पर्ल्स विन्यास: Difference between revisions

From Vigyanwiki
No edit summary
m (17 revisions imported from alpha:पर्ल्स_विन्यास)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Irrational system of points and lines}}
{{Short description|Irrational system of points and lines}}
[[File:Perles configuration.svg|thumb|पर्ल्स विन्यास]]ज्यामिति में, '''पर्ल्स विन्यास''' [[यूक्लिडियन विमान]] में नौ बिंदुओं और नौ रेखाओं की प्रणाली है, जिसके लिए प्रत्येक संयोजनात्मक समतुल्य प्राप्ति के निर्देशांक में से एक के रूप में कम से कम [[अपरिमेय संख्या]] होती है। इसका निर्माण नियमित पंचभुज के विकर्णों और समरूपता रेखाओं में से एक को छोड़कर किया जा सकता है। बदले में, इसका उपयोग उच्च-आयामी [[उत्तल पॉलीटोप]] के निर्माण के लिए किया जा सकता है जिन्हें तर्कसंगत निर्देशांक नहीं दिया जा सकता है, जिसमें किसी भी ज्ञात उदाहरण के सबसे कम कोने होते हैं। [[प्रक्षेप्य तल]] में पर्ल्स विन्यास की सभी अनुभूतियाँ [[प्रक्षेप्य परिवर्तन]] के अनुसार एक दूसरे के समतुल्य हैं।
[[File:Perles configuration.svg|thumb|पर्ल्स विन्यास]]ज्यामिति में, '''पर्ल्स विन्यास''' [[यूक्लिडियन विमान]] में नौ बिंदुओं और नौ रेखाओं की प्रणाली है, जिसके लिए प्रत्येक संयोजनात्मक समतुल्य प्राप्ति के निर्देशांक में से एक के रूप में कम से कम [[अपरिमेय संख्या]] होती है। इसका निर्माण नियमित पंचभुज के विकर्णों और समरूपता रेखाओं में से एक को छोड़कर किया जा सकता है। इसका उपयोग उच्च-आयामी [[उत्तल पॉलीटोप]] के निर्माण के लिए किया जा सकता है जिन्हें तर्कसंगत निर्देशांक नहीं दिया जा सकता है, जिसमें किसी भी ज्ञात उदाहरण के सबसे कम कोने होते हैं। [[प्रक्षेप्य तल]] में पर्ल्स विन्यास की सभी अनुभूतियाँ [[प्रक्षेप्य परिवर्तन]] के अनुसार एक दूसरे के समतुल्य हैं।
 
'''[[प्रक्षेप्य परिवर्तन]]ों के अनुसार एक दूसरे के समअनुभूतिनुभूतियाँ [[प्रक्षेप्य परिवर्तन]] के अनुसार एक दूसरे के समतुल्य हैं।'''
 
==निर्माण==
==निर्माण==
पर्ल्स विन्यास के निर्माण की विधि नियमित [[पंचकोण]] और उसके पांच विकर्णों से प्रारंभ करना है। ये विकर्ण बाहरी पंचकोण के अंदर स्थित छोटे आंतरिक पंचकोण की भुजाएँ बनाते हैं। बाहरी पंचभुज का प्रत्येक शीर्ष आंतरिक पंचभुज के शीर्ष के विपरीत स्थित है। विन्यास के नौ बिंदुओं में प्रत्येक पंचकोण के पांच में से चार शीर्ष और दो पंचकोणों का साझा केंद्र सम्मिलित है। प्रत्येक पंचभुज से दो विपरीत शीर्ष हटा दिए गए हैं।{{sfnp|Ziegler|2008}}
पर्ल्स विन्यास के निर्माण की विधि नियमित [[पंचकोण]] और उसके पांच विकर्णों से प्रारंभ करना है। ये विकर्ण बाहरी पंचकोण के अंदर स्थित छोटे आंतरिक पंचकोण की भुजाएँ बनाते हैं। बाहरी पंचभुज का प्रत्येक शीर्ष आंतरिक पंचभुज के शीर्ष के विपरीत स्थित है। विन्यास के नौ बिंदुओं में प्रत्येक पंचकोण के पांच में से चार शीर्ष और दो पंचकोणों का साझा केंद्र सम्मिलित है। प्रत्येक पंचभुज से दो विपरीत शीर्ष हटा दिए गए हैं।{{sfnp|Ziegler|2008}}
Line 10: Line 7:


==प्रक्षेप्य अपरिवर्तनशीलता और अतार्किकता==
==प्रक्षेप्य अपरिवर्तनशीलता और अतार्किकता==
पर्ल्स विन्यास की प्राप्ति को समान प्रतिच्छेदन पैटर्न के साथ किन्हीं नौ बिंदुओं और नौ रेखाओं से मिलकर परिभाषित किया गया है। इसका मतलब यह है कि बिंदु और रेखा एक दूसरे को प्राप्ति में प्रतिच्छेद करते हैं, यदि और केवल यदि वे नियमित पंचकोण से निर्मित विन्यास में प्रतिच्छेद करते हैं। यूक्लिडियन विमान में या, अधिक सामान्यतः, वास्तविक प्रक्षेप्य विमान में इस विन्यास का प्रत्येक अनुभूति, प्रक्षेप्य परिवर्तन के अनुसार, नियमित पंचकोण से इस तरह से निर्मित अनुभूति के बराबर है।{{sfnp|Grünbaum|2003}}
पर्ल्स विन्यास की प्राप्ति को समान प्रतिच्छेदन पैटर्न के साथ किन्हीं नौ बिंदुओं और नौ रेखाओं से मिलकर परिभाषित किया गया है। इसका कारण यह है कि बिंदु और रेखा एक दूसरे को प्राप्ति में प्रतिच्छेद करते हैं, यदि और केवल यदि वे नियमित पंचकोण से निर्मित विन्यास में प्रतिच्छेद करते हैं। यूक्लिडियन विमान में या, अधिक सामान्यतः, वास्तविक प्रक्षेप्य विमान में इस विन्यास का प्रत्येक अनुभूति, प्रक्षेप्य परिवर्तन के अनुसार, नियमित पंचकोण से इस तरह से निर्मित अनुभूति के समान है।{{sfnp|Grünbaum|2003}}


क्योंकि क्रॉस-अनुपात, किन्हीं चार संरेख बिंदुओं से परिभाषित संख्या, प्रक्षेपी परिवर्तनों के अनुसार नहीं बदलती है, प्रत्येक प्राप्ति में चार बिंदु होते हैं जिनका क्रॉस-अनुपात नियमित पंचकोण से प्राप्त प्राप्ति में चार संरेख बिंदुओं के क्रॉस-अनुपात के समान होता है। किंतु, ये चार बिंदु <math>1+\varphi</math> हैं उनके क्रॉस-अनुपात के रूप में, जहाँ <math>\varphi</math> स्वर्णिम अनुपात, अपरिमेय संख्या है। तर्कसंगत निर्देशांक वाले प्रत्येक चार संरेख बिंदुओं में तर्कसंगत क्रॉस अनुपात होता है, इसलिए पर्ल्स विन्यास को तर्कसंगत बिंदुओं द्वारा अनुभूति नहीं किया जा सकता है। ब्रैंको ग्रुनबाम ने अनुमान लगाया है कि प्रत्येक विन्यास जिसे अपरिमेय किंतु परिमेय संख्याओं द्वारा अनुभूति किया जा सकता है, उसमें कम से कम नौ बिंदु होते हैं; यदि ऐसा है, तो पर्ल्स विन्यास बिंदुओं और रेखाओं का सबसे छोटा संभव अपरिमेय विन्यास होता है।{{sfnp|Grünbaum|2003}}
क्योंकि क्रॉस-अनुपात, किन्हीं चार संरेख बिंदुओं से परिभाषित संख्या, प्रक्षेपी परिवर्तनों के अनुसार नहीं परिवर्तित होती है, प्रत्येक प्राप्ति में चार बिंदु होते हैं जिनका क्रॉस-अनुपात नियमित पंचकोण से प्राप्त प्राप्ति में चार संरेख बिंदुओं के क्रॉस-अनुपात के समान होता है। किंतु, ये चार बिंदु <math>1+\varphi</math> हैं उनके क्रॉस-अनुपात के रूप में, जहाँ <math>\varphi</math> स्वर्णिम अनुपात, अपरिमेय संख्या है। तर्कसंगत निर्देशांक वाले प्रत्येक चार संरेख बिंदुओं में तर्कसंगत क्रॉस अनुपात होता है, इसलिए पर्ल्स विन्यास को तर्कसंगत बिंदुओं द्वारा अनुभूति नहीं किया जा सकता है। ब्रैंको ग्रुनबाम ने अनुमान लगाया है कि प्रत्येक विन्यास जिसे अपरिमेय किंतु परिमेय संख्याओं द्वारा अनुभूति किया जा सकता है, उसमें कम से कम नौ बिंदु होते हैं; यदि ऐसा है, तो पर्ल्स विन्यास बिंदुओं और रेखाओं का सबसे छोटा संभव अपरिमेय विन्यास होता है।{{sfnp|Grünbaum|2003}}


==पॉलीहेड्रल कॉम्बिनेटरिक्स में अनुप्रयोग==
==पॉलीहेड्रल कॉम्बिनेटरिक्स में अनुप्रयोग==
पर्ल्स ने अपने विन्यास का उपयोग बारह शीर्षों के साथ आठ-आयामी उत्तल पॉलीटोप के निर्माण के लिए किया, जिसे वास्तविक निर्देशांक के साथ समान रूप से अनुभूत किया जा सकता है, किंतु तर्कसंगत निर्देशांक के साथ नहीं किया जा सकता है। विन्यास के बिंदु, उनमें से तीन दोगुने हो गए और प्रत्येक बिंदु से जुड़े संकेतों के साथ, [[ पॉलीटोप मोती |पॉलीटोप पर्ल्स]] के [[आंधी आरेख]] का निर्माण करते हैं। [[अर्नेस्ट स्टीनिट्ज़]] के स्टीनिट्ज़ प्रमेय के प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि प्रत्येक त्रि-आयामी पॉलीटोप को तर्कसंगत निर्देशांक के साथ अनुभूत किया जा सकता है, किंतु अब यह ज्ञात है कि चार आयामों में तर्कहीन पॉलीटोप उपस्थित हैं। चूँकि, पर्ल्स पॉलीटोप में किसी भी ज्ञात अपरिमेय पॉलीटोप की तुलना में सबसे कम शीर्ष हैं।<ref>{{harvtxt|Grünbaum|2003}}, p. 96a.</ref>
पर्ल्स ने अपने विन्यास का उपयोग बारह शीर्षों के साथ आठ-आयामी उत्तल पॉलीटोप के निर्माण के लिए किया, जिसे वास्तविक निर्देशांक के साथ समान रूप से अनुभूत किया जा सकता है, किंतु तर्कसंगत निर्देशांक के साथ नहीं किया जा सकता है। विन्यास के बिंदु, उनमें से तीन दोगुने हो गए और प्रत्येक बिंदु से जुड़े संकेतों के साथ, [[ पॉलीटोप मोती |पॉलीटोप पर्ल्स]] के [[आंधी आरेख|अर्ध आरेख]] का निर्माण करते हैं। [[अर्नेस्ट स्टीनिट्ज़]] के स्टीनिट्ज़ प्रमेय के प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि प्रत्येक त्रि-आयामी पॉलीटोप को तर्कसंगत निर्देशांक के साथ अनुभूत किया जा सकता है, किंतु अब यह ज्ञात है कि चार आयामों में तर्कहीन पॉलीटोप उपस्थित हैं। चूँकि, पर्ल्स पॉलीटोप में किसी भी ज्ञात अपरिमेय पॉलीटोप की तुलना में सबसे कम शीर्ष हैं।<ref>{{harvtxt|Grünbaum|2003}}, p. 96a.</ref>
==इतिहास और संबंधित कार्य==
==इतिहास और संबंधित कार्य==
पर्ल्स विन्यास 1960 के दशक में [[मीका मोती|मीका पर्ल्स]] द्वारा प्रस्तुत किया गया था।<ref>{{harvtxt|Grünbaum|2003}}; {{harvtxt|Ziegler|2008}}; {{harvtxt|Berger|2010}}</ref> यह बिंदुओं और रेखाओं के अपरिमेय विन्यास का पहला ज्ञात उदाहरण नहीं है। {{harvtxt|मैक लेन|1936}} 11-बिंदु उदाहरण का वर्णन करता है, जो दो के वर्गमूल के अनुरूप विन्यास बनाने के लिए वॉन स्टॉड के थ्रो के बीजगणित को क्रियान्वित करके प्राप्त किया गया है।<ref>{{harvtxt|Mac Lane|1936}}; {{harvtxt|Ziegler|2008}}</ref>
पर्ल्स विन्यास 1960 के दशक में [[मीका मोती|मीका पर्ल्स]] द्वारा प्रस्तुत किया गया था।<ref>{{harvtxt|Grünbaum|2003}}; {{harvtxt|Ziegler|2008}}; {{harvtxt|Berger|2010}}</ref> यह बिंदुओं और रेखाओं के अपरिमेय विन्यास का पहला ज्ञात उदाहरण नहीं है। {{harvtxt|मैक लेन|1936}} 11-बिंदु उदाहरण का वर्णन करता है, जो दो के वर्गमूल के अनुरूप विन्यास बनाने के लिए वॉन स्टॉड के थ्रो के बीजगणित को क्रियान्वित करके प्राप्त किया गया है।<ref>{{harvtxt|Mac Lane|1936}}; {{harvtxt|Ziegler|2008}}</ref>


नियमित [[प्रक्षेप्य विन्यास]], बिंदुओं और रेखाओं की परिमित प्रणालियों के अध्ययन का लंबा इतिहास है जिसमें प्रत्येक बिंदु समान रूप से कई रेखाओं को छूता है और प्रत्येक रेखा समान रूप से कई बिंदुओं को छूती है। चूँकि, इन विन्यासों के समान नाम दिए जाने के अतिरिक्त, पर्ल्स विन्यास नियमित नहीं है: इसके अधिकांश बिंदु तीन रेखाओं को छूते हैं और इसकी अधिकांश रेखाएँ तीन बिंदुओं को छूती हैं, किंतु चार बिंदुओं की रेखा होती है और चार रेखाओं पर बिंदु होता है। इस संबंध में यह [[पप्पस विन्यास]] से भिन्न है, जिसमें नौ बिंदु और नौ रेखाएं भी हैं, किंतु प्रत्येक रेखा पर तीन बिंदु और प्रत्येक बिंदु से तीन रेखाएं होती हैं।{{sfnp|Berger|2010}}
नियमित [[प्रक्षेप्य विन्यास]], बिंदुओं और रेखाओं की परिमित प्रणालियों के अध्ययन का लंबा इतिहास है जिसमें प्रत्येक बिंदु समान रूप से विभिन्न रेखाओं को स्पर्श करता है और प्रत्येक रेखा समान रूप से विभिन्न बिंदुओं को स्पर्श करता है। चूँकि, इन विन्यासों के समान नाम दिए जाने के अतिरिक्त, पर्ल्स विन्यास नियमित नहीं है: इसके अधिकांश बिंदु तीन रेखाओं को स्पर्श करता हैं और इसकी अधिकांश रेखाएँ तीन बिंदुओं को स्पर्श करता हैं, किंतु चार बिंदुओं की रेखा होती है और चार रेखाओं पर बिंदु होता है। इस संबंध में यह [[पप्पस विन्यास]] से भिन्न है, जिसमें नौ बिंदु और नौ रेखाएं भी हैं, किंतु प्रत्येक रेखा पर तीन बिंदु और प्रत्येक बिंदु से तीन रेखाएं होती हैं।{{sfnp|Berger|2010}}


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 66: Line 63:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/08/2023]]
[[Category:Created On 13/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:26, 16 October 2023

पर्ल्स विन्यास

ज्यामिति में, पर्ल्स विन्यास यूक्लिडियन विमान में नौ बिंदुओं और नौ रेखाओं की प्रणाली है, जिसके लिए प्रत्येक संयोजनात्मक समतुल्य प्राप्ति के निर्देशांक में से एक के रूप में कम से कम अपरिमेय संख्या होती है। इसका निर्माण नियमित पंचभुज के विकर्णों और समरूपता रेखाओं में से एक को छोड़कर किया जा सकता है। इसका उपयोग उच्च-आयामी उत्तल पॉलीटोप के निर्माण के लिए किया जा सकता है जिन्हें तर्कसंगत निर्देशांक नहीं दिया जा सकता है, जिसमें किसी भी ज्ञात उदाहरण के सबसे कम कोने होते हैं। प्रक्षेप्य तल में पर्ल्स विन्यास की सभी अनुभूतियाँ प्रक्षेप्य परिवर्तन के अनुसार एक दूसरे के समतुल्य हैं।

निर्माण

पर्ल्स विन्यास के निर्माण की विधि नियमित पंचकोण और उसके पांच विकर्णों से प्रारंभ करना है। ये विकर्ण बाहरी पंचकोण के अंदर स्थित छोटे आंतरिक पंचकोण की भुजाएँ बनाते हैं। बाहरी पंचभुज का प्रत्येक शीर्ष आंतरिक पंचभुज के शीर्ष के विपरीत स्थित है। विन्यास के नौ बिंदुओं में प्रत्येक पंचकोण के पांच में से चार शीर्ष और दो पंचकोणों का साझा केंद्र सम्मिलित है। प्रत्येक पंचभुज से दो विपरीत शीर्ष हटा दिए गए हैं।[1]

विन्यास की नौ रेखाओं में पाँच रेखाएँ सम्मिलित हैं जो बाहरी पंचकोण के विकर्ण और आंतरिक पंचभुज की भुजाएँ हैं, और चार रेखाएँ हैं जो केंद्र से होकर निकलती हैं और दो पंचकोणों के शीर्षों के विपरीत जोड़े से होकर निकलती हैं।[1]

प्रक्षेप्य अपरिवर्तनशीलता और अतार्किकता

पर्ल्स विन्यास की प्राप्ति को समान प्रतिच्छेदन पैटर्न के साथ किन्हीं नौ बिंदुओं और नौ रेखाओं से मिलकर परिभाषित किया गया है। इसका कारण यह है कि बिंदु और रेखा एक दूसरे को प्राप्ति में प्रतिच्छेद करते हैं, यदि और केवल यदि वे नियमित पंचकोण से निर्मित विन्यास में प्रतिच्छेद करते हैं। यूक्लिडियन विमान में या, अधिक सामान्यतः, वास्तविक प्रक्षेप्य विमान में इस विन्यास का प्रत्येक अनुभूति, प्रक्षेप्य परिवर्तन के अनुसार, नियमित पंचकोण से इस तरह से निर्मित अनुभूति के समान है।[2]

क्योंकि क्रॉस-अनुपात, किन्हीं चार संरेख बिंदुओं से परिभाषित संख्या, प्रक्षेपी परिवर्तनों के अनुसार नहीं परिवर्तित होती है, प्रत्येक प्राप्ति में चार बिंदु होते हैं जिनका क्रॉस-अनुपात नियमित पंचकोण से प्राप्त प्राप्ति में चार संरेख बिंदुओं के क्रॉस-अनुपात के समान होता है। किंतु, ये चार बिंदु हैं उनके क्रॉस-अनुपात के रूप में, जहाँ स्वर्णिम अनुपात, अपरिमेय संख्या है। तर्कसंगत निर्देशांक वाले प्रत्येक चार संरेख बिंदुओं में तर्कसंगत क्रॉस अनुपात होता है, इसलिए पर्ल्स विन्यास को तर्कसंगत बिंदुओं द्वारा अनुभूति नहीं किया जा सकता है। ब्रैंको ग्रुनबाम ने अनुमान लगाया है कि प्रत्येक विन्यास जिसे अपरिमेय किंतु परिमेय संख्याओं द्वारा अनुभूति किया जा सकता है, उसमें कम से कम नौ बिंदु होते हैं; यदि ऐसा है, तो पर्ल्स विन्यास बिंदुओं और रेखाओं का सबसे छोटा संभव अपरिमेय विन्यास होता है।[2]

पॉलीहेड्रल कॉम्बिनेटरिक्स में अनुप्रयोग

पर्ल्स ने अपने विन्यास का उपयोग बारह शीर्षों के साथ आठ-आयामी उत्तल पॉलीटोप के निर्माण के लिए किया, जिसे वास्तविक निर्देशांक के साथ समान रूप से अनुभूत किया जा सकता है, किंतु तर्कसंगत निर्देशांक के साथ नहीं किया जा सकता है। विन्यास के बिंदु, उनमें से तीन दोगुने हो गए और प्रत्येक बिंदु से जुड़े संकेतों के साथ, पॉलीटोप पर्ल्स के अर्ध आरेख का निर्माण करते हैं। अर्नेस्ट स्टीनिट्ज़ के स्टीनिट्ज़ प्रमेय के प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि प्रत्येक त्रि-आयामी पॉलीटोप को तर्कसंगत निर्देशांक के साथ अनुभूत किया जा सकता है, किंतु अब यह ज्ञात है कि चार आयामों में तर्कहीन पॉलीटोप उपस्थित हैं। चूँकि, पर्ल्स पॉलीटोप में किसी भी ज्ञात अपरिमेय पॉलीटोप की तुलना में सबसे कम शीर्ष हैं।[3]

इतिहास और संबंधित कार्य

पर्ल्स विन्यास 1960 के दशक में मीका पर्ल्स द्वारा प्रस्तुत किया गया था।[4] यह बिंदुओं और रेखाओं के अपरिमेय विन्यास का पहला ज्ञात उदाहरण नहीं है। मैक लेन (1936) 11-बिंदु उदाहरण का वर्णन करता है, जो दो के वर्गमूल के अनुरूप विन्यास बनाने के लिए वॉन स्टॉड के थ्रो के बीजगणित को क्रियान्वित करके प्राप्त किया गया है।[5]

नियमित प्रक्षेप्य विन्यास, बिंदुओं और रेखाओं की परिमित प्रणालियों के अध्ययन का लंबा इतिहास है जिसमें प्रत्येक बिंदु समान रूप से विभिन्न रेखाओं को स्पर्श करता है और प्रत्येक रेखा समान रूप से विभिन्न बिंदुओं को स्पर्श करता है। चूँकि, इन विन्यासों के समान नाम दिए जाने के अतिरिक्त, पर्ल्स विन्यास नियमित नहीं है: इसके अधिकांश बिंदु तीन रेखाओं को स्पर्श करता हैं और इसकी अधिकांश रेखाएँ तीन बिंदुओं को स्पर्श करता हैं, किंतु चार बिंदुओं की रेखा होती है और चार रेखाओं पर बिंदु होता है। इस संबंध में यह पप्पस विन्यास से भिन्न है, जिसमें नौ बिंदु और नौ रेखाएं भी हैं, किंतु प्रत्येक रेखा पर तीन बिंदु और प्रत्येक बिंदु से तीन रेखाएं होती हैं।[6]

टिप्पणियाँ

संदर्भ

  • Berger, Marcel (2010), "I.4 Three configurations of the affine plane and what has happened to them: Pappus, Desargues, and Perles", Geometry revealed, Berlin, New York: Springer-Verlag, pp. 17–23, doi:10.1007/978-3-540-70997-8, ISBN 978-3-540-70996-1, MR 2724440
  • Grünbaum, Branko (2003), Convex polytopes, Graduate Texts in Mathematics, vol. 221 (Second ed.), New York: Springer-Verlag, pp. 93–95, ISBN 978-0-387-00424-2, MR 1976856
  • Mac Lane, Saunders (1936), "Some interpretations of abstract linear dependence in terms of projective geometry", American Journal of Mathematics, 58 (1): 236–240, doi:10.2307/2371070, JSTOR 2371070, MR 1507146
  • Ziegler, Günter M. (2008), "Nonrational configurations, polytopes, and surfaces", The Mathematical Intelligencer, 30 (3): 36–42, arXiv:0710.4453, doi:10.1007/BF02985377, MR 2437198