सिंगल फ्रीक्वेंसी नेटवर्क: Difference between revisions
(Created page with "{{other uses|SFN (disambiguation)}} एकल-आवृत्ति नेटवर्क या एसएफएन एक प्रसारण नेटवर्क...") |
m (9 revisions imported from alpha:सिंगल_फ्रीक्वेंसी_नेटवर्क) |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{other uses| | {{other uses|एसएफएन (बहुविकल्पी)}} | ||
[[ | '''एकल-[[आवृत्ति]] नेटवर्क''' या एसएफएन एक [[प्रसारण नेटवर्क]] है जहां अनेक [[ट्रांसमीटर]] एक साथ एक ही आवृत्ति चैनल पर एक ही सिग्नल भेजते हैं। | ||
[[File:SFN model.svg|thumb|upright|'''सिंगल फ़्रीक्वेंसी नेटवर्क मॉडल<br />शीर्ष: मल्टी फ़्रीक्वेंसी नेटवर्क<br />नीचे:सिंगल फ़्रीक्वेंसी नेटवर्क''']]एनालॉग आयाम मॉड्यूलेशन और [[आवृति का उतार - चढ़ाव]] रेडियो [[प्रसारण]] नेटवर्क के साथ-साथ डिजिटल प्रसारण नेटवर्क भी इस तरीके से काम कर सकते हैं। एसएफएन सामान्यतः [[एनालॉग टेलीविजन]] प्रसारण के साथ संगत नहीं होते हैं, क्योंकि एसएफएन के परिणामस्वरूप एक ही सिग्नल की गूँज के कारण भूत (टेलीविजन) उत्पन्न होता है। | |||
एसएफएन का | एसएफएन का एक सरलीकृत रूप कम पावर वाले सह-चैनल पुनरावर्तक रेडियो रिपीटर, बूस्टर या [[ प्रसारण अनुवादक |प्रसारण अनुवादक]] द्वारा प्राप्त किया जा सकता है, जिसका उपयोग गैप फिलर ट्रांसमीटर के रूप में किया जाता है। | ||
एसएफएन | एसएफएन का उद्देश्य [[रेडियो स्पेक्ट्रम]] का कुशल उपयोग करना है, जिससे पारंपरिक [[बहु-आवृत्ति नेटवर्क]] (एमएफएन) ट्रांसमिशन की तुलना में अधिक संख्या में रेडियो और टीवी कार्यक्रमों की अनुमति मिलती है। एक एसएफएन कवरेज क्षेत्र को भी बढ़ा सकता है और एमएफएन की तुलना में आउटेज की संभावना को कम कर सकता है, क्योंकि कुल प्राप्त सिग्नल की शक्ति ट्रांसमीटरों के मध्य की स्थिति तक बढ़ सकती है। | ||
एसएफएन ट्रांसमिशन को मल्टीपाथ प्रसार का एक गंभीर रूप बनाने वाला माना जा सकता है। रेडियो रिसीवर को एक ही सिग्नल की | एसएफएन योजनाएं कुछ सीमा तक गैर-प्रसारण वायरलेस संचार के समान हैं, उदाहरण के लिए [[सेल्युलर नेटवर्क]] और वायरलेस कंप्यूटर नेटवर्क, जिसे ट्रांसमीटर [[वृहत विविधता]], [[सीडीएमए]] [[नरम हैंडऑफ़]] और [[डायनेमिक सिंगल फ़्रीक्वेंसी नेटवर्क]] (डीएसएफएन) कहा जाता है। | ||
एसएफएन ट्रांसमिशन को मल्टीपाथ प्रसार का एक गंभीर रूप बनाने वाला माना जा सकता है। रेडियो रिसीवर को एक ही सिग्नल की अनेक गूँजें प्राप्त होती हैं, और इन गूँजों के मध्य रचनात्मक या विनाशकारी [[हस्तक्षेप (तरंग प्रसार)]] (जिसे '''आत्म-हस्तक्षेप''' के रूप में भी जाना जाता है) के परिणामस्वरूप लुप्त हो सकता है। यह विशेष रूप से [[वाइडबैंड]] संचार और उच्च-डेटा दर डिजिटल संचार में समस्याग्रस्त है, क्योंकि उस मामले में फ़ेडिंग आवृत्ति-चयनात्मक है (फ्लैट फ़ेडिंग के विपरीत), और चूंकि समय-समय पर प्रतिध्वनि फैलने से इंटरसिंबल हस्तक्षेप (आईएसआई) हो सकता है। [[विविधता योजना]]ओं और समकरण (संचार) के माध्यम से [[लुप्त होती]] और आईएसआई से बचा जा सकता है। | |||
ट्रांसमीटर, जो एसएफएन का हिस्सा हैं, का उपयोग [[दिशा खोज]] के माध्यम से नेविगेशन के लिए नहीं किया जाना चाहिए क्योंकि सिग्नल मिनिमा या सिग्नल मैक्सिमा की दिशा ट्रांसमीटर की दिशा से भिन्न हो सकती है। | ट्रांसमीटर, जो एसएफएन का हिस्सा हैं, का उपयोग [[दिशा खोज]] के माध्यम से नेविगेशन के लिए नहीं किया जाना चाहिए क्योंकि सिग्नल मिनिमा या सिग्नल मैक्सिमा की दिशा ट्रांसमीटर की दिशा से भिन्न हो सकती है। | ||
== [[ओएफडीएम]] और [[सीओएफडीएम]] == | == '''[[ओएफडीएम]] और [[सीओएफडीएम]]''' == | ||
वाइडबैंड [[डिजिटल प्रसारण]] में, ओएफडीएम या सीओएफडीएम मॉड्यूलेशन विधि द्वारा [[स्व-हस्तक्षेप रद्दीकरण]] की सुविधा प्रदान की जाती है। ओएफडीएम एक तेज़ वाइड-बैंड [[ न्यूनाधिक ]] के | वाइडबैंड [[डिजिटल प्रसारण]] में, ओएफडीएम या सीओएफडीएम मॉड्यूलेशन विधि द्वारा [[स्व-हस्तक्षेप रद्दीकरण]] की सुविधा प्रदान की जाती है। ओएफडीएम एक तेज़ वाइड-बैंड [[ न्यूनाधिक |न्यूनाधिक]] के अतिरिक्त बड़ी संख्या में धीमे कम-बैंडविड्थ मॉड्यूलेटर का उपयोग करता है। प्रत्येक मॉड्यूलेटर की अपनी आवृत्ति उप-चैनल और उप-वाहक आवृत्ति होती है। चूंकि प्रत्येक मॉड्यूलेटर बहुत धीमा है, हम प्रतीकों के मध्य एक [[रक्षक मध्यांतर]] डालने का कठिन परिस्थिति उठा सकते हैं, और इस प्रकार आईएसआई को खत्म कर सकते हैं। यद्यपि लुप्त होती संपूर्ण आवृत्ति चैनल पर आवृत्ति-चयनात्मक है, इसे नैरोबैंड उप-चैनल के अंदर फ्लैट लुप्त होती के रूप में माना जा सकता है। इस प्रकार, उन्नत समकारी फ़िल्टर से बचा जा सकता है। एक [[ आगे त्रुटि सुधार |आगे त्रुटि सुधार]] कोड (एफईसी) कुछ उप-वाहकों को सही ढंग से डिमोड्युलेट करने के लिए बहुत अधिक लुप्त होने से बचा सकता है। | ||
ओएफडीएम का उपयोग स्थलीय [[डिजिटल टीवी]] प्रसारण प्रणाली [[डीवीबी-टी]] ([[यूरोप]] और अन्य क्षेत्रों में प्रयुक्त), [[ ISDB-T |ISDB-T]] ([[जापान]] और [[ब्राज़िल]] में प्रयुक्त) और एटीएससी 3.0 में किया जाता है। ओएफडीएम का उपयोग [[डिजिटल रेडियो]] पद्धति में भी व्यापक रूप से किया जाता है, जिसमें [[डिजिटल ऑडियो प्रसारण]], [[एचडी रेडियो]] और [[टी-डीएमबी]] सम्मिलित हैं। इसलिए, यह पद्धति एसएफएन ऑपरेशन के लिए उपयुक्त हैं। | |||
== '''डीवीबी-टी एसएफएन''' == | |||
डीवीबी-टी में एक एसएफएन कार्यक्षमता को कार्यान्वयन गाइड में एक प्रणाली के रूप में वर्णित किया गया है।<ref name=ETSITR101190>ETSI TR 101 190: [http://www.etsi.org/deliver/etsi_tr/101100_101199/101190/01.03.01_60/tr_101190v010301p.pdf ''Digital Video Broadcasting (DVB); Implementation guidelines for DVB terrestrial services; Transmission aspects'']</ref> यह री-ट्रांसमीटर, गैप-फिलर ट्रांसमीटर (अनिवार्य रूप से एक कम-शक्ति सिंक्रोनस ट्रांसमीटर) और मुख्य ट्रांसमीटर टावरों के मध्य एसएफएन के उपयोग की अनुमति देता है। | |||
= | डीवीबी-टी एसएफएन इस तथ्य का उपयोग करता है कि सीओएफडीएम सिग्नल का गार्ड अंतराल विभिन्न लंबाई की पथ प्रतिध्वनि की अनुमति देता है जो एक ही आवृत्ति पर एक ही सिग्नल को प्रसारित करने वाले अनेक ट्रांसमीटरों से भिन्न नहीं है। महत्वपूर्ण पैरामीटर यह है कि इसे लगभग एक ही समय में और एक ही आवृत्ति पर घटित होना चाहिए। [[ GPS |GPS]] रिसीवर (यहां पीपीएस और 10 मेगाहर्ट्ज सिग्नल प्रदान करने के लिए माना जाता है) के साथ-साथ अन्य समान प्रणालियों की बहुमुखी प्रतिभा ट्रांसमीटरों के मध्य चरण और आवृत्ति समन्वय की अनुमति देती है। गार्ड अंतराल एक समय बजट की अनुमति देता है, जिसमें से अनेक माइक्रोसेकंड का उपयोग समय-स्थानांतरण प्रणाली की समय त्रुटियों के लिए आवंटित किया जा सकता है।<ref name=ETSITR101190/> एक जीपीएस रिसीवर सबसे खराब स्थिति में, विशिष्ट कॉन्फ़िगरेशन में डीवीबी-टी एसएफएन की पद्धति आवश्यकताओं के अंदर , +/- 1 μs समय प्रदान करने में सक्षम है। | ||
सभी ट्रांसमीटरों पर समान ट्रांसमिशन समय प्राप्त करने के लिए, ट्रांसमीटरों को परिवहन प्रदान करने वाले नेटवर्क में ट्रांसमिशन देरी पर विचार करने की आवश्यकता है। चूंकि प्रारंभिक स्थल से ट्रांसमीटर तक देरी भिन्न-भिन्न होती है, इसलिए आउटपुट पक्ष पर देरी जोड़ने के लिए एक प्रणाली की आवश्यकता होती है जिससे कि सिग्नल एक ही समय में ट्रांसमीटर तक पहुंच जाए। इसे मेगा-फ़्रेम इनिशियलाइज़ेशन पैकेट (एमआईपी) नामक डेटा स्ट्रीम में डाली गई विशेष जानकारी के उपयोग से प्राप्त किया जाता है, जिसे मेगा-फ़्रेम बनाने वाले एमपीईजी -2 ट्रांसपोर्ट स्ट्रीम में एक विशेष मार्कर का उपयोग करके डाला जाता है। एमआईपी को एसएफएन एडाप्टर में टाइम-स्टैम्प किया गया है, जैसा कि पीपीएस सिग्नल के सापेक्ष मापा जाता है और अधिकतम विलंब (एसएफएन एडाप्टर में प्रोग्राम किया गया) के साथ 100 एनएस चरणों (10 मेगाहर्ट्ज की अवधि समय) में गिना जाता है। SYNC एडाप्टर वास्तविक नेटवर्क विलंब को मापने के लिए 10 मेगाहर्ट्ज का उपयोग करके पीपीएस के अपने स्थानीय संस्करण के विरुद्ध एमआईपी पैकेट को मापता है और फिर अधिकतम विलंब प्राप्त होने तक पैकेट को रोकता है। विवरण ईटीएसआई टीआर 101 190 में पाया जाना है <ref name=ETSITR101190/>और ईटीएसआई टीएस 101 191 में मेगा-फ़्रेम विवरण।<ref name=ETSITS101191>ETSI TS 101 191: [http://www.etsi.org/deliver/etsi_ts/101100_101199/101191/01.04.01_60/ts_101191v010401p.pdf ''Digital Video Broadcasting (DVB); DVB mega-frame for Single Frequency Network (SFN) synchronization'']</ref> | |||
यह समझा जाना चाहिए कि मेगा-फ़्रेम प्रारूप का रिज़ॉल्यूशन 100 एनएस के चरणों में हो रहा है, जबकि त्रुटिहीनता की आवश्यकता 1-5 μs की सीमा में हो सकती है। आवश्यक त्रुटिहीनता के लिए रिज़ॉल्यूशन पर्याप्त है। त्रुटिहीनता सीमा की कोई सख्त आवश्यकता नहीं है क्योंकि यह एक नेटवर्क नियोजन पहलू है, जिसमें गार्ड-अंतराल को पद्धति समय त्रुटि और पथ समय-त्रुटि में विभाजित किया जा रहा है। 100 एनएस कदम 30 मीटर के अंतर को दर्शाता है, जबकि 1 μs 300 मीटर के अंतर को दर्शाता है। इन दूरियों की तुलना ट्रांसमीटर टावरों और प्रतिबिंबों के मध्य की सबसे खराब स्थिति वाली दूरी से की जानी चाहिए। इसके अतिरिक्त, समय त्रुटिहीनता एसएफएन डोमेन में पास के टावरों से संबंधित है, क्योंकि एक रिसीवर से भौगोलिक रूप से दूर होने वाले ट्रांसमिशन टावरों से सिग्नल देखने की उम्मीद नहीं की जाती है, इसलिए इन टावरों के मध्य कोई त्रुटिहीनता की आवश्यकता नहीं है। | |||
तथाकथित जीपीएस-मुक्त समाधान उपस्तिथ हैं, जो अनिवार्य रूप से समय वितरण प्रणाली के रूप में जीपीएस को प्रतिस्थापित करते हैं। ऐसी प्रणाली एमपीईजी-2 ट्रांसपोर्ट स्ट्रीम के लिए ट्रांसमिशन पद्धति के साथ एकीकरण में लाभ प्रदान कर सकती है। यह एसएफएन प्रणाली के किसी अन्य पहलू को नहीं बदलता है क्योंकि मूलभूत आवश्यकताओं को पूरा किया जा सकता है। | |||
=='''एटीएससी और 8वीएसबी'''== | |||
{{main article|वितरित पारेषण प्रणाली}} | |||
चूँकि इसे ऑन-चैनल रिपीटर्स को ध्यान में रखकर डिज़ाइन नहीं किया गया है, डिजिटल टीवी के लिए [[उत्तरी अमेरिका]] में उपयोग की जाने वाली [[8VSB]] मॉड्यूलेशन विधि [[चरण रद्दीकरण]] में अपेक्षाकृत अच्छी है। [[डब्ल्यूपीएसयू-टीवी]] के प्रारंभिक प्रयोगों से एसएफएन, ए/110 के लिए [[एटीएससी मानक]] तैयार हुआ। एटीएससी एसएफएन का व्यापक उपयोग [[प्यूर्टो रिको]] और दक्षिणी कैलिफ़ोर्निया जैसे पहाड़ी क्षेत्रों में देखा गया है, किन्तु हल्के इलाकों में भी इसका उपयोग या योजना बनाई गई है।<ref>{{cite web |url=http://www.rabbitears.info/oddsandends.php?request=drlist&class=DD |title = RabbitEars.Info}}</ref> | |||
प्रारंभिक [[एटीएससी ट्यूनर]] मल्टीपाथ प्रसार को संभालने में बहुत अच्छे नहीं थे, किन्तु पश्चात् के पद्धति में महत्वपूर्ण सुधार देखे गए हैं।<ref>{{cite web | |||
|url=https://www.fcc.gov/oet/info/documents/reports/TR-05-1017-ATSC-reception-testing.pdf |title=Tests of ATSC 8-VSB Reception Performance of Consumer Digital Television Receivers Available in 2005|date=2 November 2005 |website=FCC|access-date=17 July 2023}}</ref> | |url=https://www.fcc.gov/oet/info/documents/reports/TR-05-1017-ATSC-reception-testing.pdf |title=Tests of ATSC 8-VSB Reception Performance of Consumer Digital Television Receivers Available in 2005|date=2 November 2005 |website=FCC|access-date=17 July 2023}}</ref> | ||
==वैकल्पिक मॉड्यूलेशन== | [[ आभासी चैनल |आभासी चैनल]] नंबरिंग के उपयोग के माध्यम से, एक मल्टी-फ़्रीक्वेंसी नेटवर्क (एमएफएन) एटीएससी में दर्शकों को एसएफएन के रूप में दिखाई दे सकता है। | ||
=='''वैकल्पिक मॉड्यूलेशन'''== | |||
एसएफएन स्व-हस्तक्षेप रद्दीकरण में ओएफडीएम मॉड्यूलेशन का उपयोग करने के विकल्प होंगे: | एसएफएन स्व-हस्तक्षेप रद्दीकरण में ओएफडीएम मॉड्यूलेशन का उपयोग करने के विकल्प होंगे: | ||
* सीडीएमए [[रेक रिसीवर]]। | * सीडीएमए [[रेक रिसीवर]]। | ||
* एमआईएमओ चैनल ( | * एमआईएमओ चैनल (अर्थात चरणबद्ध सरणी एंटीना) | ||
* [[एकल-वाहक आवृत्ति-डोमेन-समीकरण]] (एससी-एफडीई), | * [[एकल-वाहक आवृत्ति-डोमेन-समीकरण]] (एससी-एफडीई), अर्थात गार्ड अंतराल और [[फास्ट फूरियर ट्रांसफॉर्म]] फ़्रीक्वेंसी डोमेन इक्वलाइज़ेशन, या इसके बहु-उपयोगकर्ता संस्करण [[ एकल-वाहक FDMA |एकल-वाहक FDMA]] (एससी-एफडीएमए) के साथ संयुक्त सिंगल-कैरियर मॉड्यूलेशन। | ||
== यह भी देखें == | == '''यह भी देखें''' == | ||
*[[वितरित पारेषण प्रणाली]] | *[[वितरित पारेषण प्रणाली]] | ||
*प्रसारण अनुवादक | *प्रसारण अनुवादक | ||
Line 54: | Line 58: | ||
*[[अर्ध-तुल्यकालिक संचरण]] | *[[अर्ध-तुल्यकालिक संचरण]] | ||
==संदर्भ== | =='''संदर्भ'''== | ||
{{Reflist}} | {{Reflist}} | ||
=='''बाहरी संबंध'''== | |||
*[http://ftp.enensys.com/documents/whitePapers/ENENSYS%20Technologies%20-%20Single_frequency_network%20Overview.pdf एकल आवृत्ति नेटवर्क का विधि ी अवलोकन] | |||
==बाहरी संबंध== | *मोबाइल सेलुलर शहरी वातावरण और सेल टोपोलॉजी में एसएफएन के क्षेत्र-मापे गए लाभों के उदाहरण के लिए, क्रिश्चियन ले फ्लोक, रेजिस डुवाल देखें "पूर्ण नेटवर्क स्तर पर डीवीबी-एसएच अभिव्यक्तियों पर एसएफएन (एस-यूएमटीएस बैंड रेडियो प्रसार प्रदर्शन मूल्यांकन)", 20 मार्च 2009, ओपन एक्सेस वेबसाइट पर [https://sites.google.com/site/dvbsh4real/articles-1 Google साइटें: साइन-इन करें] | ||
*[http://ftp.enensys.com/documents/whitePapers/ENENSYS%20Technologies%20-%20Single_frequency_network%20Overview.pdf | |||
* | |||
[[Category: डिजिटल टेलीविजन]] [[Category: प्रसारण इंजीनियरिंग]] [[Category: रेडियो संसाधन प्रबंधन]] | [[Category: डिजिटल टेलीविजन]] [[Category: प्रसारण इंजीनियरिंग]] [[Category: रेडियो संसाधन प्रबंधन]] | ||
Line 67: | Line 69: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/08/2023]] | [[Category:Created On 17/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:49, 16 October 2023
एकल-आवृत्ति नेटवर्क या एसएफएन एक प्रसारण नेटवर्क है जहां अनेक ट्रांसमीटर एक साथ एक ही आवृत्ति चैनल पर एक ही सिग्नल भेजते हैं।
एनालॉग आयाम मॉड्यूलेशन और आवृति का उतार - चढ़ाव रेडियो प्रसारण नेटवर्क के साथ-साथ डिजिटल प्रसारण नेटवर्क भी इस तरीके से काम कर सकते हैं। एसएफएन सामान्यतः एनालॉग टेलीविजन प्रसारण के साथ संगत नहीं होते हैं, क्योंकि एसएफएन के परिणामस्वरूप एक ही सिग्नल की गूँज के कारण भूत (टेलीविजन) उत्पन्न होता है।
एसएफएन का एक सरलीकृत रूप कम पावर वाले सह-चैनल पुनरावर्तक रेडियो रिपीटर, बूस्टर या प्रसारण अनुवादक द्वारा प्राप्त किया जा सकता है, जिसका उपयोग गैप फिलर ट्रांसमीटर के रूप में किया जाता है।
एसएफएन का उद्देश्य रेडियो स्पेक्ट्रम का कुशल उपयोग करना है, जिससे पारंपरिक बहु-आवृत्ति नेटवर्क (एमएफएन) ट्रांसमिशन की तुलना में अधिक संख्या में रेडियो और टीवी कार्यक्रमों की अनुमति मिलती है। एक एसएफएन कवरेज क्षेत्र को भी बढ़ा सकता है और एमएफएन की तुलना में आउटेज की संभावना को कम कर सकता है, क्योंकि कुल प्राप्त सिग्नल की शक्ति ट्रांसमीटरों के मध्य की स्थिति तक बढ़ सकती है।
एसएफएन योजनाएं कुछ सीमा तक गैर-प्रसारण वायरलेस संचार के समान हैं, उदाहरण के लिए सेल्युलर नेटवर्क और वायरलेस कंप्यूटर नेटवर्क, जिसे ट्रांसमीटर वृहत विविधता, सीडीएमए नरम हैंडऑफ़ और डायनेमिक सिंगल फ़्रीक्वेंसी नेटवर्क (डीएसएफएन) कहा जाता है।
एसएफएन ट्रांसमिशन को मल्टीपाथ प्रसार का एक गंभीर रूप बनाने वाला माना जा सकता है। रेडियो रिसीवर को एक ही सिग्नल की अनेक गूँजें प्राप्त होती हैं, और इन गूँजों के मध्य रचनात्मक या विनाशकारी हस्तक्षेप (तरंग प्रसार) (जिसे आत्म-हस्तक्षेप के रूप में भी जाना जाता है) के परिणामस्वरूप लुप्त हो सकता है। यह विशेष रूप से वाइडबैंड संचार और उच्च-डेटा दर डिजिटल संचार में समस्याग्रस्त है, क्योंकि उस मामले में फ़ेडिंग आवृत्ति-चयनात्मक है (फ्लैट फ़ेडिंग के विपरीत), और चूंकि समय-समय पर प्रतिध्वनि फैलने से इंटरसिंबल हस्तक्षेप (आईएसआई) हो सकता है। विविधता योजनाओं और समकरण (संचार) के माध्यम से लुप्त होती और आईएसआई से बचा जा सकता है।
ट्रांसमीटर, जो एसएफएन का हिस्सा हैं, का उपयोग दिशा खोज के माध्यम से नेविगेशन के लिए नहीं किया जाना चाहिए क्योंकि सिग्नल मिनिमा या सिग्नल मैक्सिमा की दिशा ट्रांसमीटर की दिशा से भिन्न हो सकती है।
ओएफडीएम और सीओएफडीएम
वाइडबैंड डिजिटल प्रसारण में, ओएफडीएम या सीओएफडीएम मॉड्यूलेशन विधि द्वारा स्व-हस्तक्षेप रद्दीकरण की सुविधा प्रदान की जाती है। ओएफडीएम एक तेज़ वाइड-बैंड न्यूनाधिक के अतिरिक्त बड़ी संख्या में धीमे कम-बैंडविड्थ मॉड्यूलेटर का उपयोग करता है। प्रत्येक मॉड्यूलेटर की अपनी आवृत्ति उप-चैनल और उप-वाहक आवृत्ति होती है। चूंकि प्रत्येक मॉड्यूलेटर बहुत धीमा है, हम प्रतीकों के मध्य एक रक्षक मध्यांतर डालने का कठिन परिस्थिति उठा सकते हैं, और इस प्रकार आईएसआई को खत्म कर सकते हैं। यद्यपि लुप्त होती संपूर्ण आवृत्ति चैनल पर आवृत्ति-चयनात्मक है, इसे नैरोबैंड उप-चैनल के अंदर फ्लैट लुप्त होती के रूप में माना जा सकता है। इस प्रकार, उन्नत समकारी फ़िल्टर से बचा जा सकता है। एक आगे त्रुटि सुधार कोड (एफईसी) कुछ उप-वाहकों को सही ढंग से डिमोड्युलेट करने के लिए बहुत अधिक लुप्त होने से बचा सकता है।
ओएफडीएम का उपयोग स्थलीय डिजिटल टीवी प्रसारण प्रणाली डीवीबी-टी (यूरोप और अन्य क्षेत्रों में प्रयुक्त), ISDB-T (जापान और ब्राज़िल में प्रयुक्त) और एटीएससी 3.0 में किया जाता है। ओएफडीएम का उपयोग डिजिटल रेडियो पद्धति में भी व्यापक रूप से किया जाता है, जिसमें डिजिटल ऑडियो प्रसारण, एचडी रेडियो और टी-डीएमबी सम्मिलित हैं। इसलिए, यह पद्धति एसएफएन ऑपरेशन के लिए उपयुक्त हैं।
डीवीबी-टी एसएफएन
डीवीबी-टी में एक एसएफएन कार्यक्षमता को कार्यान्वयन गाइड में एक प्रणाली के रूप में वर्णित किया गया है।[1] यह री-ट्रांसमीटर, गैप-फिलर ट्रांसमीटर (अनिवार्य रूप से एक कम-शक्ति सिंक्रोनस ट्रांसमीटर) और मुख्य ट्रांसमीटर टावरों के मध्य एसएफएन के उपयोग की अनुमति देता है।
डीवीबी-टी एसएफएन इस तथ्य का उपयोग करता है कि सीओएफडीएम सिग्नल का गार्ड अंतराल विभिन्न लंबाई की पथ प्रतिध्वनि की अनुमति देता है जो एक ही आवृत्ति पर एक ही सिग्नल को प्रसारित करने वाले अनेक ट्रांसमीटरों से भिन्न नहीं है। महत्वपूर्ण पैरामीटर यह है कि इसे लगभग एक ही समय में और एक ही आवृत्ति पर घटित होना चाहिए। GPS रिसीवर (यहां पीपीएस और 10 मेगाहर्ट्ज सिग्नल प्रदान करने के लिए माना जाता है) के साथ-साथ अन्य समान प्रणालियों की बहुमुखी प्रतिभा ट्रांसमीटरों के मध्य चरण और आवृत्ति समन्वय की अनुमति देती है। गार्ड अंतराल एक समय बजट की अनुमति देता है, जिसमें से अनेक माइक्रोसेकंड का उपयोग समय-स्थानांतरण प्रणाली की समय त्रुटियों के लिए आवंटित किया जा सकता है।[1] एक जीपीएस रिसीवर सबसे खराब स्थिति में, विशिष्ट कॉन्फ़िगरेशन में डीवीबी-टी एसएफएन की पद्धति आवश्यकताओं के अंदर , +/- 1 μs समय प्रदान करने में सक्षम है।
सभी ट्रांसमीटरों पर समान ट्रांसमिशन समय प्राप्त करने के लिए, ट्रांसमीटरों को परिवहन प्रदान करने वाले नेटवर्क में ट्रांसमिशन देरी पर विचार करने की आवश्यकता है। चूंकि प्रारंभिक स्थल से ट्रांसमीटर तक देरी भिन्न-भिन्न होती है, इसलिए आउटपुट पक्ष पर देरी जोड़ने के लिए एक प्रणाली की आवश्यकता होती है जिससे कि सिग्नल एक ही समय में ट्रांसमीटर तक पहुंच जाए। इसे मेगा-फ़्रेम इनिशियलाइज़ेशन पैकेट (एमआईपी) नामक डेटा स्ट्रीम में डाली गई विशेष जानकारी के उपयोग से प्राप्त किया जाता है, जिसे मेगा-फ़्रेम बनाने वाले एमपीईजी -2 ट्रांसपोर्ट स्ट्रीम में एक विशेष मार्कर का उपयोग करके डाला जाता है। एमआईपी को एसएफएन एडाप्टर में टाइम-स्टैम्प किया गया है, जैसा कि पीपीएस सिग्नल के सापेक्ष मापा जाता है और अधिकतम विलंब (एसएफएन एडाप्टर में प्रोग्राम किया गया) के साथ 100 एनएस चरणों (10 मेगाहर्ट्ज की अवधि समय) में गिना जाता है। SYNC एडाप्टर वास्तविक नेटवर्क विलंब को मापने के लिए 10 मेगाहर्ट्ज का उपयोग करके पीपीएस के अपने स्थानीय संस्करण के विरुद्ध एमआईपी पैकेट को मापता है और फिर अधिकतम विलंब प्राप्त होने तक पैकेट को रोकता है। विवरण ईटीएसआई टीआर 101 190 में पाया जाना है [1]और ईटीएसआई टीएस 101 191 में मेगा-फ़्रेम विवरण।[2]
यह समझा जाना चाहिए कि मेगा-फ़्रेम प्रारूप का रिज़ॉल्यूशन 100 एनएस के चरणों में हो रहा है, जबकि त्रुटिहीनता की आवश्यकता 1-5 μs की सीमा में हो सकती है। आवश्यक त्रुटिहीनता के लिए रिज़ॉल्यूशन पर्याप्त है। त्रुटिहीनता सीमा की कोई सख्त आवश्यकता नहीं है क्योंकि यह एक नेटवर्क नियोजन पहलू है, जिसमें गार्ड-अंतराल को पद्धति समय त्रुटि और पथ समय-त्रुटि में विभाजित किया जा रहा है। 100 एनएस कदम 30 मीटर के अंतर को दर्शाता है, जबकि 1 μs 300 मीटर के अंतर को दर्शाता है। इन दूरियों की तुलना ट्रांसमीटर टावरों और प्रतिबिंबों के मध्य की सबसे खराब स्थिति वाली दूरी से की जानी चाहिए। इसके अतिरिक्त, समय त्रुटिहीनता एसएफएन डोमेन में पास के टावरों से संबंधित है, क्योंकि एक रिसीवर से भौगोलिक रूप से दूर होने वाले ट्रांसमिशन टावरों से सिग्नल देखने की उम्मीद नहीं की जाती है, इसलिए इन टावरों के मध्य कोई त्रुटिहीनता की आवश्यकता नहीं है।
तथाकथित जीपीएस-मुक्त समाधान उपस्तिथ हैं, जो अनिवार्य रूप से समय वितरण प्रणाली के रूप में जीपीएस को प्रतिस्थापित करते हैं। ऐसी प्रणाली एमपीईजी-2 ट्रांसपोर्ट स्ट्रीम के लिए ट्रांसमिशन पद्धति के साथ एकीकरण में लाभ प्रदान कर सकती है। यह एसएफएन प्रणाली के किसी अन्य पहलू को नहीं बदलता है क्योंकि मूलभूत आवश्यकताओं को पूरा किया जा सकता है।
एटीएससी और 8वीएसबी
चूँकि इसे ऑन-चैनल रिपीटर्स को ध्यान में रखकर डिज़ाइन नहीं किया गया है, डिजिटल टीवी के लिए उत्तरी अमेरिका में उपयोग की जाने वाली 8VSB मॉड्यूलेशन विधि चरण रद्दीकरण में अपेक्षाकृत अच्छी है। डब्ल्यूपीएसयू-टीवी के प्रारंभिक प्रयोगों से एसएफएन, ए/110 के लिए एटीएससी मानक तैयार हुआ। एटीएससी एसएफएन का व्यापक उपयोग प्यूर्टो रिको और दक्षिणी कैलिफ़ोर्निया जैसे पहाड़ी क्षेत्रों में देखा गया है, किन्तु हल्के इलाकों में भी इसका उपयोग या योजना बनाई गई है।[3]
प्रारंभिक एटीएससी ट्यूनर मल्टीपाथ प्रसार को संभालने में बहुत अच्छे नहीं थे, किन्तु पश्चात् के पद्धति में महत्वपूर्ण सुधार देखे गए हैं।[4]
आभासी चैनल नंबरिंग के उपयोग के माध्यम से, एक मल्टी-फ़्रीक्वेंसी नेटवर्क (एमएफएन) एटीएससी में दर्शकों को एसएफएन के रूप में दिखाई दे सकता है।
वैकल्पिक मॉड्यूलेशन
एसएफएन स्व-हस्तक्षेप रद्दीकरण में ओएफडीएम मॉड्यूलेशन का उपयोग करने के विकल्प होंगे:
- सीडीएमए रेक रिसीवर।
- एमआईएमओ चैनल (अर्थात चरणबद्ध सरणी एंटीना)
- एकल-वाहक आवृत्ति-डोमेन-समीकरण (एससी-एफडीई), अर्थात गार्ड अंतराल और फास्ट फूरियर ट्रांसफॉर्म फ़्रीक्वेंसी डोमेन इक्वलाइज़ेशन, या इसके बहु-उपयोगकर्ता संस्करण एकल-वाहक FDMA (एससी-एफडीएमए) के साथ संयुक्त सिंगल-कैरियर मॉड्यूलेशन।
यह भी देखें
- वितरित पारेषण प्रणाली
- प्रसारण अनुवादक
- सहकारी विविधता
- मैक्रो-विविधता
- मल्टीकास्ट-ब्रॉडकास्ट सिंगल फ़्रीक्वेंसी नेटवर्क
- डिजिटल वीडियो प्रसारण, आईएसडीबी-टी, एटीएससी
- ओएफडीएम, गार्ड अंतराल
- अर्ध-तुल्यकालिक संचरण
संदर्भ
- ↑ 1.0 1.1 1.2 ETSI TR 101 190: Digital Video Broadcasting (DVB); Implementation guidelines for DVB terrestrial services; Transmission aspects
- ↑ ETSI TS 101 191: Digital Video Broadcasting (DVB); DVB mega-frame for Single Frequency Network (SFN) synchronization
- ↑ "RabbitEars.Info".
- ↑ "Tests of ATSC 8-VSB Reception Performance of Consumer Digital Television Receivers Available in 2005" (PDF). FCC. 2 November 2005. Retrieved 17 July 2023.
बाहरी संबंध
- एकल आवृत्ति नेटवर्क का विधि ी अवलोकन
- मोबाइल सेलुलर शहरी वातावरण और सेल टोपोलॉजी में एसएफएन के क्षेत्र-मापे गए लाभों के उदाहरण के लिए, क्रिश्चियन ले फ्लोक, रेजिस डुवाल देखें "पूर्ण नेटवर्क स्तर पर डीवीबी-एसएच अभिव्यक्तियों पर एसएफएन (एस-यूएमटीएस बैंड रेडियो प्रसार प्रदर्शन मूल्यांकन)", 20 मार्च 2009, ओपन एक्सेस वेबसाइट पर Google साइटें: साइन-इन करें