अनिश्चितकालीन ऑर्थोगोनल समूह: Difference between revisions
m (removed Category:Vigyan Ready using HotCat) |
m (12 revisions imported from alpha:अनिश्चितकालीन_ऑर्थोगोनल_समूह) |
||
(One intermediate revision by one other user not shown) | |||
Line 123: | Line 123: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 26/04/2023]] | [[Category:Created On 26/04/2023]] | ||
[[Category:Vigyan Ready]] | |||
<references /> | <references /> |
Latest revision as of 07:03, 17 October 2023
गणित में अनिश्चितकालीन लंबकोणीय समूह, O(p, q) सदिश स्थान वास्तविक n-आयाम के सभी रैखिक परिवर्तन का अमान्य समूह है जो अपरिवर्तनीय रूप से एक द्विघात रूप के संकेत के सममित द्विरेखीय रूप को छोड़ देता है। (p, q), जहाँ n = p + q. को स्यूडो-लंबकोणीय समूह भी कहा जाता है[1] या सामान्यीकृत लंबकोणीय समूह आयाम n(n − 1)/2 के रूप में भी संदर्भित किया जा सकता है।[2]
अनिश्चितकालीन विशेष लंबकोणीय समूह SO(p, q), O(p, q) का उपसमूह है जिसमें निर्धारक 1 वाले सभी तत्व सम्मिलित हैं। निश्चित मामले के विपरीत SO(p, q) संयोजित नहीं है तथापि इसके 2 घटक हैं और दो अतिरिक्त परिमित सूचकांक उपसमूह हैं, अर्थात् संयोजक SO+(p, q) और O+(p, q), इसमें 2 घटक हैं।
अनिश्चितकालीन विशेष लंबकोणीय समूह को समरूपता तक निर्धारित करता है; q के साथ p को विनिमय करते हुए मात्रक को उसके ऋणात्मक मान से बदलने के समान है, और इसलिए वह उसके समान समूह देता है। यदि p या q शून्य के समान है, तो समूह सामान्य लंबकोणीय समूह O(n) के लिए समाकृतिकता है। हम मानते हैं कि p और q दोनों सकारात्मक हैं।
समूह O(p, q) वास्तविक मान से अधिक वेक्टर रिक्त स्थान के लिए परिभाषित किया गया है। जटिल स्थानों के लिए, सभी समूह O(p, q; C) सामान्य लंबकोणीय समूह O(p + q; C) के लिए समरूपीय हैं, क्योंकि परिवर्तन एक रूप के संकेत को बदलता है। यह अनिश्चितकालीनकालीन एकात्मक समूह U(p, q) के साथ भ्रमित नहीं होना चाहिए जो संकेत (p, q) के एक अनुक्रमिक रूप को संरक्षित करता है। हम मानते हैं कि p और q दोनों सकारात्मक हैं।
सम आयाम में n = 2p, O(p, p) को या विभाजित लंबकोणीय समूह के रूप में जाना जाता है। सामान्यीकृत लंबकोणीय समूह आयाम n(n − 1)/2 के रूप में भी संदर्भित किया जा सकता है।
उदाहरण
मूल उदाहरण अधिसंकुचन प्रतिचित्रण है, जो समूह SO+(1, 1) का (पहचान घटक) रैखिक रूपांतरण है जो इकाई परवलय आकार को संरक्षित करता है। वास्तव में, ये आव्यूह हैं और अतिशयोक्तिपूर्ण घुमावों के रूप में व्यक्त की जा सकती है, जैसे कि समूह SO(2) को वृत्ताकार घुमावों के रूप में व्यक्त किया जा सकता है।
भौतिकी में, लोरेंत्ज़ समूह O(1,3) केंद्रीय महत्व का है, जो विद्युत चुंबकत्व और विशेष सापेक्षता के लिए समायोजन है। कुछ लोरेंत्ज़ समूह के लिए O(3,1) उपयोग करते हैं, चूँकि O(1,3) क्वांटम क्षेत्र सिद्धांत में प्रचलित है क्योंकि डायराक समीकरण के ज्यामितीय गुण O(1,3) अधिक प्राकृतिक हैं।
आव्यूह परिभाषा
मौलिक लंबकोणीय समूह O(n) के रूप में, O(p, q) को आव्यूह के समूह के रूप में परिभाषित किया जा सकता है। दिए गए विकर्ण आव्यूह पर विचार करें,
फिर हम सूत्र द्वारा पर एक सममित द्विरेखीय रूप परिभाषित कर सकते हैं,
- ,
जहाँ , मानक आंतरिक उत्पाद है,
फिर हम को मैट्रिसेस के समूह के रूप में परिभाषित करते हैं जो इस द्विरेखीय रूप को संरक्षित करते हैं:[3]
- .
अधिक स्पष्ट रूप से, में आव्यूह ऐसे होते हैं कि[4]
- ,
जहाँ , का स्थानान्तरण है जो कि एक समरूपीय समूह प्राप्त करता है, (वास्तव में, एक संयुग्मित जैसे कि समूह SO(2) को वृत्ताकार घुमावों के रूप में व्यक्त किया जा सकता है। उपसमूह GL(p + q)) g को किसी भी सममित आव्यूह के साथ p सकारात्मक आइगेनवैल्यू और q ऋणात्मक वाले के साथ बदलकर इस आव्यूह को विकर्ण करने से इस समूह का मानक समूह O(p, q) के साथ संयोजन होता है।
उपसमूह
समूह SO+(p, q) और O(p, q) के संबंधित उपसमूहों को बीजगणितीय रूप से वर्णित किया जा सकता है। ब्लॉक आव्यूह के रूप में O(p, q) में एक आव्यूह L विभाजन:
जहां A, B, C, और D क्रमशः p×p, p×q, q×p, और q×q ब्लॉक हैं। यह दिखाया जा सकता है कि मेट्रिसेस का सेट O(p, q) जिसके ऊपरी-बाएँ p×p ब्लॉक A में सकारात्मक निर्धारक एक उपसमूह है या, इसे दूसरे विधि से रखने के लिए, यदि
O(p, q) में हैं, तो
निचले-दाएँ q×q ब्लॉक के लिए समान परिणाम भी धारण करता है। उपसमूह SO+(p, q) मेट्रिसेस ळ् जैसे होते हैं, det A और det D दोनों सकारात्मक हैं।[5][6]
O(p, q) में सभी आव्यूह L के लिए, A और D के निर्धारकों के पास और विशेष रूप से, उपसमूह SO(p, q) में मैट्रिसेस L होते हैं जैसे कि det A और det D का एक ही चिह्न होता है।[5]
सांस्थितिकी
यह मानते हुए कि p और q दोनों धनात्मक हैं, कोई भी समूह न हीं O(p, q) और न SO(p, q) जुड़े हुए स्थान हैं, जिनमें क्रमशः चार और दो घटक हैं।
π0(O(p, q)) ≅ C2 × C2 क्लेन चार-समूह है, जिसमें प्रत्येक कारक है कि क्या कोई तत्व p और q आयामी उप-स्थानों पर संबंधित अभिविन्यासों को संरक्षित करता है या विपरीत कर देता है, जिस पर प्रपत्र निश्चित है। ध्यान दें कि इनमें से केवल एक उप-स्थान पर अभिविन्यास को उलटने से पूरे स्थान पर अभिविन्यास विपरीत जाता है। विशेष लंबकोणीय समूह में घटक π0(SO(p, q)) = {(1, 1), (−1, −1) होते हैं , जिनमें से प्रत्येक या तो दोनों अभिविन्यास को संरक्षित करता है या दोनों अभिविन्यास को विपरीत कर देता है, किसी भी स्थिति में समग्र अभिविन्यास को संरक्षित करता है।
O(p, q) के पहचान घटक को अधिकांशतः SO+(p, q) निरूपित किया जाता है और SO(p, q) में तत्वों के सेट के साथ पहचाना जा सकता है जो दोनों ओरिएंटेशन को संरक्षित करता है। यह संकेतन ऑर्थोक्रोनस लोरेंत्ज़ समूह के लिए संकेतन O+(1, 3) से संबंधित है, जहां + पहले (अस्थायी) आयाम पर अभिविन्यास को संरक्षित करने के लिए संदर्भित करता है।
समूह O(p, q) भी संक्षिप्त जगह नहीं है, किंतु इसमें संक्षिप्त उपसमूहों O(p) और O(q) सम्मिलित हैं, जो उप-स्थानों पर काम करते हैं, जिस पर रूप निश्चित है। वास्तव में, O(p) × O(q) का अधिकतम संक्षिप्त उपसमूह O(p, q) है, जबकि S(O(p) × O(q)), SO(p, q) का अधिकतम संक्षिप्त उपसमूह है। वैसे ही, SO(p) × SO(q) ,SO+(p, q) का अधिकतम संक्षिप्त उपसमूह है, इस प्रकार रिक्त स्थान (विशेष) लंबकोणीय समूहों के उत्पादों के समान समस्थेयता हैं, जिनसे बीजगणित-सांस्थितिकी अचर की गणना की जा सकती है। (अधिकतम संक्षिप्त उपसमूह या सांस्थितिकी देखें।)
विशेष रूप से, का मौलिक समूह SO+(p, q) घटकों के मौलिक समूहों का उत्पाद है, π1(SO+(p, q)) = π1(SO(p)) × π1(SO(q)), और इसके द्वारा दिया गया है:
π1(SO+(p, q)) p = 1 p = 2 p ≥ 3 q = 1 C1 Z C2 q = 2 Z Z × Z Z × C2
q ≥ 3 C2 C2 × Z C2 × C2
लंबकोणीय समूह विभाजन
समान आयामों में, मध्य समूह O(n, n) विभाजित लंबकोणीय समूह के रूप में जाना जाता है, और यह विशेष रुचि का है, क्योंकि यह स्ट्रिंग सिद्धांत में टी-द्वैत परिवर्तनों के समूह के रूप में होता है, उदाहरण के लिए यह जटिल लाइ बीजगणित so2n के अनुरूप विभाजित लाई समूह है (लाई बीजगणित के विभाजित वास्तविक रूप का लाई समूह); अधिक स्पष्ट रूप से, पहचान घटक विभाजित लाई समूह है, क्योंकि गैर-पहचान घटकों को लाई बीजगणित से पुनर्निर्मित नहीं किया जा सकता है। इस अर्थ में यह निश्चित ओर्थोगोनल समूह O(n) := O(n, 0) = O(0, n) के विपरीत है , जो जटिल लाइ बीजगणित का संक्षिप्त वास्तविक रूप है। जिसमें प्रत्येक कारक है कि क्या कोई तत्व p और q आयामी उप-स्थानों पर संबंधित अभिविन्यासों को संरक्षित करता है या विपरीत कर देता है।
प्रकरण (1, 1) विभाजित-जटिल संख्या के गुणक समूह से समानता रखता है।
लाई प्रकार के एक समूह होने के स्थिति में - जिससे लाई बीजगणित से बीजगणितीय समूह का निर्माण विभाजित लंबकोणीय समूह हैं, जबकि गैर-विभाजित लंबकोणीय समूहों को कुछ अधिक जटिल निर्माण की आवश्यकता होती है, और स्टाइनबर्ग समूह (लाई सिद्धांत) हैं।
स्प्लिट लंबकोणीय समूहों का उपयोग गैर-बीजगणितीय रूप से बंद क्षेत्रों पर सामान्यीकृत ध्वज विविधता के निर्माण के लिए किया जाता है।
यह भी देखें
संदर्भ
- Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666
- Anthony Knapp, Lie Groups Beyond an Introduction, Second Edition, Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002. ISBN 0-8176-4259-5 – see page 372 for a description of the indefinite orthogonal group
- Popov, V. L. (2001) [1994], "Orthogonal group", Encyclopedia of Mathematics, EMS Press
- Shirokov, D. S. (2012). Lectures on Clifford algebras and spinors Лекции по алгебрам клиффорда и спинорам (PDF) (in русский). doi:10.4213/book1373. Zbl 1291.15063.
- Joseph A. Wolf, Spaces of constant curvature, (1967) page. 335.
- ↑ Popov 2001
- ↑ Hall 2015, p. 8, Section 1.2
- ↑ Hall 2015 Section 1.2.3
- ↑ Hall 2015 Chapter 1, Exercise 1
- ↑ 5.0 5.1 Lester, J. A. (1993). "ओ (पी, क्यू) के ऑर्थोक्रोनस उपसमूह". Linear and Multilinear Algebra. 36 (2): 111–113. doi:10.1080/03081089308818280. Zbl 0799.20041.
- ↑ Shirokov 2012, pp. 88–96, Section 7.1