिए
जहाँ , यदि , पर निरंतर है, तब

संभाव्यता सिद्धांत का अनुप्रयोग

यदि g एक यादृच्छिक वेरिएबल X का संचयी संभाव्यता वितरण फलन है जिसमें लेबेस्ग माप के संबंध में संभाव्यता घनत्व फलन है, और f कोई फलन है जिसके लिए अपेक्षित मान परिमित है, तो X की संभाव्यता घनत्व फलन g का व्युत्पन्न है और हमारे पास है

किन्तु यह सूत्र काम नहीं करता है यदि X के पास लेबेस्ग माप के संबंध में संभाव्यता घनत्व फलन नहीं है। जो कि विशेष रूप से, यह काम नहीं करता है यदि X का वितरण अलग है (अथार्त , सभी संभावनाओं को बिंदु-द्रव्यमान के आधार पर माना जाता है), और तथापि संचयी वितरण फलन g निरंतर है, यदि g बिल्कुल निरंतर होने में विफल रहता है तो यह काम नहीं करता है (फिर से, कैंटर फलन इस विफलता के उदाहरण के रूप में कार्य कर सकता है)। किन्तु पहचान

यदि g वास्तविक रेखा पर कोई संचयी संभाव्यता वितरण फलन है, तो इससे कोई अंतर नहीं पड़ता कि कितना बुरा व्यवहार किया गया है। जिसमे विशेष रूप से, कोई अंतर नहीं पड़ता कि यादृच्छिक वेरिएबल X का संचयी वितरण फलन g कितना खराब व्यवहार करता है, यदि क्षण (गणित) E(Xn) उपस्थिति है, तो यह समान है


कार्यात्मक विश्लेषण के लिए आवेदन

रीमैन-स्टिल्टजेस इंटीग्रल रीज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय या एफ के मूल सूत्रीकरण में प्रकट होता है। रिज़्ज़ का प्रमेय जो अंतराल [a,b] में निरंतर कार्यों के बनच समष्टि C[a,b] के दोहरे समष्टि का प्रतिनिधित्व करता है, जैसा कि रीमैन-स्टिल्टजेस बंधे हुए भिन्नता के कार्यों के विपरीत अभिन्न होता है। इसके पश्चात् में, उस प्रमेय को उपायों के संदर्भ में दोबारा तैयार किया गया था।

रीमैन-स्टिल्टजेस इंटीग्रल हिल्बर्ट स्थान में (गैर-कॉम्पैक्ट) स्व-सहायक (या अधिक सामान्यतः, सामान्य) ऑपरेटरों के लिए वर्णक्रमीय प्रमेय के निर्माण में भी दिखाई देता है। इस प्रमेय में, अनुमानों के वर्णक्रमीय वर्ग के संबंध में अभिन्न पर विचार किया जाता है।[4]

अभिन्न का अस्तित्व

सर्वोत्तम सरल अस्तित्व प्रमेय में कहा गया है कि यदि f निरंतर है और g [a, b] पर सीमित भिन्नता का है, तो अभिन्न अस्तित्व उपस्थिति है।[5][6][7] जिसमे फलन g सीमित भिन्नता वाला होता है यदि और केवल यदि यह दो (सीमाबद्ध) मोनोटोन फलन के मध्य का अंतर है। यदि g सीमित भिन्नता का नहीं है, तो ऐसे निरंतर कार्य होंगे जिन्हें g के संबंध में एकीकृत नहीं किया जा सकता है। जो कि समान्य रूप से, अभिन्न को अच्छी तरह से परिभाषित नहीं किया जाता है यदि f और g असंततता (गणित) के किसी भी बिंदु को साझा करते हैं, किन्तु अन्य स्थिति भी हैं।

ज्यामितीय व्याख्या

एक 3d प्लॉट, के साथ , , और सभी ओर्थोगोनल अक्षों के साथ, रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामितीय व्याख्या की ओर ले जाता है।[8]

रीमैन-स्टिल्टजेस इंटीग्रल की मूल ज्यामिति।

यदि - विमान क्षैतिज है और -दिशा ऊपर की ओर संकेत कर रही है, तो विचार की जाने वाली सतह एक घुमावदार फेंस की तरह है। जो फेंस द्वारा अनुरेखित वक्र का अनुसरण करती है, और फेंस की ऊंचाई द्वारा दी गई है। फेंस -शीट का खंड है (अथार्त , अक्ष के साथ विस्तारित वक्र) जो - विमान और -शीट के मध्य घिरा हुआ है। रीमैन-स्टीलजेस इंटीग्रल - प्लेन पर इस फेंस के प्रक्षेपण का क्षेत्र है - वास्तव में, इसकी "छाया" है ।

का स्लोप प्रक्षेपण के क्षेत्र पर भार डालता है। का मान जिसके लिए में सबसे तीव्र स्लोप है जो अधिक प्रक्षेपण वाले फेंस के क्षेत्रों के अनुरूप है और इस प्रकार अभिन्न अंग में सबसे अधिक भार रखता है।

वक्रता के प्रभाव रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामिति पर।

कब चरणीय कार्य है

फेंस में एक आयताकार "गेट" है जिसकी चौड़ाई 1 और ऊंचाई के समान है। इस प्रकार गेट और उसके प्रक्षेपण का क्षेत्रफल के समान है, जो रीमैन-स्टीलजेस इंटीग्रल का मान है।

एक चरण फलन का प्रभाव रीमैन-स्टिल्टजेस इंटीग्रल की ज्यामिति पर।

सामान्यीकरण

एक महत्वपूर्ण सामान्यीकरण लेब्सेग-स्टिल्टजेस इंटीग्रल है, जो रीमैन-स्टिल्टजेस इंटीग्रल को तरह से सामान्यीकृत करता है, जिस तरह से लेबेस्ग इंटीग्रल रीमैन इंटीग्रल को सामान्य बनाता है। यदि अनुचित इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की अनुमति है, तो लेबेस्ग इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की तुलना में दृढ़ता से अधिक सामान्य नहीं है।

रीमैन-स्टिल्टजेस इंटीग्रल उस स्थिति को भी सामान्यीकृत करता है जब या तो इंटीग्रैंड या इंटीग्रेटर जी बनच स्थान में मान लेते हैं। यदि g : [a,b] → X बनच स्थान X में मान लेता है, तो यह मान लेना स्वाभाविक है कि यह दृढ़ता से सीमित भिन्नता का है, जिसका अर्थ है कि

सर्वोच्च को सभी परिमित विभाजनों पर ले लिया जा रहा है

अंतराल का [a,b]. यह सामान्यीकरण लाप्लास-स्टिल्टजेस परिवर्तन के माध्यम से c0-अर्धसमूह के अध्ययन में भूमिका निभाता है।

इटो कैलकुलस|इटो इंटीग्रल, इंटीग्रैंड्स और इंटीग्रेटर्स को सम्मिलित करने के लिए रीमैन-स्टीटजेस इंटीग्रल का विस्तार करता है जो सरल कार्यों के अतिरिक्त स्टोकेस्टिक प्रक्रियाएं हैं; स्टोकेस्टिक कैलकुलस भी देखें।

सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल

एक समान्य सामान्यीकरण[9] उपरोक्त परिभाषा विभाजन p में विचार करना है जो एक और विभाजन Pε को परिष्कृत करता है, जिसका अर्थ है कि P एक महीन जाल के साथ विभाजन के अतिरिक्त बिंदुओं के योग से Pε से उत्पन्न होता है। जो कि विशेष रूप से, g के संबंध में f का सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल एक संख्या A है, जैसे कि प्रत्येक ε > 0 के लिए एक विभाजन Pε उपस्थित होता है, जैसे कि प्रत्येक विभाजन P के लिए जो Pε को परिष्कृत करता है,

[xi, xi+1] में बिंदु ci के प्रत्येक विकल्प के लिए।

यह सामान्यीकरण [a, b] के विभाजन के निर्देशित सेट पर मूर-स्मिथ सीमा के रूप में रीमैन-स्टिल्टजेस अभिन्न अंग को प्रदर्शित करता है।[10][11]

एक परिणाम यह है कि इस परिभाषा के साथ, अभिन्न अभी भी उन स्थितियों में परिभाषित किया जा सकता है जहां f और g में असंततता का बिंदु समान है।

डारबौक्स योग

रीमैन-स्टिल्टजेस इंटीग्रल को डार्बौक्स रकम के उचित सामान्यीकरण का उपयोग करके कुशलतापूर्वक नियंत्रित किया जा सकता है। विभाजन p और गैर-घटते फलन g के लिए [a, b] पर g के संबंध में f के ऊपरी डार्बौक्स योग को परिभाषित करें

और कम योग द्वारा

फिर g के संबंध में f का सामान्यीकृत रीमैन-स्टिल्टजेस उपस्थिति है यदि और केवल यदि, प्रत्येक ε > 0 के लिए, विभाजन P उपस्थिति है जैसे कि

इसके अतिरिक्त , f रीमैन-स्टिल्टजेस g के संबंध में पूर्णांक है (मौलिक अर्थ में) यदि

[12]

उदाहरण और विशेष स्थिति

अवकलनीय g(x)

एक दिया गया है जो पर निरंतर भिन्न है, यह दिखाया जा सकता है कि समानता है

जहां दाहिनी ओर का इंटीग्रल मानक रीमैन इंटीग्रल है, यह मानते हुए कि को रीमैन-स्टिल्टजेस इंटीग्रल द्वारा एकीकृत किया जा सकता है।

अधिक समान्य रूप से, रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल के समान होता है यदि इसके व्युत्पन्न का लेबेस्ग इंटीग्रल है; इस स्थिति में को पूर्णतः सतत कहा जाता है।

यह स्थिति हो सकता है कि में जंप डिसकंटीनिटीज़ हैं, या लगभग प्रत्येक समष्टि व्युत्पन्न शून्य हो सकता है जबकि अभी भी निरंतर और बढ़ रहा है (उदाहरण के लिए, कैंटर फलन या "शैतान की सीढ़ी" हो सकता है), इनमें से किसी भी स्थिति में रीमैन-स्टिल्टजेस इंटीग्रल को के डेरिवेटिव से जुड़े किसी भी अभिव्यक्ति द्वारा कैप्चर नहीं किया जाता है।

रीमैन इंटीग्रल

मानक रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल का विशेष स्थिति है जहाँ .

सुधारक

तंत्रिका नेटवर्क के अध्ययन में उपयोग किए जाने वाले फलन पर विचार करें, जिसे रेक्टिफाइड लीनियर यूनिट (आरईएलयू) कहा जाता है। तब रीमैन-स्टिल्टजेस का मूल्यांकन इस प्रकार किया जा सकता है

जहां दाहिनी ओर का इंटीग्रल मानक रीमैन इंटीग्रल है।

कैवेलियरी एकीकरण

फ़ाइल: रीमैन-Stieltjes integral.png|thumb|right|434x434px|फलन के लिए कैवलियरे इंटीग्रल का विज़ुअलाइज़ेशन

कैवलियरी के सिद्धांत का उपयोग रीमैन-स्टिल्टजेस इंटीग्रल्स का उपयोग करके वक्रों से घिरे क्षेत्रों की गणना करने के लिए किया जा सकता है। रीमैन एकीकरण की एकीकरण स्ट्रिप्स को उन स्ट्रिप्स से परिवर्तित कर दिया गया है जो आकार में गैर-आयताकार हैं। विधि एक "कैवलियरे क्षेत्र" को रूपांतरण के साथ बदलना है, या को इंटीग्रैंड के रूप में उपयोग करना है।

किसी अंतराल पर किसी दिए गए फलन के लिए, एक "अनुवादात्मक फलन " को अंतराल में किसी भी परिवर्तन के लिए बिल्कुल एक बार को काटना चाहिए। एक "कैवेलियरे क्षेत्र" तब , -अक्ष और से घिरा होता है। क्षेत्र का क्षेत्रफल तब है

जहाँ और हैं -मूल्य जहाँ और प्रतिच्छेद .है

टिप्पणियाँ

  1. Stieltjes (1894), pp. 68–71.
  2. Hille & Phillips (1974), §3.3.
  3. Young (1936).
  4. See Riesz & Sz. Nagy (1990) for details.
  5. Johnsonbaugh & Pfaffenberger (2010), p. 219.
  6. Rudin (1964), pp. 121–122.
  7. Kolmogorov & Fomin (1975), p. 368.
  8. Bullock (1988)
  9. Introduced by Pollard (1920) and now standard in analysis.
  10. McShane (1952).
  11. Hildebrandt (1938) calls it the Pollard–Moore–Stieltjes integral.
  12. Graves (1946), Chap. XII, §3.


संदर्भ