विद्युत-क्षेत्र अभिन्न समीकरण: Difference between revisions
(Created page with "{{Multiple issues| {{disputed|date=April 2008}} {{confusing|date=March 2009}} }} विद्युत-क्षेत्र अभिन्न समीकरण एक ऐ...") |
m (14 revisions imported from alpha:विद्युत-क्षेत्र_अभिन्न_समीकरण) |
||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
विद्युत-क्षेत्र समाकल समीकरण एक ऐसा संबंध है जो विद्युत धारा वितरण ({{math|'''J'''}}) द्वारा उत्पन्न [[विद्युत क्षेत्र]] ({{math|'''E'''}}) की गणना की अनुमति देता है। | |||
विद्युत-क्षेत्र | |||
==व्युत्पत्ति== | ==व्युत्पत्ति== | ||
जब आवृत्ति | जब आवृत्ति प्रक्षेत्र में सभी मात्राओं पर विचार किया जाता है, तो एक कालाश्रित <math>e^{jwt}</math> जो कि पूर्णतया दबा दी जाती है, मान ली जाती है। | ||
विद्युत और [[चुंबकीय क्षेत्र]] से संबंधित [[मैक्सवेल समीकरण]] | विद्युत और [[चुंबकीय क्षेत्र]] से संबंधित [[मैक्सवेल समीकरण|मैक्सवेल समीकरणों]] से प्रारम्भ करना तथा [[पारगम्यता (विद्युत चुंबकत्व)]] <math>\mu</math> और [[परावैद्युतांक|विद्युतशीलता]] <math>\varepsilon\,</math>के साथ एक रैखिक, सजातीय माध्य मानते हुए:<math display="block">\begin{align} | ||
<math display="block">\begin{align} | |||
\nabla \times \mathbf{E} &= -j \omega \mu \mathbf{H} \\[1ex] | \nabla \times \mathbf{E} &= -j \omega \mu \mathbf{H} \\[1ex] | ||
\nabla \times \mathbf{H} &= j \omega \varepsilon \mathbf{E} + \mathbf{J} | \nabla \times \mathbf{H} &= j \omega \varepsilon \mathbf{E} + \mathbf{J} | ||
\end{align}</math> | \end{align}</math><br />{{math|'''H'''}} के [[विचलन]] से सम्बद्ध तृतीय समीकरण के पश्चात | ||
<math display="block">\nabla \cdot \mathbf{H} = 0\,</math> | <math display="block">\nabla \cdot \mathbf{H} = 0\,</math> | ||
[[ वेक्टर कलन ]] द्वारा हम किसी भी | [[ वेक्टर कलन |वेक्टर कैलकुलस]] द्वारा हम किसी भी अपसरण रहित वेक्टर को अन्य वेक्टर के [[कर्ल (गणित)]] के रूप में लिख सकते हैं, इसलिए | ||
<math display="block">\nabla \times \mathbf{A} = \mathbf{H}</math> | <math display="block">\nabla \times \mathbf{A} = \mathbf{H}</math> | ||
जहाँ A को चुंबकीय सदिश विभव कहा जाता है। उपरोक्त में इसे प्रतिस्थापित करने पर हमें प्राप्त होता है | जहाँ A को चुंबकीय सदिश विभव कहा जाता है। उपरोक्त में इसे प्रतिस्थापित करने पर हमें प्राप्त होता है | ||
<math display="block">\nabla \times (\mathbf{E} + j \omega \mu \mathbf{A}) = 0</math> | <math display="block">\nabla \times (\mathbf{E} + j \omega \mu \mathbf{A}) = 0</math> | ||
और | और किसी भी कर्ल-मुक्त वेक्टर को एक अदिश के प्रवणता ([[ ग्रेडियेंट |ग्रेडिएंट)]] के रूप में लिखा जा सकता है, इसलिए | ||
<math display="block">\mathbf{E} + j \omega \mu \mathbf{A} = - \nabla \Phi </math> | <math display="block">\mathbf{E} + j \omega \mu \mathbf{A} = - \nabla \Phi </math> | ||
जहाँ <math>\Phi</math> विद्युत अदिश विभव है। ये सम्बंध अब हमें लिखने की अनुमति देते हैं | |||
<math display="block">\nabla \times \nabla \times \mathbf{A} - k^2\mathbf{A} = \mathbf{J} - j \omega \varepsilon \nabla \Phi </math> | <math display="block">\nabla \times \nabla \times \mathbf{A} - k^2\mathbf{A} = \mathbf{J} - j \omega \varepsilon \nabla \Phi </math> | ||
जहाँ <math>k = \omega \sqrt{\mu \varepsilon}</math>, जिसे वेक्टर सर्वसमिका द्वारा पुनः लिखा जा सकता है | |||
<math display="block">\nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} - k^2 2\mathbf{A} = \mathbf{J} - j \omega \varepsilon \nabla \Phi </math> | <math display="block">\nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} - k^2 2\mathbf{A} = \mathbf{J} - j \omega \varepsilon \nabla \Phi </math> | ||
चूँकि हमने केवल {{math|'''A'''}} का कर्ल निर्दिष्ट किया है, हम विचलन को परिभाषित करने और निम्नलिखित का चयन करने के लिए स्वतंत्र हैं: | |||
<math display="block">\nabla \cdot \mathbf{A} = - j \omega \varepsilon \Phi \,</math> | <math display="block">\nabla \cdot \mathbf{A} = - j \omega \varepsilon \Phi \,</math> | ||
जिसे [[लोरेन्ज़ गेज स्थिति]] कहा जाता है। | जिसे [[लोरेन्ज़ गेज स्थिति]] कहा जाता है। {{math|'''A'''}} के लिए पूर्व व्यंजक अब कम हो गया है | ||
<math display="block">\nabla^2 \mathbf{A} + k^2\mathbf{A} = -\mathbf{J}\,</math> | <math display="block">\nabla^2 \mathbf{A} + k^2\mathbf{A} = -\mathbf{J}\,</math> | ||
जो वेक्टर [[हेल्महोल्ट्ज़ समीकरण]] है। | जो वेक्टर [[हेल्महोल्ट्ज़ समीकरण]] है। {{math|'''A'''}} के लिए इस समीकरण का हल है | ||
<math display="block">\mathbf{A}(\mathbf{r}) = \frac{1}{4 \pi} \int \mathbf{J}(\mathbf{r}^{\prime}) \ G(\mathbf{r}, \mathbf{r}^{\prime}) \, d\mathbf{r}^{\prime} </math> | <math display="block">\mathbf{A}(\mathbf{r}) = \frac{1}{4 \pi} \int \mathbf{J}(\mathbf{r}^{\prime}) \ G(\mathbf{r}, \mathbf{r}^{\prime}) \, d\mathbf{r}^{\prime} </math> | ||
जहाँ <math>G(\mathbf{r}, \mathbf{r}^{\prime})</math> द्वारा दिया गया त्रि-आयामी सजातीय ग्रीन का फलन है | |||
<math display="block">G(\mathbf{r}, \mathbf{r}^{\prime}) = \frac{e^{-j k \left|\mathbf{r} - \mathbf{r}^{\prime}\right|}}{\left|\mathbf{r} - \mathbf{r}^{\prime}\right|}</math> | <math display="block">G(\mathbf{r}, \mathbf{r}^{\prime}) = \frac{e^{-j k \left|\mathbf{r} - \mathbf{r}^{\prime}\right|}}{\left|\mathbf{r} - \mathbf{r}^{\prime}\right|}</math> | ||
अब हम विद्युत क्षेत्र | अब हम विद्युत क्षेत्र {{math|'''E'''}} को सदिश विभव '''A''' से संबंधित विद्युत क्षेत्र समाकल समीकरण (EFIE) लिख सकते हैं | ||
<math display="block">\mathbf{E} = -j \omega \mu \mathbf{A} + \frac{1}{j \omega \varepsilon} \nabla (\nabla \cdot \mathbf{A})\,</math> | <math display="block">\mathbf{E} = -j \omega \mu \mathbf{A} + \frac{1}{j \omega \varepsilon} \nabla (\nabla \cdot \mathbf{A})\,</math> | ||
हम | हम EFIE को युग्मकीय रूप में भी प्रस्तुत कर सकते हैं | ||
<math display="block">\mathbf{E} = -j \omega \mu \int_V d \mathbf{r}^{\prime} \mathbf{G}(\mathbf{r}, \mathbf{r}^{\prime}) \cdot \mathbf{J}(\mathbf{r}^{\prime}) \,</math> | <math display="block">\mathbf{E} = -j \omega \mu \int_V d \mathbf{r}^{\prime} \mathbf{G}(\mathbf{r}, \mathbf{r}^{\prime}) \cdot \mathbf{J}(\mathbf{r}^{\prime}) \,</math> | ||
जहाँ <math>\mathbf{G}(\mathbf{r}, \mathbf{r}^{\prime})\,</math>द्वारा दिया गया युग्मकीय सजातीय ग्रीन फलन है | |||
<math display="block">\mathbf{G}(\mathbf{r}, \mathbf{r}^{\prime}) = \frac{1}{4 \pi} \left[ \mathbf{I}+\frac{\nabla \nabla}{k^2} \right] G(\mathbf{r}, \mathbf{r}^{\prime}) </math> | <math display="block">\mathbf{G}(\mathbf{r}, \mathbf{r}^{\prime}) = \frac{1}{4 \pi} \left[ \mathbf{I}+\frac{\nabla \nabla}{k^2} \right] G(\mathbf{r}, \mathbf{r}^{\prime}) </math> | ||
==व्याख्या== | ==व्याख्या== | ||
EFIE एक | EFIE एक विकिरित क्षेत्र {{math|'''E'''}} का वर्णन करता है जिसे स्रोतों {{math|'''J'''}} का एक समुच्चय दिया गया है और इस प्रकार यह [[एंटीना (रेडियो)]] विश्लेषण और प्रारुप में उपयोग किया जाने वाला मौलिक समीकरण है। यह एक अत्यधिक सामान्य संबंध है जिसका उपयोग किसी भी प्रकार के एंटीना के विकिरित क्षेत्र की गणना करने के लिए किया जा सकता है, जब उस पर धारा वितरण ज्ञात हो जाता है। EFIE का अत्यधिक महत्वपूर्ण तथ्य यह है कि यह हमें किसी [[असीमित सेट|अपरिबद्ध क्षेत्र]] या जिसकी सीमा [[अनंत]] पर स्थित है, उसमें विकिरण/प्रकीर्णन समस्या को हल करने की अनुमति देता है। संवृत सतहों के लिए, चुंबकीय क्षेत्र समाकल समीकरण या उभयनिष्ठ क्षेत्र समाकल समीकरण का उपयोग करना संभव है, जिसके परिणामस्वरूप ईएफआईई की तुलना में बेहतर स्थिति संख्या वाले समीकरणों का एक समुच्चय प्राप्त होता है। हालाँकि, MFIE और CFIE में अभी भी प्रतिध्वनि हो सकती है। | ||
अवकीर्णन की समस्याओं में, एक अज्ञात अवकीर्ण क्षेत्र <math>E_{s}</math> को निर्धारित करना वांछनीय है जो एक ज्ञात आपतित क्षेत्र <math>E_{i}</math> के कारण होता है। दुर्भाग्य से, EFIE अवकीर्ण क्षेत्र को {{math|'''J'''}} से सम्बद्ध करता है जबकि आपतित क्षेत्र को {{math|'''J'''}} से सम्बद्ध नहीं करता है इसलिए हम नहीं जानते कि {{math|'''J'''}} क्या है। इस प्रकार की समस्या को आपतित और अवकीर्ण क्षेत्र पर सीमा की शर्तों को प्रयुक्त करके हल किया जा सकता है, जिससे व्यक्ति को केवल <math>E_{i}</math> और {{math|'''J'''}} के संदर्भ में ईएफआईई लिखने की अनुमति मिल सके। एक बार यह हो जाने के पश्चात समाकल समीकरण को क्षणों की विधि जैसे समाकल समीकरणों के लिए उपयुक्त संख्यात्मक तकनीक द्वारा हल किया जा सकता है। | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
[[Helmholtz theorem (vector calculus)|हेल्महोल्ट्ज़ प्रमेय]] द्वारा एक सदिश क्षेत्र को उसके विचलन और कर्ल द्वारा पूर्णतया वर्णित किया जाता है। चूंकि विचलन को परिभाषित नहीं किया गया था, इसलिए हम उपरोक्त लोरेंज गेज स्थिति का चयन करके न्यायोचित हैं, किन्तु शर्त यह है कि हम बाद के सभी विश्लेषणों में {{math|'''A'''}} के विचलन की इस परिभाषा का निरंतर उपयोग करें। जबकि, <math>\nabla\cdot\mathbf{A}</math> के लिए अन्य विकल्प भी उतने ही मान्य हैं और वे अन्य समीकरणों हेतु मार्गदर्शन करते हैं जो सभी एक ही घटना को वर्णित करते हैं एवं <math>\nabla\cdot\mathbf{A}</math> के किसी भी विकल्प हेतु समीकरणों के समाधान समान विद्युत चुम्बकीय क्षेत्रों और समान भौतिक अनुमानों की ओर ले जाते हैं तथा उनके द्वारा क्षेत्र और आवेशों को उत्प्रेरित किया जाता है। | |||
यह सोचना स्वाभाविक है कि यदि कोई मात्रा अपने चयन में स्वतंत्रता की इस डिग्री को प्रदर्शित करती है तो इसकी वास्तविक भौतिक मात्रा के रूप में व्याख्या नहीं की जानी चाहिए। अंततः, यदि हम स्वतंत्र रूप से <math>\nabla\cdot\mathbf{A}</math> का कुछ भी होने के लिए चयन कर सकते हैं तो <math>\mathbf{A}</math> अद्वितीय नहीं है। कोई पूछ सकता है: किसी प्रयोग में मापा गया <math>\mathbf{A}</math> का "सही" मान क्या है? यदि <math>\mathbf{A}</math> अद्वितीय नहीं है, तो एकमात्र तार्किक उत्तर यह होना चाहिए कि हम <math>\mathbf{A}</math> का मान कभी नहीं माप सकते। इस आधार पर, प्रायः यह कहा जाता है कि यह वास्तविक भौतिक मात्रा नहीं है तथा यह माना जाता है कि क्षेत्र <math>\mathbf{E}</math> और <math>\mathbf{B}</math> वास्तविक भौतिक मात्रा हैं। | |||
हालाँकि, कम से कम एक प्रयोग ऐसा है जिसमें आवेशित कण के स्थान पर <math>\mathbf{E}</math> और <math>\mathbf{B}</math> दोनों का मान शून्य है, किन्तु फिर भी यह स्थानीय चुंबकीय सदिश विभव की उपस्थिति से प्रभावित होता है; विवरण के लिए [[Aharonov–Bohm effect#Potentials vs. fields|अहरोनोव-बोहम प्रभाव]] देखें। तथापि, अहरोनोव-बोहम प्रयोग में भी अपसरण <math>\mathbf{A}</math> कभी भी गणना में सम्मिलित नहीं होता है; कण के पथ के साथ केवल <math>\nabla\times\mathbf{A}</math> मापने योग्य प्रभाव निर्धारित करता है। | |||
==संदर्भ== | ==संदर्भ== | ||
{{refbegin}} | {{refbegin}} | ||
Line 71: | Line 60: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 10/08/2023]] | [[Category:Created On 10/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:29, 16 October 2023
विद्युत-क्षेत्र समाकल समीकरण एक ऐसा संबंध है जो विद्युत धारा वितरण (J) द्वारा उत्पन्न विद्युत क्षेत्र (E) की गणना की अनुमति देता है।
व्युत्पत्ति
जब आवृत्ति प्रक्षेत्र में सभी मात्राओं पर विचार किया जाता है, तो एक कालाश्रित जो कि पूर्णतया दबा दी जाती है, मान ली जाती है।
विद्युत और चुंबकीय क्षेत्र से संबंधित मैक्सवेल समीकरणों से प्रारम्भ करना तथा पारगम्यता (विद्युत चुंबकत्व) और विद्युतशीलता के साथ एक रैखिक, सजातीय माध्य मानते हुए:
H के विचलन से सम्बद्ध तृतीय समीकरण के पश्चात
व्याख्या
EFIE एक विकिरित क्षेत्र E का वर्णन करता है जिसे स्रोतों J का एक समुच्चय दिया गया है और इस प्रकार यह एंटीना (रेडियो) विश्लेषण और प्रारुप में उपयोग किया जाने वाला मौलिक समीकरण है। यह एक अत्यधिक सामान्य संबंध है जिसका उपयोग किसी भी प्रकार के एंटीना के विकिरित क्षेत्र की गणना करने के लिए किया जा सकता है, जब उस पर धारा वितरण ज्ञात हो जाता है। EFIE का अत्यधिक महत्वपूर्ण तथ्य यह है कि यह हमें किसी अपरिबद्ध क्षेत्र या जिसकी सीमा अनंत पर स्थित है, उसमें विकिरण/प्रकीर्णन समस्या को हल करने की अनुमति देता है। संवृत सतहों के लिए, चुंबकीय क्षेत्र समाकल समीकरण या उभयनिष्ठ क्षेत्र समाकल समीकरण का उपयोग करना संभव है, जिसके परिणामस्वरूप ईएफआईई की तुलना में बेहतर स्थिति संख्या वाले समीकरणों का एक समुच्चय प्राप्त होता है। हालाँकि, MFIE और CFIE में अभी भी प्रतिध्वनि हो सकती है।
अवकीर्णन की समस्याओं में, एक अज्ञात अवकीर्ण क्षेत्र को निर्धारित करना वांछनीय है जो एक ज्ञात आपतित क्षेत्र के कारण होता है। दुर्भाग्य से, EFIE अवकीर्ण क्षेत्र को J से सम्बद्ध करता है जबकि आपतित क्षेत्र को J से सम्बद्ध नहीं करता है इसलिए हम नहीं जानते कि J क्या है। इस प्रकार की समस्या को आपतित और अवकीर्ण क्षेत्र पर सीमा की शर्तों को प्रयुक्त करके हल किया जा सकता है, जिससे व्यक्ति को केवल और J के संदर्भ में ईएफआईई लिखने की अनुमति मिल सके। एक बार यह हो जाने के पश्चात समाकल समीकरण को क्षणों की विधि जैसे समाकल समीकरणों के लिए उपयुक्त संख्यात्मक तकनीक द्वारा हल किया जा सकता है।
टिप्पणियाँ
हेल्महोल्ट्ज़ प्रमेय द्वारा एक सदिश क्षेत्र को उसके विचलन और कर्ल द्वारा पूर्णतया वर्णित किया जाता है। चूंकि विचलन को परिभाषित नहीं किया गया था, इसलिए हम उपरोक्त लोरेंज गेज स्थिति का चयन करके न्यायोचित हैं, किन्तु शर्त यह है कि हम बाद के सभी विश्लेषणों में A के विचलन की इस परिभाषा का निरंतर उपयोग करें। जबकि, के लिए अन्य विकल्प भी उतने ही मान्य हैं और वे अन्य समीकरणों हेतु मार्गदर्शन करते हैं जो सभी एक ही घटना को वर्णित करते हैं एवं के किसी भी विकल्प हेतु समीकरणों के समाधान समान विद्युत चुम्बकीय क्षेत्रों और समान भौतिक अनुमानों की ओर ले जाते हैं तथा उनके द्वारा क्षेत्र और आवेशों को उत्प्रेरित किया जाता है।
यह सोचना स्वाभाविक है कि यदि कोई मात्रा अपने चयन में स्वतंत्रता की इस डिग्री को प्रदर्शित करती है तो इसकी वास्तविक भौतिक मात्रा के रूप में व्याख्या नहीं की जानी चाहिए। अंततः, यदि हम स्वतंत्र रूप से का कुछ भी होने के लिए चयन कर सकते हैं तो अद्वितीय नहीं है। कोई पूछ सकता है: किसी प्रयोग में मापा गया का "सही" मान क्या है? यदि अद्वितीय नहीं है, तो एकमात्र तार्किक उत्तर यह होना चाहिए कि हम का मान कभी नहीं माप सकते। इस आधार पर, प्रायः यह कहा जाता है कि यह वास्तविक भौतिक मात्रा नहीं है तथा यह माना जाता है कि क्षेत्र और वास्तविक भौतिक मात्रा हैं।
हालाँकि, कम से कम एक प्रयोग ऐसा है जिसमें आवेशित कण के स्थान पर और दोनों का मान शून्य है, किन्तु फिर भी यह स्थानीय चुंबकीय सदिश विभव की उपस्थिति से प्रभावित होता है; विवरण के लिए अहरोनोव-बोहम प्रभाव देखें। तथापि, अहरोनोव-बोहम प्रयोग में भी अपसरण कभी भी गणना में सम्मिलित नहीं होता है; कण के पथ के साथ केवल मापने योग्य प्रभाव निर्धारित करता है।
संदर्भ
- Gibson, Walton C. The Method of Moments in Electromagnetics. Chapman & Hall/CRC, 2008. ISBN 978-1-4200-6145-1
- Harrington, Roger F. Time-Harmonic Electromagnetic Fields. McGraw-Hill, Inc., 1961. ISBN 0-07-026745-6.
- Balanis, Constantine A. Advanced Engineering Electromagnetics. Wiley, 1989. ISBN 0-471-62194-3.
- Chew, Weng C. Waves and Fields in Inhomogeneous Media. IEEE Press, 1995. ISBN 0-7803-4749-8.
- Rao, Wilton, Glisson. Electromagnetic Scattering by Surfaces of Arbitrary Shape. IEEE Transactions on Antennas and Propagation, vol, AP-30, No. 3, May 1982. doi:10.1109/TAP.1982.1142818