अवस्था प्रेक्षक: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:




[[नियंत्रण सिद्धांत]] में,राज्य पर्यवेक्षक या राज्य अनुमानकऐसी प्रणाली है जो वास्तविक प्रणाली के इनपुट/आउटपुट और आउटपुट के माप से किसी दिए गए वास्तविक प्रणाली के [[राज्य स्थान (नियंत्रण)]] का अनुमान प्रदान करती है। यह आमतौर पर कंप्यूटर द्वारा क्रियान्वित किया जाता है, और कई व्यावहारिक अनुप्रयोगों का आधार प्रदान करता है।
[[नियंत्रण सिद्धांत]] में,'''अवस्था प्रेक्षक''' या अवस्था अनुमानक ऐसी प्रणाली है जो वास्तविक प्रणाली के इनपुट/आउटपुट और आउटपुट के माप से किसी दिए गए वास्तविक प्रणाली के [[राज्य स्थान (नियंत्रण)|अवस्था स्थान (नियंत्रण)]] का अनुमान प्रदान करती है। यह समान रूप से कंप्यूटर द्वारा क्रियान्वित किया जाता है, और विभिन्न व्यावहारिक अनुप्रयोगों का आधार प्रदान करता है।


कई नियंत्रण सिद्धांत समस्याओं को हल करने के लिए सिस्टम स्थिति को जानना आवश्यक है; उदाहरण के लिए, पूर्ण राज्य फीडबैक का उपयोग करके किसी सिस्टम को स्थिर करना। अधिकांश व्यावहारिक मामलों में, सिस्टम की भौतिक स्थिति को प्रत्यक्ष अवलोकन द्वारा निर्धारित नहीं किया जा सकता है। इसके बजाय, सिस्टम आउटपुट के माध्यम से आंतरिक स्थिति के अप्रत्यक्ष प्रभाव देखे जाते हैं।सरल उदाहरणसुरंग में वाहनों का है: जिस दर और वेग से वाहन सुरंग में प्रवेश करते हैं और निकलते हैं उसे सीधे देखा जा सकता है, लेकिन सुरंग के अंदर की सटीक स्थिति का केवल अनुमान लगाया जा सकता है। यदि कोई सिस्टम [[ observability |observability]] है, तो राज्य पर्यवेक्षक का उपयोग करके उसके आउटपुट माप से सिस्टम स्थिति को पूरी तरह से पुनर्निर्माण करना संभव है।
विभिन्न नियंत्रण सिद्धांत समस्याओं को हल करने के लिए प्रणाली स्थिति को जानना आवश्यक है; उदाहरण के लिए, पूर्ण अवस्था फीडबैक का उपयोग करके किसी प्रणाली को स्थिर करना। अधिकांश व्यावहारिक स्थितियों में, प्रणाली की भौतिक स्थिति को प्रत्यक्ष अवलोकन द्वारा निर्धारित नहीं किया जा सकता है। इसके अतिरिक्त , प्रणाली आउटपुट के माध्यम से आंतरिक स्थिति के अप्रत्यक्ष प्रभाव देखे जाते हैं। जिसमे सरल उदाहरण सुरंग में वाहनों का है: जिस दर और वेग से वाहन सुरंग में प्रवेश करते हैं और निकलते हैं उसे सीधे देखा जा सकता है, किन्तु सुरंग के अंदर की स्पष्ट स्थिति का केवल अनुमान लगाया जा सकता है। यदि कोई प्रणाली [[ observability |अवलोकनीयता]] है, तो अवस्था प्रेक्षक का उपयोग करके उसके आउटपुट माप से प्रणाली स्थिति को पूरी तरह से पुनर्निर्माण करना संभव है।


== विशिष्ट पर्यवेक्षक मॉडल ==
== विशिष्ट प्रेक्षक मॉडल ==
[[File:Luenberger Observer.svg|thumb|लुएनबर्गर ऑब्जर्वर का ब्लॉक आरेख। प्रेक्षक लाभ का इनपुट एल है <math>y \mathbf{-} \hat y</math>.]]रैखिक, विलंबित, स्लाइडिंग मोड, उच्च लाभ, ताऊ, समरूपता-आधारित, विस्तारित और घन पर्यवेक्षक रैखिक और गैर-रेखीय प्रणालियों के राज्य आकलन के लिए उपयोग की जाने वाली कई पर्यवेक्षक संरचनाओं में से हैं।रैखिक पर्यवेक्षक संरचना का वर्णन निम्नलिखित अनुभागों में किया गया है।
[[File:Luenberger Observer.svg|thumb|लुएनबर्गर प्रेक्षक का ब्लॉक आरेख है। पर्यवेक्षक लाभ एल का इनपुट <math>y \mathbf{-} \hat y</math> है।]]रैखिक, विलंबित, स्लाइडिंग मोड, उच्च लाभ, ताऊ, समरूपता-आधारित, विस्तारित और घन प्रेक्षक रैखिक और गैर-रेखीय प्रणालियों के अवस्था आकलन के लिए उपयोग की जाने वाली विभिन्न प्रेक्षक संरचनाओं में से हैं। जो रैखिक प्रेक्षक संरचना का वर्णन निम्नलिखित अनुभागों में किया गया है।


=== असतत-समय का मामला ===
=== असतत-समय का स्थिति ===
एक रैखिक, समय-अपरिवर्तनीय असतत-समय प्रणाली की स्थिति को संतुष्ट माना जाता है
एक रैखिक, समय-अपरिवर्तनीय असतत-समय प्रणाली की स्थिति को संतुष्ट माना जाता है


: <math>x(k+1) = A x(k) + B u(k)</math>
: <math>x(k+1) = A x(k) + B u(k)</math>
: <math>y(k) = C x(k) + D u(k)</math>
: <math>y(k) = C x(k) + D u(k)</math>
कहाँ, समय पर <math>k</math>, <math>x(k)</math> पौधे की अवस्था है; <math>u(k)</math> क्या इसका इनपुट है; और <math>y(k)</math> इसका आउटपुट है. ये समीकरण सीधे तौर पर कहते हैं कि संयंत्र के वर्तमान आउटपुट और इसकी भविष्य की स्थिति दोनों पूरी तरह से इसकी वर्तमान स्थिति और वर्तमान इनपुट द्वारा निर्धारित होते हैं। (यद्यपि ये समीकरण अलग-अलग गणित समय चरणों के संदर्भ में व्यक्त किए जाते हैं, निरंतर कार्य प्रणालियों के लिए बहुत समान समीकरण लागू होते हैं)। यदि यह प्रणाली अवलोकनीयता है तो संयंत्र का उत्पादन, <math>y(k)</math>, का उपयोग राज्य पर्यवेक्षक की स्थिति को नियंत्रित करने के लिए किया जा सकता है।
जहां, समय <math>k</math> पर, <math>x(k)</math> पौधे की अवस्था है <math>u(k)</math> क्या इसका इनपुट है; और <math>y(k)</math> इसका आउटपुट है. ये समीकरण समान्य रूप से कहते हैं कि संयंत्र के वर्तमान आउटपुट और इसकी भविष्य की स्थिति दोनों पूरी तरह से इसकी वर्तमान स्थिति और वर्तमान इनपुट द्वारा निर्धारित होते हैं। (यद्यपि ये समीकरण अलग-अलग गणित समय चरणों के संदर्भ में व्यक्त किए जाते हैं, निरंतर कार्य प्रणालियों के लिए बहुत समान समीकरण प्रयुक्त होते हैं)। यदि यह प्रणाली अवलोकनीयता है तो संयंत्र का उत्पादन, <math>y(k)</math>, का उपयोग अवस्था प्रेक्षक की स्थिति को नियंत्रित करने के लिए किया जा सकता है।


भौतिक प्रणाली का पर्यवेक्षक मॉडल आमतौर पर उपरोक्त समीकरणों से प्राप्त होता है। यह सुनिश्चित करने के लिए अतिरिक्त शर्तें शामिल की जा सकती हैं कि, संयंत्र के इनपुट और आउटपुट के क्रमिक मापा मूल्य प्राप्त करने पर, मॉडल की स्थिति संयंत्र की स्थिति में परिवर्तित हो जाती है। विशेष रूप से, पर्यवेक्षक के आउटपुट को संयंत्र के आउटपुट से घटाया जा सकता है और फिर मैट्रिक्स द्वारा गुणा किया जा सकता है <math>L</math>; फिर इसे नीचे दिए गए समीकरणों द्वारा परिभाषिततथाकथित [[डेविड लुएनबर्गर]] पर्यवेक्षक बनाने के लिए पर्यवेक्षक की स्थिति के समीकरणों में जोड़ा जाता है। ध्यान दें कि राज्य पर्यवेक्षक के चर आमतौर परटोपी द्वारा दर्शाए जाते हैं: <math>\hat{x}(k)</math> और <math>\hat{y}(k)</math> उन्हें भौतिक प्रणाली द्वारा संतुष्ट समीकरणों के चरों से अलग करना।
भौतिक प्रणाली का प्रेक्षक मॉडल समान रूप से उपरोक्त समीकरणों से प्राप्त होता है। यह सुनिश्चित करने के लिए अतिरिक्त नियम सम्मिलित की जा सकती हैं कि, संयंत्र के इनपुट और आउटपुट के क्रमिक मापा मूल्य प्राप्त करने पर, इस मॉडल की स्थिति संयंत्र की स्थिति में परिवर्तित हो जाती है। जो कि विशेष रूप से, प्रेक्षक के आउटपुट को संयंत्र के आउटपुट से घटाया जा सकता है और फिर आव्यूह <math>L</math>द्वारा गुणा किया जा सकता है; फिर इसे नीचे दिए गए समीकरणों द्वारा परिभाषिततथाकथित [[डेविड लुएनबर्गर]] प्रेक्षक बनाने के लिए प्रेक्षक की स्थिति के समीकरणों में जोड़ा जाता है। ध्यान दें कि अवस्था प्रेक्षक के वेरिएबल समान्य रूप से टोपी द्वारा दर्शाए जाते हैं: जो <math>\hat{x}(k)</math> और <math>\hat{y}(k)</math> उन्हें भौतिक प्रणाली द्वारा संतुष्ट समीकरणों के वेरिएबल्स से अलग करना होता है।


: <math>\hat{x}(k+1) = A \hat{x}(k) + L \left[y(k) - \hat{y}(k)\right] + B u(k)</math>
: <math>\hat{x}(k+1) = A \hat{x}(k) + L \left[y(k) - \hat{y}(k)\right] + B u(k)</math>
: <math>\hat{y}(k) = C \hat{x}(k) + D u(k)</math>
: <math>\hat{y}(k) = C \hat{x}(k) + D u(k)</math>
यदि प्रेक्षक त्रुटि करता है तो प्रेक्षक को स्पर्शोन्मुख रूप से स्थिर कहा जाता है <math>e(k) = \hat{x}(k) - x(k)</math> जब शून्य में परिवर्तित हो जाता है <math> k \to \infty </math>. लुएनबर्गर पर्यवेक्षक के लिए, पर्यवेक्षक की त्रुटि संतुष्ट करती है <math> e(k+1) = (A - LC) e(k)</math>. इस असतत-समय प्रणाली के लिए लुएनबर्गर पर्यवेक्षक इसलिए मैट्रिक्स के दौरान स्पर्शोन्मुख रूप से स्थिर होता है <math> A - LC </math> यूनिट सर्कल के अंदर सभी eigenvalues ​​​​हैं।
प्रेक्षक को स्पर्शोन्मुख रूप से स्थिर कहा जाता है यदि प्रेक्षक त्रुटि <math>e(k) = \hat{x}(k) - x(k)</math>, <math> k \to \infty </math> होने पर शून्य में परिवर्तित हो जाती है। लुएनबर्गर पर्यवेक्षक के लिए, पर्यवेक्षक त्रुटि <math> e(k+1) = (A - LC) e(k)</math> को संतुष्ट करती है। इस असतत-समय प्रणाली के लिए लुएनबर्गर पर्यवेक्षक इसलिए असम्बद्ध रूप से स्थिर होता है जब आव्यूह <math> A - LC </math> में ईकाई वृत्त के अंदर सभी आइगेनवैल्यू होते हैं।


नियंत्रण उद्देश्यों के लिए पर्यवेक्षक प्रणाली का आउटपुट लाभ मैट्रिक्स के माध्यम से पर्यवेक्षक और संयंत्र दोनों के इनपुट में वापस फीड किया जाता है <math>K</math>.
नियंत्रण उद्देश्यों के लिए पर्यवेक्षक प्रणाली का आउटपुट लाभ आव्यूह <math>K</math> के माध्यम से पर्यवेक्षक और संयंत्र दोनों के इनपुट में वापस फीड किया जाता है।


: <math>u(k)= -K \hat{x}(k)</math>
: <math>u(k)= -K \hat{x}(k)</math>
पर्यवेक्षक समीकरण तब बन जाते हैं:
प्रेक्षक समीकरण तब बन जाते हैं:


: <math>\hat{x}(k+1) = A \hat{x}(k) + L \left(y(k) - \hat{y}(k)\right) - B K \hat{x}(k)</math>
: <math>\hat{x}(k+1) = A \hat{x}(k) + L \left(y(k) - \hat{y}(k)\right) - B K \hat{x}(k)</math>
Line 32: Line 32:
: <math>\hat{x}(k+1) = \left(A - B K \right) \hat{x}(k) + L \left(y(k) - \hat{y}(k)\right)</math>
: <math>\hat{x}(k+1) = \left(A - B K \right) \hat{x}(k) + L \left(y(k) - \hat{y}(k)\right)</math>
: <math>\hat{y}(k) = \left(C - D K\right) \hat{x}(k)</math>
: <math>\hat{y}(k) = \left(C - D K\right) \hat{x}(k)</math>
[[पृथक्करण सिद्धांत]] के कारण हम जानते हैं कि हम चुन सकते हैं <math>K</math> और <math>L</math> सिस्टम की समग्र स्थिरता को नुकसान पहुंचाए बिना स्वतंत्र रूप से।सामान्य नियम के रूप में, पर्यवेक्षक के ध्रुव <math>A-LC</math> आमतौर पर सिस्टम के ध्रुवों की तुलना में 10 गुना तेजी से अभिसरण करने के लिए चुना जाता है <math>A-BK</math>.


=== सतत-समय मामला ===


पिछला उदाहरणअलग-समय एलटीआई प्रणाली में कार्यान्वित पर्यवेक्षक के लिए था। हालाँकि, निरंतर-समय के मामले के लिए प्रक्रिया समान है; प्रेक्षक को लाभ होता है <math>L</math> निरंतर-समय त्रुटि गतिशीलता को स्पर्शोन्मुख रूप से शून्य में परिवर्तित करने के लिए चुना जाता है (यानी, जब <math>A-LC</math>[[हर्विट्ज़ मैट्रिक्स]] है)।
पृथक्करण सिद्धांत के कारण हम जानते हैं कि हम प्रणाली की समग्र स्थिरता को हानि पहुंचाए बिना <math>K</math> और <math>L</math> को स्वतंत्र रूप से चुन सकते हैं। एक नियम के रूप में, पर्यवेक्षक <math>A-LC</math> के ध्रुवों को समान्य रूप से प्रणाली <math>A-BK</math> के ध्रुवों की तुलना में 10 गुना तेजी से अभिसरण करने के लिए चुना जाता है।
 
=== सतत-समय स्थिति ===
 
पिछला उदाहरण एक अलग-समय एलटीआई प्रणाली में कार्यान्वित पर्यवेक्षक के लिए था। चूँकि, निरंतर-समय के स्थिति के लिए प्रक्रिया समान है; पर्यवेक्षक लाभ <math>L</math> को निरंतर समय त्रुटि गतिशीलता को स्पर्शोन्मुख रूप से शून्य में परिवर्तित करने के लिए चुना जाता है (अथार्त, जब <math>A-LC</math> एक हर्विट्ज़ आव्यूह है)।


एक सतत-समय रैखिक प्रणाली के लिए
एक सतत-समय रैखिक प्रणाली के लिए
Line 42: Line 44:
: <math>\dot{x} = A x + B u, </math>
: <math>\dot{x} = A x + B u, </math>
: <math>y = C x + D u, </math>
: <math>y = C x + D u, </math>
कहाँ <math>x \in \mathbb{R}^n, u \in \mathbb{R}^m ,y \in \mathbb{R}^r</math>, पर्यवेक्षक ऊपर वर्णित असतत-समय के मामले के समान दिखता है:
जहाँ <math>x \in \mathbb{R}^n, u \in \mathbb{R}^m ,y \in \mathbb{R}^r</math>, प्रेक्षक ऊपर वर्णित असतत-समय के स्थिति के समान दिखता है:


: <math>\dot{\hat{x}} = A \hat{x}+ B u + L \left(y - \hat{y}\right) </math>.
: <math>\dot{\hat{x}} = A \hat{x}+ B u + L \left(y - \hat{y}\right) </math>.


: <math>\hat{y} = C \hat{x} + D u, </math>
: <math>\hat{y} = C \hat{x} + D u, </math>
पर्यवेक्षक त्रुटि <math>e=x-\hat{x}</math> समीकरण को संतुष्ट करता है
प्रेक्षक त्रुटि <math>e=x-\hat{x}</math> समीकरण को संतुष्ट करता है


: <math> \dot{e} = (A - LC) e</math>.
: <math> \dot{e} = (A - LC) e</math>.


मैट्रिक्स के eigenvalues <math>A-LC</math> पर्यवेक्षक लाभ के उचित विकल्प द्वारा मनमाने ढंग से चुना जा सकता है <math>L</math> जब जोड़ी <math>[A,C]</math> अवलोकनीय है, अर्थात अवलोकनीय स्थिति कायम है। विशेष रूप से, इसे हर्विट्ज़ बनाया जा सकता है, इसलिए पर्यवेक्षक त्रुटि <math>e(t) \to 0</math> कब <math>t \to \infty</math>.
जब जोड़ी <math>[A,C]</math> अवलोकन योग्य होती है, अथार्त अवलोकन की स्थिति बनी रहती है, तो आव्यूह <math>A-LC</math> के आइगेनवैल्यू को पर्यवेक्षक लाभ <math>L</math> की उचित पसंद से इच्छित रूप से चुना जा सकता है। विशेष रूप से, इसे हर्विट्ज़ बनाया जा सकता है, इसलिए <math>t \to \infty</math> होने पर पर्यवेक्षक त्रुटि {<math>e(t) \to 0</math>


=== पीकिंग और अन्य पर्यवेक्षक विधियां ===
=== पीकिंग और अन्य प्रेक्षक विधियां ===


जब प्रेक्षक को लाभ होता है <math>L</math> उच्च है, रैखिक लुएनबर्गर पर्यवेक्षक सिस्टम स्थितियों में बहुत तेज़ी से परिवर्तित होता है। हालाँकि, उच्च पर्यवेक्षक लाभचरम घटना की ओर ले जाता है जिसमें प्रारंभिक अनुमानक त्रुटि निषेधात्मक रूप से बड़ी हो सकती है (यानी, अव्यावहारिक या उपयोग करने के लिए असुरक्षित)।<ref name="Khalil02">{{Citation
जब प्रेक्षक को लाभ <math>L</math> होता है उच्च है, जो कि रैखिक लुएनबर्गर प्रेक्षक प्रणाली स्थितियों में बहुत तेज़ी से परिवर्तित होता है। चूँकि , उच्च प्रेक्षक लाभचरम घटना की ओर ले जाता है जिसमें प्रारंभिक अनुमानक त्रुटि निषेधात्मक रूप से बड़ी हो सकती है (अथार्त , अव्यावहारिक या उपयोग करने के लिए असुरक्षित)।<ref name="Khalil02">{{Citation
  | last = Khalil
  | last = Khalil
  | first = H.K.
  | first = H.K.
Line 65: Line 67:
  | title = Nonlinear Systems
  | title = Nonlinear Systems
  | publisher = [[Prentice Hall]]
  | publisher = [[Prentice Hall]]
  | location = Upper Saddle River, NJ}}</ref> परिणामस्वरूप, गैर-रैखिक उच्च-लाभ पर्यवेक्षक विधियां उपलब्ध हैं जो चरम घटना के बिना जल्दी से अभिसरण करती हैं। उदाहरण के लिए, [[स्लाइडिंग मोड नियंत्रण]] का उपयोगपर्यवेक्षक को डिजाइन करने के लिए किया जा सकता है जो माप त्रुटि की उपस्थिति में भी सीमित समय मेंअनुमानित राज्य की त्रुटि को शून्य पर लाता है; अन्य राज्यों में त्रुटि है जो शिखर के कम होने के बाद लुएनबर्गर पर्यवेक्षक में त्रुटि के समान व्यवहार करती है। स्लाइडिंग मोड पर्यवेक्षकों में आकर्षक शोर लचीलापन गुण भी होते हैं जो [[कलमन फ़िल्टर]] के समान होते हैं।<ref name="UtkinGS99">{{citation|title=Sliding Mode Control in Electromechanical Systems|last1=Utkin|first1=Vadim|last2=Guldner|first2=Jürgen|last3=Shi|first3=Jingxin|year=1999|publisher=Taylor & Francis, Inc.|location=Philadelphia, PA|isbn=978-0-7484-0116-1}}</ref><ref name="Drakunov83">{{citation|title=An adaptive quasioptimal filter with discontinuous parameters|journal=Automation and Remote Control|last1=Drakunov|first1=S.V.|year=1983|volume=44|issue=9|pages=1167–1175}}</ref>
  | location = Upper Saddle River, NJ}}</ref> परिणामस्वरूप, गैर-रैखिक उच्च-लाभ प्रेक्षक विधियां उपलब्ध हैं जो चरम घटना के बिना जल्दी से अभिसरण करती हैं। उदाहरण के लिए, [[स्लाइडिंग मोड नियंत्रण]] का उपयोगपर्यवेक्षक को डिजाइन करने के लिए किया जा सकता है जो माप त्रुटि की उपस्थिति में भी सीमित समय मेंअनुमानित अवस्था की त्रुटि को शून्य पर लाता है; अन्य स्थिति में त्रुटि है जो शिखर के कम होने के बाद लुएनबर्गर प्रेक्षक में त्रुटि के समान व्यवहार करती है। जिसका स्लाइडिंग मोड पर्यवेक्षकों में आकर्षक ध्वनि लचीलापन गुण भी होते हैं जो [[कलमन फ़िल्टर]] के समान होते हैं।<ref name="UtkinGS99">{{citation|title=Sliding Mode Control in Electromechanical Systems|last1=Utkin|first1=Vadim|last2=Guldner|first2=Jürgen|last3=Shi|first3=Jingxin|year=1999|publisher=Taylor & Francis, Inc.|location=Philadelphia, PA|isbn=978-0-7484-0116-1}}</ref><ref name="Drakunov83">{{citation|title=An adaptive quasioptimal filter with discontinuous parameters|journal=Automation and Remote Control|last1=Drakunov|first1=S.V.|year=1983|volume=44|issue=9|pages=1167–1175}}</ref>
एक अन्य दृष्टिकोण मल्टी ऑब्जर्वर को लागू करना है, जो ट्रांजिएंट्स में काफी सुधार करता है और ऑब्जर्वर ओवरशूट को कम करता है। मल्टी-ऑब्जर्वर को हर उस प्रणाली के लिए अनुकूलित किया जा सकता है जहां उच्च-लाभ पर्यवेक्षक लागू होता है।<ref name="MMObserver">{{citation|doi=10.1080/00207179.2014.1000380|bibcode=2015IJC....88.1209B|title=Multi modelling as new estimation schema for High Gain Observers|journal=International Journal of Control|last1=Bernat|last2=Stepien |first1=J.|first2=S.|year=2015|volume=88|issue=6|pages=1209–1222|s2cid=8599596}}</ref>
 
एक अन्य दृष्टिकोण बहु प्रेक्षक को प्रयुक्त करना है, जो ट्रांजिएंट्स में अधिक सुधार करता है और प्रेक्षक ओवरशूट को कम करता है। बहु-प्रेक्षक को हर उस प्रणाली के लिए अनुकूलित किया जा सकता है जहां उच्च-लाभ प्रेक्षक प्रयुक्त होता है।<ref name="MMObserver">{{citation|doi=10.1080/00207179.2014.1000380|bibcode=2015IJC....88.1209B|title=Multi modelling as new estimation schema for High Gain Observers|journal=International Journal of Control|last1=Bernat|last2=Stepien |first1=J.|first2=S.|year=2015|volume=88|issue=6|pages=1209–1222|s2cid=8599596}}</ref>
 
 


== अरेखीय प्रणालियों के लिए अवस्था पर्यवेक्षक ==
उच्च लाभ, स्लाइडिंग मोड और विस्तारित प्रेक्षक नॉनलाइनियर प्रणाली के लिए सबसे समान्य प्रेक्षक हैं।


== अरेखीय प्रणालियों के लिए राज्य पर्यवेक्षक ==
नॉनलीनियर प्रणाली के लिए स्लाइडिंग मोड पर्यवेक्षकों के अनुप्रयोग को स्पष्ट करने के लिए, पहले नो-इनपुट नॉन-लीनियर प्रणाली पर विचार करें:
उच्च लाभ, स्लाइडिंग मोड और विस्तारित पर्यवेक्षक नॉनलाइनियर सिस्टम के लिए सबसे आम पर्यवेक्षक हैं।
नॉनलीनियर सिस्टम के लिए स्लाइडिंग मोड पर्यवेक्षकों के अनुप्रयोग को स्पष्ट करने के लिए, पहले नो-इनपुट नॉन-लीनियर सिस्टम पर विचार करें:


: <math>\dot{x} = f(x)</math>
: <math>\dot{x} = f(x)</math>
कहाँ <math>x \in \mathbb{R}^n</math>. यह भी मान लें किमापने योग्य आउटपुट है <math>y \in \mathbb{R}</math> द्वारा दिए गए
जहां <math>x \in \mathbb{R}^n</math>. यह भी मान लें कि एक मापने योग्य आउटपुट <math>y \in \mathbb{R}</math> दिया गया है


: <math>y = h(x).</math>
: <math>y = h(x).</math>
किसी पर्यवेक्षक को डिज़ाइन करने के लिए कई गैर-अनुमानित दृष्टिकोण हैं। नीचे दिए गए दो पर्यवेक्षक उस स्थिति पर भी लागू होते हैं जब सिस्टम में कोई इनपुट होता है। वह है,
किसी प्रेक्षक को डिज़ाइन करने के लिए विभिन्न गैर-अनुमानित दृष्टिकोण हैं। नीचे दिए गए दो प्रेक्षक उस स्थिति पर भी प्रयुक्त होते हैं जब प्रणाली में कोई इनपुट होता है। वह है,


: <math>\dot{x} = f(x) + B(x) u </math>
: <math>\dot{x} = f(x) + B(x) u </math>
Line 85: Line 90:
===रेखीय त्रुटि गतिशीलता ===
===रेखीय त्रुटि गतिशीलता ===


क्रेनर और इसिडोरी कासुझाव<ref name="KrenerIsidori83">{{citation|doi=10.1016/0167-6911(83)90037-3|title=Linearization by output injection and nonlinear observers|journal=System and Control Letters|last1=Krener|first1=A.J.|year=1983|volume=3|pages=47–52|last2=Isidori|first2=Alberto}}</ref> और क्रेनर और रिस्पोंडेक<ref name="KrenerRespondek85">{{citation|doi=10.1137/0323016|title=Nonlinear observers with linearizable error dynamics|journal=SIAM Journal on Control and Optimization|last1=Krener|first1=A.J.|last2=Respondek|first2=W.|year=1985|volume=23|pages=197–216|issue=2}}</ref> ऐसी स्थिति में लागू किया जा सकता है जबरैखिक परिवर्तन मौजूद होता है (यानी,[[भिन्नता]], जैसा कि फीडबैक रैखिककरण में उपयोग किया जाता है) <math>z=\Phi(x)</math> जैसे कि नए वेरिएबल्स में सिस्टम समीकरण पढ़े जाते हैं
क्रेनर और इसिडोरी<ref name="KrenerIsidori83">{{citation|doi=10.1016/0167-6911(83)90037-3|title=Linearization by output injection and nonlinear observers|journal=System and Control Letters|last1=Krener|first1=A.J.|year=1983|volume=3|pages=47–52|last2=Isidori|first2=Alberto}}</ref> और क्रेनर और रेस्पोंडेक<ref name="KrenerRespondek85">{{citation|doi=10.1137/0323016|title=Nonlinear observers with linearizable error dynamics|journal=SIAM Journal on Control and Optimization|last1=Krener|first1=A.J.|last2=Respondek|first2=W.|year=1985|volume=23|pages=197–216|issue=2}}</ref> के एक सुझाव को ऐसी स्थिति में प्रयुक्त किया जा सकता है जब एक रैखिक परिवर्तन उपस्थित होता है (अथार्त, एक भिन्नता, जैसा कि फीडबैक रैखिककरण में उपयोग किया जाता है) <math>z=\Phi(x)</math> जैसे नए वेरिएबल्स में प्रणाली समीकरण पढ़ते हैं


: <math>\dot{z} = A z+ \phi(y), </math>
: <math>\dot{z} = A z+ \phi(y), </math>
: <math>y = Cz. </math>
: <math>y = Cz. </math>
लुएनबर्गर पर्यवेक्षक को तब डिज़ाइन किया गया है
लुएनबर्गर प्रेक्षक को तब डिज़ाइन किया गया है


: <math>\dot{\hat{z}} = A \hat{z}+ \phi(y) - L \left(C \hat{z}-y \right) </math>.
: <math>\dot{\hat{z}} = A \hat{z}+ \phi(y) - L \left(C \hat{z}-y \right) </math>.


रूपांतरित चर के लिए पर्यवेक्षक त्रुटि <math>e=\hat{z}-z</math> शास्त्रीय रैखिक मामले के समान समीकरण को संतुष्ट करता है।
रूपांतरित वेरिएबल के लिए प्रेक्षक त्रुटि <math>e=\hat{z}-z</math> मौलिक रैखिक स्थिति के समान समीकरण को संतुष्ट करता है।


: <math> \dot{e} = (A - LC) e</math>.
: <math> \dot{e} = (A - LC) e</math>.


जैसा कि गौथियर, हैमौरी और ओथमैन द्वारा दिखाया गया है<ref name="GauthierHammouriOthman92">{{citation|title=A simple observer for nonlinear systems applications to bioreactors |journal=IEEE Transactions on Automatic Control|last1=Gauthier|first1=J.P.|last2=Hammouri|first2=H.|last3=Othman|first3=S.|year=1992|doi=10.1109/9.256352|volume=37|issue=6|pages=875–880}}</ref>
जैसा कि गॉथियर, हैमौरी, और ओथमान<ref name="GauthierHammouriOthman92">{{citation|title=A simple observer for nonlinear systems applications to bioreactors |journal=IEEE Transactions on Automatic Control|last1=Gauthier|first1=J.P.|last2=Hammouri|first2=H.|last3=Othman|first3=S.|year=1992|doi=10.1109/9.256352|volume=37|issue=6|pages=875–880}}</ref> और हैमौरी और किन्नार्ट द्वारा दिखाया गया है,<ref name="HammouriKinnaert96">{{citation|title=A New Procedure for Time-Varying Linearization up to Output Injection|journal=System and Control Letters|last1=Hammouri|first1=H.|last2=Kinnaert|year=1996|doi=10.1016/0167-6911(96)00022-9|first2=M.|volume=28|issue=3|pages=151–157}}</ref> यदि परिवर्तन उपस्थित है जो कि <math>z=\Phi(x)</math> जैसे कि प्रणाली को स्वरूप में परिवर्तित किया जा सकता है
और हम्मौरी और किन्नार्ट,<ref name="HammouriKinnaert96">{{citation|title=A New Procedure for Time-Varying Linearization up to Output Injection|journal=System and Control Letters|last1=Hammouri|first1=H.|last2=Kinnaert|year=1996|doi=10.1016/0167-6911(96)00022-9|first2=M.|volume=28|issue=3|pages=151–157}}</ref> यदि परिवर्तन मौजूद है <math>z=\Phi(x)</math> जिससे व्यवस्था को स्वरूप में बदला जा सके


: <math>\dot{z} = A(u(t)) z+ \phi(y,u(t) ), </math>
: <math>\dot{z} = A(u(t)) z+ \phi(y,u(t) ), </math>
: <math>y = Cz, </math>
: <math>y = Cz, </math>
तब पर्यवेक्षक को इस प्रकार डिज़ाइन किया गया है
तब प्रेक्षक को इस प्रकार डिज़ाइन किया गया है


: <math>\dot{\hat{z}} = A(u(t)) \hat{z}+ \phi(y,u(t) ) - L(t) \left(C \hat{z}-y \right) </math>,
: <math>\dot{\hat{z}} = A(u(t)) \hat{z}+ \phi(y,u(t) ) - L(t) \left(C \hat{z}-y \right) </math>,


कहाँ <math>L(t)</math>समय-परिवर्तनशील पर्यवेक्षक लाभ है।
जहाँ <math>L(t)</math> समय-परिवर्तनशील प्रेक्षक लाभ है।


सिस्कारेला, दल्ला मोरा, और जर्मनी<ref name="CiccarellaDallaMoraGermani93">{{citation|title=A Luenberger-like observer for nonlinear systems |journal=International Journal of Control|last1=Ciccarella|first1=G.|last2=Dalla Mora|first2=M.|last3=Germani|first3=A.|year=1993|doi=10.1080/00207179308934406|volume=57|issue=3|pages=537–556}}</ref> अधिक उन्नत और सामान्य परिणाम प्राप्त किए,गैर-रेखीय परिवर्तन की आवश्यकता को हटा दिया और नियमितता पर केवल सरल मान्यताओं का उपयोग करके अनुमानित स्थिति के वैश्विक स्पर्शोन्मुख अभिसरण को वास्तविक स्थिति में साबित किया।
सिस्कारेला, दल्ला मोरा, और जर्मनी<ref name="CiccarellaDallaMoraGermani93">{{citation|title=A Luenberger-like observer for nonlinear systems |journal=International Journal of Control|last1=Ciccarella|first1=G.|last2=Dalla Mora|first2=M.|last3=Germani|first3=A.|year=1993|doi=10.1080/00207179308934406|volume=57|issue=3|pages=537–556}}</ref> अधिक उन्नत और सामान्य परिणाम प्राप्त किए,गैर-रेखीय परिवर्तन की आवश्यकता को हटा दिया और नियमितता पर केवल सरल मान्यताओं का उपयोग करके अनुमानित स्थिति के वैश्विक स्पर्शोन्मुख अभिसरण को वास्तविक स्थिति में सिद्ध किया गया था ।


=== परिवर्तित पर्यवेक्षक ===
=== परिवर्तित पर्यवेक्षक ===


जैसा कि ऊपर रैखिक मामले के लिए चर्चा की गई है, लुएनबर्गर पर्यवेक्षकों में मौजूद चरम घटना स्विच किए गए पर्यवेक्षकों के उपयोग को उचित ठहराती है।स्विच्ड ऑब्जर्वर मेंरिले या बाइनरी स्विच शामिल होता है जो मापा आउटपुट में मिनट परिवर्तन का पता लगाने पर कार्य करता है। कुछ सामान्य प्रकार के स्विच्ड पर्यवेक्षकों में स्लाइडिंग मोड पर्यवेक्षक, नॉनलाइनियर विस्तारित राज्य पर्यवेक्षक शामिल हैं।<ref>{{cite journal |last1=Guo |first1=Bao-Zhu |last2=Zhao |first2=Zhi-Liang |title=अनिश्चितता के साथ नॉनलाइनियर सिस्टम के लिए विस्तारित राज्य पर्यवेक्षक|journal=IFAC Proceedings Volumes |date=January 2011 |volume=44 |issue=1 |pages=1855–1860 |doi=10.3182/20110828-6-IT-1002.00399 |url=https://www.sciencedirect.com/science/article/pii/S1474667016438802 |access-date=8 August 2023 |publisher=[[International Federation of Automatic Control]] |language=en}}</ref> निश्चित समय पर्यवेक्षक,<ref>{{Cite web |access-date=8 August 2023 |title=वेबैक मशीन ने उस यूआरएल को संग्रहीत नहीं किया है।|url=https://www.sciencedirect.com/science/article/pii/S240589632}}{{Dead Link |date=August 2023}}</ref> उच्च लाभ पर्यवेक्षक को स्विच किया गया<ref>{{cite web |volume=54 |issue=7 |url-access=limited |last1=Kumar |first1=Sunil |last2=Kumar Pal |first2=Anil |last3=Kamal |first3=Shyam |last4=Xiong |first4=Xiaogang |title=नॉनलीनियर सिस्टम के लिए स्विच्ड हाई-गेन ऑब्जर्वर का डिज़ाइन|url=https://www.tandfonline.com/doi/abs/10.1080/00207721.2023.2178863 |website=International Journal of Systems Science |publisher=[[Science Publishing Group]] |access-date=8 August 2023 |pages=1471–1483 |language=en |doi=10.1080/00207721.2023.2178863 |date=19 May 2023}}</ref> और पर्यवेक्षक को एकजुट करना।<ref>{{Cite web |title=पंजीकरण|url-access=registration |url=https://ieeexplore.ieee.org/docum |website=[[IEEE Xplore]] |language=en |access-date=8 August 2023}}</ref> स्लाइडिंग मोड नियंत्रण#स्लाइडिंग मोड ऑब्जर्वर अनुमानित स्थितियों को [[ऊनविम पृष्ठ]] पर ले जाने के लिए गैर-रेखीय उच्च-लाभ फीडबैक का उपयोग करता है जहां अनुमानित आउटपुट और मापा आउटपुट के बीच कोई अंतर नहीं होता है। पर्यवेक्षक में उपयोग किए जाने वाले गैर-रैखिक लाभ को आम तौर पर अनुमानित - मापा आउटपुट त्रुटि के [[साइन फ़ंक्शन]] (यानी, एसजीएन) जैसे स्केल किए गए स्विचिंग फ़ंक्शन के साथ कार्यान्वित किया जाता है। इसलिए, इस उच्च-लाभ प्रतिक्रिया के कारण, पर्यवेक्षक के वेक्टर क्षेत्र मेंक्रीज होती है ताकि पर्यवेक्षक प्रक्षेपवक्रवक्र के साथ स्लाइड करें जहां अनुमानित आउटपुट मापा आउटपुट से बिल्कुल मेल खाता है। इसलिए, यदि सिस्टम अपने आउटपुट से अवलोकन योग्य है, तो पर्यवेक्षक राज्यों को वास्तविक सिस्टम राज्यों में ले जाया जाएगा। इसके अतिरिक्त, स्लाइडिंग मोड ऑब्जर्वर को चलाने के लिए त्रुटि के संकेत का उपयोग करने से, ऑब्जर्वर प्रक्षेप पथ कई प्रकार के शोर के प्रति असंवेदनशील हो जाते हैं। इसलिए, कुछ स्लाइडिंग मोड पर्यवेक्षकों में कलमन फ़िल्टर के समान आकर्षक गुण होते हैं लेकिन सरल कार्यान्वयन के साथ।<ref name="UtkinGS99" /><ref name="Drakunov83" />
जैसा कि ऊपर रैखिक स्थिति के लिए विचार की गई है, जो कि लुएनबर्गर पर्यवेक्षकों में उपस्थित चरम घटना स्विच किए गए पर्यवेक्षकों के उपयोग को उचित ठहराती है। जिसमे स्विच्ड प्रेक्षक मेंरिले या बाइनरी स्विच सम्मिलित होता है जो मापा आउटपुट में मिनट परिवर्तन का पता लगाने पर कार्य करता है। कुछ सामान्य प्रकार के स्विच्ड पर्यवेक्षकों में स्लाइडिंग मोड पर्यवेक्षक, नॉनलाइनियर विस्तारित अवस्था प्रेक्षक सम्मिलित हैं।<ref>{{cite journal |last1=Guo |first1=Bao-Zhu |last2=Zhao |first2=Zhi-Liang |title=अनिश्चितता के साथ नॉनलाइनियर सिस्टम के लिए विस्तारित राज्य पर्यवेक्षक|journal=IFAC Proceedings Volumes |date=January 2011 |volume=44 |issue=1 |pages=1855–1860 |doi=10.3182/20110828-6-IT-1002.00399 |url=https://www.sciencedirect.com/science/article/pii/S1474667016438802 |access-date=8 August 2023 |publisher=[[International Federation of Automatic Control]] |language=en}}</ref> निश्चित समय पर्यवेक्षक,<ref>{{Cite web |access-date=8 August 2023 |title=वेबैक मशीन ने उस यूआरएल को संग्रहीत नहीं किया है।|url=https://www.sciencedirect.com/science/article/pii/S240589632}}{{Dead Link |date=August 2023}}</ref> उच्च लाभ प्रेक्षक को स्विच किया गया था <ref>{{cite web |volume=54 |issue=7 |url-access=limited |last1=Kumar |first1=Sunil |last2=Kumar Pal |first2=Anil |last3=Kamal |first3=Shyam |last4=Xiong |first4=Xiaogang |title=नॉनलीनियर सिस्टम के लिए स्विच्ड हाई-गेन ऑब्जर्वर का डिज़ाइन|url=https://www.tandfonline.com/doi/abs/10.1080/00207721.2023.2178863 |website=International Journal of Systems Science |publisher=[[Science Publishing Group]] |access-date=8 August 2023 |pages=1471–1483 |language=en |doi=10.1080/00207721.2023.2178863 |date=19 May 2023}}</ref> और प्रेक्षक को एकजुट करना था।<ref>{{Cite web |title=पंजीकरण|url-access=registration |url=https://ieeexplore.ieee.org/docum |website=[[IEEE Xplore]] |language=en |access-date=8 August 2023}}</ref> जिससे स्लाइडिंग मोड नियंत्रण या स्लाइडिंग मोड प्रेक्षक अनुमानित स्थितियों को [[ऊनविम पृष्ठ]] पर ले जाने के लिए गैर-रेखीय उच्च-लाभ फीडबैक का उपयोग करता है जहां अनुमानित आउटपुट और मापा आउटपुट के बीच कोई अंतर नहीं होता है। जो कि प्रेक्षक में उपयोग किए जाने वाले गैर-रैखिक लाभ को समान्य रूप से  अनुमानित - मापा आउटपुट त्रुटि के [[साइन फ़ंक्शन|साइन]] फलन (अथार्त , एसजीएन) जैसे स्केल किए गए स्विचिंग फलन के साथ कार्यान्वित किया जाता है। इसलिए, इस उच्च-लाभ प्रतिक्रिया के कारण, प्रेक्षक के सदिश क्षेत्र में क्रीज होती है जिससे प्रेक्षक प्रक्षेपवक्रवक्र के साथ स्लाइड करें जहां अनुमानित आउटपुट मापा आउटपुट से बिल्कुल मेल खाता है। इसलिए, यदि प्रणाली अपने आउटपुट से अवलोकन योग्य है, तो प्रेक्षक स्थितियों को वास्तविक प्रणाली स्थितियों में ले जाया जाएगा। इसके अतिरिक्त, स्लाइडिंग मोड प्रेक्षक को चलाने के लिए त्रुटि के संकेत का उपयोग करने से, प्रेक्षक प्रक्षेप पथ विभिन्न प्रकार के ध्वनि के प्रति असंवेदनशील हो जाते हैं। इसलिए, कुछ स्लाइडिंग मोड पर्यवेक्षकों में कलमन फ़िल्टर के समान आकर्षक गुण होते हैं किन्तु सरल कार्यान्वयन के साथ लाया जाता है ।<ref name="UtkinGS99" /><ref name="Drakunov83" />


जैसा कि ड्रैकुनोव ने सुझाव दिया था,<ref name="Drakunov92">{{cite book|last=Drakunov|first=S.V.|title=&#91;1992&#93; Proceedings of the 31st IEEE Conference on Decision and Control |chapter=Sliding-mode observers based on equivalent control method |year=1992|issue=Tucson, Arizona, December 16–18|pages=[https://archive.org/details/proceedingsofthe0003unse/page/2368 2368–2370]|isbn=978-0-7803-0872-5|doi=10.1109/CDC.1992.371368|s2cid=120072463|url=https://works.bepress.com/cgi/viewcontent.cgi?article=1003&context=sergey_v_drakunov |chapter-url=https://archive.org/details/proceedingsofthe0003unse/page/2368}}</ref>स्लाइडिंग मोड नियंत्रण#स्लाइडिंग मोड ऑब्जर्वर को गैर-रेखीय प्रणालियों केवर्ग के लिए भी डिज़ाइन किया जा सकता है। ऐसे पर्यवेक्षक को मूल चर अनुमान के संदर्भ में लिखा जा सकता है <math>\hat{x}</math> और रूप है
जैसा कि ड्रैकुनोव ने सुझाव दिया था, <ref name="Drakunov92">{{cite book|last=Drakunov|first=S.V.|title=&#91;1992&#93; Proceedings of the 31st IEEE Conference on Decision and Control |chapter=Sliding-mode observers based on equivalent control method |year=1992|issue=Tucson, Arizona, December 16–18|pages=[https://archive.org/details/proceedingsofthe0003unse/page/2368 2368–2370]|isbn=978-0-7803-0872-5|doi=10.1109/CDC.1992.371368|s2cid=120072463|url=https://works.bepress.com/cgi/viewcontent.cgi?article=1003&context=sergey_v_drakunov |chapter-url=https://archive.org/details/proceedingsofthe0003unse/page/2368}}</ref> एक स्लाइडिंग मोड प्रेक्षकको गैर-रेखीय प्रणालियों के एक वर्ग के लिए भी डिज़ाइन किया जा सकता है। ऐसे पर्यवेक्षक को मूल वेरिएबल अनुमान <math>\hat{x}</math> के संदर्भ में लिखा जा सकता है और उसका रूप होता है


: <math> \dot{\hat{x}} =
: <math> \dot{\hat{x}} =
\left [ \frac{\partial H(\hat{x})}{\partial x}\right]^{-1} M(\hat{x})
\left [ \frac{\partial H(\hat{x})}{\partial x}\right]^{-1} M(\hat{x})
\sgn( V(t) - H(\hat{x}) )</math>
\sgn( V(t) - H(\hat{x}) )</math>
कहाँ:
जहाँ :


* <math>\sgn(\mathord{\cdot})</math> h> वेक्टर अदिश चिह्न फ़ंक्शन का विस्तार करता है <math>n</math> आयाम. वह है,
*<math>\sgn(\mathord{\cdot})</math> सदिश स्केलर साइनम फलन को <math>n</math> आयामों तक विस्तारित करता है। वह है,
*:: <math>\sgn(z) = \begin{bmatrix}
*:: <math>\sgn(z) = \begin{bmatrix}
\sgn(z_1)\\
\sgn(z_1)\\
Line 130: Line 134:
\sgn(z_n)
\sgn(z_n)
\end{bmatrix}</math>
\end{bmatrix}</math>
*: वेक्टर के लिए <math>z \in \mathbb{R}^n</math>.
*: सदिश के लिए <math>z \in \mathbb{R}^n</math>.
* वेक्टर <math>H(x)</math> इसमें ऐसे घटक हैं जो आउटपुट फ़ंक्शन हैं <math>h(x)</math> और इसके दोहराए गए लाई डेरिवेटिव। विशेष रूप से,
* सदिश <math>H(x)</math> इसमें ऐसे घटक हैं जो आउटपुट फलन <math>h(x)</math> हैं और इसके दोहराए गए लाई डेरिवेटिव है। जो कि विशेष रूप से,
*:: <math>H(x) \triangleq
*:: <math>H(x) \triangleq
\begin{bmatrix}
\begin{bmatrix}
Line 148: Line 152:
L_{f}^{n-1}h(x)
L_{f}^{n-1}h(x)
\end{bmatrix}</math>
\end{bmatrix}</math>
*: कहाँ <math>L^i_f h</math> मैं है<sup>वें</sup>आउटपुट फ़ंक्शन का व्युत्पन्न झूठ <math>h</math> वेक्टर फ़ील्ड के साथ <math>f</math> (अर्थात्, साथ में <math>x</math> गैर-रेखीय प्रणाली के प्रक्षेप पथ)। विशेष मामले में जहां सिस्टम में कोई इनपुट नहीं है या n का फीडबैक रैखिककरण है, <math>H(x(t))</math> आउटपुट कासंग्रह है <math>y(t)=h(x(t))</math> और इसके <math>n-1</math> व्युत्पन्न। क्योंकि के रैखिककरण का उलटा <math>H(x)</math> इस पर्यवेक्षक को अच्छी तरह से परिभाषित करने के लिए, परिवर्तन का अस्तित्व होना चाहिए <math>H(x)</math> स्थानीय भिन्नता होने की गारंटी है।
*:जहां <math>L^i_f h</math> सदिश क्षेत्र <math>f</math> के साथ आउटपुट फलन <math>h</math> का ''i''<sup>th</sup> Lie व्युत्पन्न है (अथार्त , गैर-रेखीय प्रणाली के <math>x</math> प्रक्षेपवक्र के साथ)। विशेष स्थिति में जहां प्रणाली में कोई इनपुट नहीं है या n की सापेक्ष डिग्री है, <math>H(x(t))</math> आउटपुट <math>y(t)=h(x(t))</math> और इसके <math>n-1</math> डेरिवेटिव का एक संग्रह है। क्योंकि इस पर्यवेक्षक को अच्छी तरह से परिभाषित करने के लिए <math>H(x)</math> के जैकोबियन रैखिककरण का व्युत्क्रम उपस्थित होना चाहिए, परिवर्तन <math>H(x)</math> एक स्थानीय भिन्नता होने की गारंटी है।
* [[विकर्ण मैट्रिक्स]] <math>M(\hat{x})</math> लाभ का इतना है कि
* [[विकर्ण मैट्रिक्स|विकर्ण]] आव्यूह <math>M(\hat{x})</math> लाभ का इतना है कि
*:: <math>M(\hat{x}) \triangleq
*:: <math>M(\hat{x}) \triangleq
\operatorname{diag}( m_1(\hat{x}), m_2(\hat{x}), \ldots, m_n(\hat{x}) )
\operatorname{diag}( m_1(\hat{x}), m_2(\hat{x}), \ldots, m_n(\hat{x}) )
Line 161: Line 165:
& & & & & m_n(\hat{x})
& & & & & m_n(\hat{x})
\end{bmatrix}</math>
\end{bmatrix}</math>
*: कहाँ, प्रत्येक के लिए <math>i \in \{1,2,\dots,n\}</math>, तत्व <math>m_i(\hat{x}) > 0</math> और स्लाइडिंग मोड की पहुंच सुनिश्चित करने के लिए उपयुक्त रूप से बड़ा।
*: जहाँ , प्रत्येक के लिए <math>i \in \{1,2,\dots,n\}</math>, तत्व <math>m_i(\hat{x}) > 0</math> और स्लाइडिंग मोड की पहुंच सुनिश्चित करने के लिए उपयुक्त रूप से बड़ा होता है ।
* प्रेक्षक वेक्टर <math>V(t)</math> इस प्रकार कि
* प्रेक्षक सदिश <math>V(t)</math> इस प्रकार कि
*:: <math>V(t)
*:: <math>V(t)
\triangleq
\triangleq
Line 184: Line 188:
\end{bmatrix}
\end{bmatrix}
</math>
</math>
*: कहाँ <math>\sgn(\mathord{\cdot})</math> यहां स्केलर के लिए परिभाषित सामान्य [[साइन फ़ंक्शन]] है, और <math>\{ \ldots \}_{\text{eq}}</math> स्लाइडिंग मोड मेंअसंतत फ़ंक्शन के समतुल्य मान ऑपरेटर को दर्शाता है।
*: जहाँ <math>\sgn(\mathord{\cdot})</math> यहां स्केलर के लिए परिभाषित सामान्य [[साइन फ़ंक्शन|साइन]] फलन है, और <math>\{ \ldots \}_{\text{eq}}</math> स्लाइडिंग मोड मेंअसंतत फलन के समतुल्य मान ऑपरेटर को दर्शाता है।
 
इस विचार को संक्षेप में इस प्रकार समझाया जा सकता है। स्लाइडिंग मोड के सिद्धांत के अनुसार, प्रणाली व्यवहार का वर्णन करने के लिए, बार स्लाइडिंग मोड प्रारंभ होने पर, फलन <math>\sgn( v_{i}(t)\!-\! h_{i}(\hat{x}(t)) )</math> समकक्ष मानों द्वारा प्रतिस्थापित किया जाना चाहिए (स्लाइडिंग मोड नियंत्रण के सिद्धांत में समकक्ष नियंत्रण देखें)। जो कि वास्तव में, यह उच्च आवृत्ति के साथ स्विच (चैटर) करता है और धीमा घटक समतुल्य मूल्य के समान होता है। उच्च आवृत्ति घटक से छुटकारा पाने के लिए उपयुक्त लोपास फ़िल्टर प्रयुक्त करने से समतुल्य नियंत्रण का मूल्य प्राप्त किया जा सकता है, जिसमें अनुमानित प्रणाली की स्थिति के बारे में अधिक जानकारी होती है। जो ऊपर वर्णित प्रेक्षक आदर्श रूप से सीमित समय में गैर-रेखीय प्रणाली की स्थिति प्राप्त करने के लिए इस विधि का विभिन्न बार उपयोग करता है।


इस विचार को संक्षेप में इस प्रकार समझाया जा सकता है। स्लाइडिंग मोड के सिद्धांत के अनुसार, सिस्टम व्यवहार का वर्णन करने के लिए,बार स्लाइडिंग मोड शुरू होने पर, फ़ंक्शन <math>\sgn( v_{i}(t)\!-\! h_{i}(\hat{x}(t)) )</math> समकक्ष मानों द्वारा प्रतिस्थापित किया जाना चाहिए (स्लाइडिंग मोड नियंत्रण के सिद्धांत में समकक्ष नियंत्रण देखें)। व्यवहार में, यह उच्च आवृत्ति के साथ स्विच (चैटर) करता है और धीमा घटक समतुल्य मूल्य के बराबर होता है। उच्च आवृत्ति घटक से छुटकारा पाने के लिए उपयुक्त लोपास फ़िल्टर लागू करने से समतुल्य नियंत्रण का मूल्य प्राप्त किया जा सकता है, जिसमें अनुमानित प्रणाली की स्थिति के बारे में अधिक जानकारी होती है। ऊपर वर्णित पर्यवेक्षक आदर्श रूप से सीमित समय में गैर-रेखीय प्रणाली की स्थिति प्राप्त करने के लिए इस विधि का कई बार उपयोग करता है।


संशोधित अवलोकन त्रुटि को रूपांतरित अवस्थाओं में लिखा जा सकता है <math>e=H(x)-H(\hat{x})</math>. विशेष रूप से,
संशोधित अवलोकन त्रुटि को परिवर्तित अवस्थाओं <math>e=H(x)-H(\hat{x})</math> में लिखा जा सकता है। विशेष रूप से,


: <math>\begin{align}
: <math>\begin{align}
Line 264: Line 269:
इसलिए:
इसलिए:


# जब तक कि <math>m_1(\hat{x}) \geq |h_2(x(t))|</math>, त्रुटि गतिशीलता की पहली पंक्ति, <math>\dot{e}_1 = h_2(\hat{x}) - m_1(\hat{x}) \sgn( e_1 )</math>में प्रवेश के लिए पर्याप्त शर्तों को पूरा करेगा <math>e_1 = 0</math> सीमित समय में स्लाइडिंग मोड।
#जब तक <math>m_1(\hat{x}) \geq |h_2(x(t))|</math>, त्रुटि गतिशीलता की पहली पंक्ति, <math>\dot{e}_1 = h_2(\hat{x}) - m_1(\hat{x}) \sgn( e_1 )</math>, प्रवेश के लिए पर्याप्त नियमों को पूरा करेगा <math>e_1 = 0</math> सीमित समय में स्लाइडिंग मोड है ।
# साथ <math>e_1 = 0</math> सतह, संगत <math>v_2(t) = \{m_1(\hat{x}) \sgn( e_1 )\}_{\text{eq}}</math> समतुल्य नियंत्रण के बराबर होगा <math>h_2(x)</math>, इसलिए <math>v_2(t) - h_2(\hat{x}) = h_2(x) - h_2(\hat{x}) = e_2</math>. इसलिए, जब तक <math>m_2(\hat{x}) \geq |h_3(x(t))|</math>, त्रुटि गतिशीलता की दूसरी पंक्ति, <math>\dot{e}_2 = h_3(\hat{x}) - m_2(\hat{x}) \sgn( e_2 )</math>, में प्रवेश करेगा <math>e_2 = 0</math> सीमित समय में स्लाइडिंग मोड।
#<math>e_1 = 0</math> सतह के अनुदिश, संगत <math>v_2(t) = \{m_1(\hat{x}) \sgn( e_1 )\}_{\text{eq}}</math> समतुल्य नियंत्रण <math>h_2(x)</math> के समान होगा, और इसलिए<math>v_2(t) - h_2(\hat{x}) = h_2(x) - h_2(\hat{x}) = e_2</math> इसलिए, जब तक <math>m_2(\hat{x}) \geq |h_3(x(t))|</math> त्रुटि गतिशीलता की दूसरी पंक्ति<math>\dot{e}_2 = h_3(\hat{x}) - m_2(\hat{x}) \sgn( e_2 )</math> <math>e_2 = 0</math> सीमित समय में स्लाइडिंग मोड है ।
# साथ <math>e_i = 0</math> सतह, संगत <math>v_{i+1}(t) = \{\ldots\}_{\text{eq}}</math> समतुल्य नियंत्रण के बराबर होगा <math>h_{i+1}(x)</math>. इसलिए, जब तक <math>m_{i+1}(\hat{x}) \geq |h_{i+2}(x(t))|</math>, द <math>(i+1)</math><sup>त्रुटि गतिशीलता की पंक्ति, <math>\dot{e}_{i+1} = h_{i+2}(\hat{x}) - m_{i+1}(\hat{x}) \sgn( e_{i+1} )</math>, में प्रवेश करेगा <math>e_{i+1} = 0</math> सीमित समय में स्लाइडिंग मोड।
# <math>e_i = 0</math> सतह के साथ, संबंधित <math>v_{i+1}(t) = \{\ldots\}_{\text{eq}}</math> समतुल्य नियंत्रण<math>h_{i+1}(x)</math>के समान होगा इसलिए, जब तक <math>m_{i+1}(\hat{x}) \geq |h_{i+2}(x(t))|</math> पंक्ति त्रुटि की गतिशीलता, , <math>\dot{e}_{i+1} = h_{i+2}(\hat{x}) - m_{i+1}(\hat{x}) \sgn( e_{i+1} )</math> सीमित समय में <math>e_{i+1} = 0</math> स्लाइडिंग मोड में प्रवेश करेगा।


तो, पर्याप्त रूप से बड़े के लिए <math>m_i</math> लाभ, सभी पर्यवेक्षक अनुमानित राज्य सीमित समय में वास्तविक राज्यों तक पहुंचते हैं। वास्तव में, बढ़ रहा है <math>m_i</math> जब तक प्रत्येक वांछित परिमित समय में अभिसरण की अनुमति देता है <math>|h_i(x(0))|</math> कार्य को निश्चितता से बांधा जा सकता है। इसलिए, आवश्यकता है कि मानचित्र <math>H:\mathbb{R}^n \to \mathbb{R}^n </math>भिन्नतावाद है (यानी, इसका रैखिककरण उलटा है) यह दावा करता है कि अनुमानित आउटपुट का अभिसरण अनुमानित स्थिति के अभिसरण का तात्पर्य है। अर्थात्, आवश्यकताअवलोकनीय स्थिति है।


इनपुट वाले सिस्टम के लिए स्लाइडिंग मोड पर्यवेक्षक के मामले में, इनपुट से स्वतंत्र होने के लिए अवलोकन त्रुटि के लिए अतिरिक्त शर्तों की आवश्यकता होती है। उदाहरण के लिए, वह
इसलिए, पर्याप्त रूप से बड़े <math>m_i</math> लाभ के लिए, सभी पर्यवेक्षक अनुमानित राज्य सीमित समय में वास्तविक राज्यों तक पहुंचते हैं। वास्तव में, <math>m_i</math> को बढ़ाने से किसी भी वांछित परिमित समय में अभिसरण की अनुमति मिलती है जब तक कि प्रत्येक <math>|h_i(x(0))|</math> कार्य को निश्चितता से बांधा जा सकता है। इसलिए, आवश्यकता यह है कि मानचित्र <math>H:\mathbb{R}^n \to \mathbb{R}^n </math> एक भिन्नता है (अथार्त , इसका जैकोबियन रैखिककरण विपरीत है) उस अभिसरण का प्रमाण करता है अनुमानित आउटपुट का तात्पर्य अनुमानित स्थिति के अभिसरण से है। अर्थात्, आवश्यकता एक अवलोकनीय स्थिति है।
 
इनपुट वाले प्रणाली के लिए स्लाइडिंग मोड प्रेक्षक के स्थिति में, इनपुट से स्वतंत्र होने के लिए अवलोकन त्रुटि के लिए अतिरिक्त नियमों की आवश्यकता होती है। उदाहरण के लिए, वह


: <math> \frac{\partial H(x)}{\partial x} B(x)</math>
: <math> \frac{\partial H(x)}{\partial x} B(x)</math>
समय पर निर्भर नहीं है. तब पर्यवेक्षक है
समय पर निर्भर नहीं है. तब प्रेक्षक है


: <math>
: <math>
Line 283: Line 289:
== बहु-पर्यवेक्षक ==
== बहु-पर्यवेक्षक ==


मल्टी-ऑब्जर्वर उच्च-लाभ पर्यवेक्षक संरचना को एकल से बहु पर्यवेक्षक तक विस्तारित करता है, जिसमें कई मॉडलसाथ काम करते हैं। इसमें दो परतें हैं: पहले में विभिन्न अनुमान राज्यों के साथ कई उच्च-लाभ वाले पर्यवेक्षक होते हैं, और दूसरा पहली परत पर्यवेक्षकों के महत्व भार को निर्धारित करता है। एल्गोरिदम को लागू करना सरल है और इसमें भेदभाव जैसा कोई जोखिम भरा ऑपरेशन शामिल नहीं है।<ref name="MMObserver"/>कई मॉडलों का विचार पहले अनुकूली नियंत्रण में जानकारी प्राप्त करने के लिए लागू किया गया था।<ref>{{cite journal|last1=Narendra|first1=K.S.|last2=Han|first2=Z.|title=एकाधिक मॉडलों का उपयोग करके अनुकूली नियंत्रण के लिए एक नया दृष्टिकोण|journal=International Journal of Adaptive Control and Signal Processing|date=August 2012|volume=26|issue=8|pages=778–799|doi=10.1002/acs.2269|s2cid=60482210 |issn=1099-1115}}</ref>
बहु-प्रेक्षक उच्च-लाभ प्रेक्षक संरचना को एकल से बहु प्रेक्षक तक विस्तारित करता है, जिसमें विभिन्न मॉडल साथ काम करते हैं। इसमें दो परतें हैं: पहले में विभिन्न अनुमान स्थितियों के साथ विभिन्न उच्च-लाभ वाले प्रेक्षक होते हैं, और दूसरा पहली परत पर्यवेक्षकों के महत्व भार को निर्धारित करता है। एल्गोरिदम को प्रयुक्त करना सरल है और इसमें भेदभाव जैसा कोई विपत्ति से भरा ऑपरेशन सम्मिलित नहीं है।<ref name="MMObserver"/> जिसके विभिन्न मॉडलों का विचार पहले अनुकूली नियंत्रण में जानकारी प्राप्त करने के लिए प्रयुक्त किया गया था।<ref>{{cite journal|last1=Narendra|first1=K.S.|last2=Han|first2=Z.|title=एकाधिक मॉडलों का उपयोग करके अनुकूली नियंत्रण के लिए एक नया दृष्टिकोण|journal=International Journal of Adaptive Control and Signal Processing|date=August 2012|volume=26|issue=8|pages=778–799|doi=10.1002/acs.2269|s2cid=60482210 |issn=1099-1115}}</ref>


<gallery heights="293px" widths="588px">
<gallery heights="293px" widths="588px">
Multi observer.png|बहु-पर्यवेक्षक स्कीमा
Multi observer.png|बहु-पर्यवेक्षक स्कीमा
</gallery>
</gallery>
यह मानते हुए कि उच्च-लाभ वाले पर्यवेक्षकों की संख्या बराबर है <math>n+1</math>,


यह मानते हुए कि उच्च-लाभ वाले पर्यवेक्षकों की संख्या <math>n+1</math> के समान है।
:<math>\dot{\hat{x}}_k(t) = A \hat{x_k}(t)+ B \phi_0(\hat{x}(t), u(t)) - L (\hat{y_k}(t)-y(t)) </math>
:<math>\dot{\hat{x}}_k(t) = A \hat{x_k}(t)+ B \phi_0(\hat{x}(t), u(t)) - L (\hat{y_k}(t)-y(t)) </math>
:<math> \hat{y_k}(t) = C \hat{x_k}(t) </math>
:<math> \hat{y_k}(t) = C \hat{x_k}(t) </math>
कहाँ <math> k = 1, \dots, n + 1 </math> पर्यवेक्षक सूचकांक है. पहली परत के पर्यवेक्षकों में समान लाभ होता है <math> L </math> लेकिन वे प्रारंभिक अवस्था से भिन्न हैं <math> x_k(0) </math>. दूसरी परत में सब <math> x_k(t) </math> से <math> k = 1...n + 1 </math> एकल राज्य वेक्टर अनुमान प्राप्त करने के लिए पर्यवेक्षकों कोमें जोड़ दिया जाता है
जहां <math> k = 1, \dots, n + 1 </math>प्रेक्षक सूचकांक है। पहली परत के पर्यवेक्षकों में समान लाभ <math> L </math> होता है किन्तु वे प्रारंभिक अवस्था <math> x_k(0) </math> के साथ भिन्न होते हैं। दूसरी परत में <math> k = 1...n + 1 </math> पर्यवेक्षकों के सभी <math> x_k(t) </math> को एकल स्थित सदिश अनुमान प्राप्त करने के लिए एक में संयोजित किया जाता है


:<math> \hat{y_k}(t) = \sum\limits_{k=1}^{n+1} \alpha_k(t) \hat{x_k}(t) </math>
:<math> \hat{y_k}(t) = \sum\limits_{k=1}^{n+1} \alpha_k(t) \hat{x_k}(t) </math>
कहाँ <math> \alpha_k \in \mathbb{R} </math> वजन कारक हैं. दूसरी परत में अनुमान प्रदान करने और अवलोकन प्रक्रिया में सुधार करने के लिए इन कारकों को बदल दिया गया है।
जहाँ <math> \alpha_k \in \mathbb{R} </math> वजन कारक हैं. जिसकी दूसरी परत में अनुमान प्रदान करने और अवलोकन प्रक्रिया में सुधार करने के लिए इन कारकों को परिवर्तित कर दिया गया है।


चलिए मान लेते हैं
चलिए मान लेते हैं
Line 303: Line 309:


:<math> \sum\limits_{k=1}^{n+1} \alpha_k(t) = 1 </math>
:<math> \sum\limits_{k=1}^{n+1} \alpha_k(t) = 1 </math>
कहाँ <math> \xi_k \in \mathbb{R}^{n \times 1} </math> कुछ वेक्टर है जो निर्भर करता है <math> kth </math> पर्यवेक्षक त्रुटि <math> e_k(t) </math>.
जहां <math> \xi_k \in \mathbb{R}^{n \times 1} </math> कुछ सदिश है जो <math> kth </math> पर्यवेक्षक त्रुटि <math> e_k(t) </math> पर निर्भर करता है।


कुछ परिवर्तन से रैखिक प्रतिगमन समस्या उत्पन्न होती है
कुछ परिवर्तन से रैखिक प्रतिगमन समस्या उत्पन्न होती है


:<math> [- \xi_{n + 1} (t)] = [\xi_{1}(t) - \xi_{n + 1}(t)\dots \xi_{k}(t) - \xi_{n + 1}(t)\dots \xi_{n}(t) - \xi_{n + 1}(t)]^T \begin{bmatrix} \alpha_1(t)\\ \vdots \\ \alpha_k(t)\\ \vdots\\ \alpha_n(t) \end{bmatrix}</math>
:<math> [- \xi_{n + 1} (t)] = [\xi_{1}(t) - \xi_{n + 1}(t)\dots \xi_{k}(t) - \xi_{n + 1}(t)\dots \xi_{n}(t) - \xi_{n + 1}(t)]^T \begin{bmatrix} \alpha_1(t)\\ \vdots \\ \alpha_k(t)\\ \vdots\\ \alpha_n(t) \end{bmatrix}</math>
यह सूत्र अनुमान लगाने की संभावना देता है <math> \alpha_k (t) </math>. मैनिफोल्ड के निर्माण के लिए हमें मैपिंग की आवश्यकता है <math> m: \mathbb{R}^{n} \to \mathbb{R}^{n} </math> बीच में <math> \xi_k (t) = m(e_k(t))</math> और यह सुनिश्चित करें <math> \xi_k (t) </math> मापने योग्य संकेतों के आधार पर गणना योग्य है।
यह सूत्र अनुमान लगाने की संभावना देता है <math> \alpha_k (t) </math>. मैनिफ़ोल्ड के निर्माण के लिए हमें <math> \xi_k (t) = m(e_k(t))</math>के बीच मैपिंग <math> m: \mathbb{R}^{n} \to \mathbb{R}^{n} </math>की आवश्यकता है और यह सुनिश्चित करना है कि <math> \alpha_k(t) </math> मापने योग्य संकेतों पर निर्भर होकर गणना योग्य है। पहली बात यह है कि पार्किंग की समस्या को समाप्त किया जाए
पहली बात यह है कि पार्किंग की समस्या को खत्म किया जाए <math> \alpha_k(t) </math> प्रेक्षक त्रुटि से


:<math> e_{\sigma}(t) =  \sum\limits_{k=1}^{n+1} \alpha_k(t) e_k(t) </math>.
:<math> e_{\sigma}(t) =  \sum\limits_{k=1}^{n+1} \alpha_k(t) e_k(t) </math>.


गणना <math> n </math> समय पर व्युत्पन्न <math>\eta_k(t)=\hat y_k (t) - y(t)</math> मैपिंग खोजने के लिए एम की ओर ले जाएं <math> \xi_k(t) </math> के रूप में परिभाषित
मैपिंग m लीड को <math> \xi_k(t) </math> के रूप में परिभाषित करने के लिए <math>\eta_k(t)=\hat y_k (t) - y(t)</math> पर <math> n </math> गुना व्युत्पन्न की गणना करें


:<math> \xi_k (t) = \begin{bmatrix}  
:<math> \xi_k (t) = \begin{bmatrix}  
Line 329: Line 334:
\end{bmatrix}
\end{bmatrix}
</math>
</math>
कहाँ <math>t_d > 0</math> कुछ समय स्थिर है. ध्यान दें कि <math>\xi_k(t)</math> दोनों पर निर्भर करता है <math>\eta_k(t)</math> और इसके अभिन्न अंग इसलिए यह नियंत्रण प्रणाली में आसानी से उपलब्ध है। आगे <math> \alpha_k(t) </math> अनुमान कानून द्वारा निर्दिष्ट है; और इस प्रकार यह साबित होता है कि मैनिफोल्ड मापने योग्य है। दूसरी परत में <math>\hat\alpha_k(t)</math> के लिए <math>k = 1 \dots n + 1</math> के अनुमान के रूप में पेश किया गया है <math>\alpha_k(t)</math> गुणांक. मैपिंग त्रुटि इस प्रकार निर्दिष्ट है
जहां <math>t_d > 0</math> कुछ समय स्थिरांक है। ध्यान दें कि <math>\xi_k(t)</math> दोनों <math>\eta_k(t)</math> और इसके इंटीग्रल पर निर्भर करता है इसलिए यह नियंत्रण प्रणाली में सरलता से उपलब्ध है। इसके अतिरिक्त <math> \alpha_k(t) </math> अनुमान नियम द्वारा निर्दिष्ट है; और इस प्रकार यह सिद्ध होता है कि मैनिफोल्ड मापने योग्य है। दूसरी परत में <math>\hat\alpha_k(t)</math> के लिए<math>k = 1 \dots n + 1</math> को <math>\alpha_k(t)</math> गुणांक के अनुमान के रूप में प्रस्तुत किया गया है। मैपिंग त्रुटि इस प्रकार निर्दिष्ट है


:<math>e_\xi(t) = \sum\limits_{k=1}^{n+1} \hat\alpha_k(t) \xi_k(t) </math>
:<math>e_\xi(t) = \sum\limits_{k=1}^{n+1} \hat\alpha_k(t) \xi_k(t) </math>
कहाँ <math>e_\xi(t) \in \mathbb{R}^{n \times 1}, \hat\alpha_k(t) \in \mathbb{R} </math>. यदि गुणांक <math>\hat\alpha(t) </math> के बराबर हैं <math>\alpha_k(t)</math> , फिर मैपिंग त्रुटि <math> e_\xi(t) = 0</math> अब गणना संभव है <math> \hat x</math> उपरोक्त समीकरण से और इसलिए मैनिफोल्ड के गुणों के कारण चरम घटना कम हो जाती है। बनाई गई मैपिंग अनुमान प्रक्रिया में काफी लचीलापन देती है। की कीमत का अंदाजा भी लगाया जा सकता है <math>x(t)</math> दूसरी परत में और राज्य की गणना करने के लिए <math> x</math>.<ref name="MMObserver" />


जहाँ <math>e_\xi(t) \in \mathbb{R}^{n \times 1}, \hat\alpha_k(t) \in \mathbb{R} </math>. यदि गुणांक <math>\hat\alpha(t) </math> <math>\alpha_k(t)</math> के समान हैं, तो मैपिंग त्रुटि <math> e_\xi(t) = 0</math> अब उपरोक्त समीकरण से <math> \hat x</math> की गणना करना संभव है और इसलिए मैनिफोल्ड के गुणों के कारण चरम घटना कम हो जाती है। जिसमे बनाई गई मैपिंग अनुमान प्रक्रिया में अधिक लचीलापन देती है। यहां तक कि दूसरी परत में <math>x(t)</math> के मान का अनुमान लगाना और स्थिति <math> x</math> की गणना करना भी संभव है।<ref name="MMObserver" />
== बाध्य पर्यवेक्षक ==
== बाध्य पर्यवेक्षक ==


सीमांकन<ref>{{cite book|doi=10.23919/ECC.2003.7085991|chapter-url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecc03/pdfs/437.pdf|chapter=A state bounding observer based on zonotopes |title=2003 European Control Conference (ECC) |year=2003 |last1=Combastel |first1=C. |pages=2589–2594 |isbn=978-3-9524173-7-9 |s2cid=13790057 }}</ref> या अंतराल पर्यवेक्षक<ref>{{cite book|doi=10.1109/CDC.2008.4739280|chapter-url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/cdc-2008/data/papers/1446.pdf|chapter=Tight robust interval observers: An LP approach |title=2008 47th IEEE Conference on Decision and Control |year=2008 |last1=Rami |first1=M. Ait |last2=Cheng |first2=C. H. |last3=De Prada |first3=C. |pages=2967–2972 |isbn=978-1-4244-3123-6 |s2cid=288928 }}</ref><ref>{{Cite journal|url=https://hal.archives-ouvertes.fr/hal-01276439/|doi = 10.1134/S0005117916020016|title = अनिश्चित गतिशील प्रणालियों के लिए अंतराल पर्यवेक्षकों का डिज़ाइन|year = 2016|last1 = Efimov|first1 = D.|last2 = Raïssi|first2 = T.|journal = Automation and Remote Control|volume = 77|issue = 2|pages = 191–225|s2cid = 49322177}}</ref> पर्यवेक्षकों केवर्ग का गठन करें जो दो अनुमान प्रदान करते हैं
बाउंडिंग<ref>{{cite book|doi=10.23919/ECC.2003.7085991|chapter-url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecc03/pdfs/437.pdf|chapter=A state bounding observer based on zonotopes |title=2003 European Control Conference (ECC) |year=2003 |last1=Combastel |first1=C. |pages=2589–2594 |isbn=978-3-9524173-7-9 |s2cid=13790057 }}</ref> या अंतराल पर्यवेक्षक<ref>{{cite book|doi=10.1109/CDC.2008.4739280|chapter-url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/cdc-2008/data/papers/1446.pdf|chapter=Tight robust interval observers: An LP approach |title=2008 47th IEEE Conference on Decision and Control |year=2008 |last1=Rami |first1=M. Ait |last2=Cheng |first2=C. H. |last3=De Prada |first3=C. |pages=2967–2972 |isbn=978-1-4244-3123-6 |s2cid=288928 }}</ref><ref>{{Cite journal|url=https://hal.archives-ouvertes.fr/hal-01276439/|doi = 10.1134/S0005117916020016|title = अनिश्चित गतिशील प्रणालियों के लिए अंतराल पर्यवेक्षकों का डिज़ाइन|year = 2016|last1 = Efimov|first1 = D.|last2 = Raïssi|first2 = T.|journal = Automation and Remote Control|volume = 77|issue = 2|pages = 191–225|s2cid = 49322177}}</ref> पर्यवेक्षकों के एक वर्ग का गठन करते हैं जो एक साथ अवस्था के दो अनुमान प्रदान करते हैं: एक अनुमान अवस्था के वास्तविक मूल्य पर एक ऊपरी सीमा प्रदान करता है, जबकि दूसरा एक निम्न बाध्य प्रदान करता है। तब स्थिति का वास्तविक मूल्य सदैव इन दो अनुमानों के अंदर माना जाता है।
राज्य कासाथ: अनुमानों में सेराज्य के वास्तविक मूल्य पर ऊपरी सीमा प्रदान करता है,
जबकि दूसरा निचली सीमा प्रदान करता है। तब राज्य का वास्तविक मूल्य हमेशा इन दो अनुमानों के भीतर माना जाता है।
 
ये सीमाएँ व्यावहारिक अनुप्रयोगों में बहुत महत्वपूर्ण हैं,<ref>http://www.iaeng.org/publication/WCE2010/WCE2010_pp656-661.pdf {{Bare URL PDF|date=March 2022}}</ref><ref>{{cite journal | doi=10.1016/S0959-1524(99)00074-8 | volume=11 | issue=3 | title=अंतराल पर्यवेक्षकों के साथ सक्रिय कीचड़ प्रक्रियाओं के अनिश्चित मॉडल का अनुमान| journal=Journal of Process Control | pages=299–310| year=2001 | last1=Hadj-Sadok | first1=M.Z. | last2=Gouzé | first2=J.L. }}</ref> क्योंकि वे हर समय अनुमान की सटीकता जानना संभव बनाते हैं।
 
गणितीय रूप से, दो लुएनबर्गर पर्यवेक्षकों का उपयोग किया जा सकता है, यदि <math> L </math> उदाहरण के लिए, सकारात्मक सिस्टम गुणों का उपयोग करके उचित रूप से चुना गया है:<ref>{{cite journal|doi=10.1080/00207179.2011.573000|title=रैखिक सकारात्मक प्रणालियों के लिए सकारात्मक पर्यवेक्षक, और उनके निहितार्थ|year=2011 |last1=Rami |first1=Mustapha Ait |last2=Tadeo |first2=Fernando |last3=Helmke |first3=Uwe |journal=International Journal of Control |volume=84 |issue=4 |pages=716–725 |bibcode=2011IJC....84..716A |s2cid=21211012 }}</ref> ऊपरी सीमा के लिए<math> \hat{x}_U(k) </math> (यह सुनिश्चित करता है <math> e(k) = \hat{x}_U(k) - x(k) </math> जब ऊपर से शून्य में परिवर्तित हो जाता है <math> k \to \infty </math>, शोर और [[अनिश्चितता]] के अभाव में), औरनिचली सीमा <math> \hat{x}_L(k) </math> (यह सुनिश्चित करता है <math> e(k) = \hat{x}_L(k) - x(k) </math> नीचे से शून्य में परिवर्तित हो जाता है)। यानी हमेशा <math> \hat{x}_U(k) \ge x(k) \ge \hat{x}_L(k) </math>


ये सीमाएँ व्यावहारिक अनुप्रयोगों में बहुत महत्वपूर्ण हैं,<ref>http://www.iaeng.org/publication/WCE2010/WCE2010_pp656-661.pdf {{Bare URL PDF|date=March 2022}}</ref><ref>{{cite journal | doi=10.1016/S0959-1524(99)00074-8 | volume=11 | issue=3 | title=अंतराल पर्यवेक्षकों के साथ सक्रिय कीचड़ प्रक्रियाओं के अनिश्चित मॉडल का अनुमान| journal=Journal of Process Control | pages=299–310| year=2001 | last1=Hadj-Sadok | first1=M.Z. | last2=Gouzé | first2=J.L. }}</ref> क्योंकि वे हर समय अनुमान की स्पष्टता से जानना संभव बनाते हैं।


गणितीय रूप से, दो लुएनबर्गर पर्यवेक्षकों का उपयोग किया जा सकता है, यदि <math> L </math> को ठीक से चुना गया है, उदाहरण के लिए, सकारात्मक प्रणाली गुणों का उपयोग करते हुए: <ref>{{cite journal|doi=10.1080/00207179.2011.573000|title=रैखिक सकारात्मक प्रणालियों के लिए सकारात्मक पर्यवेक्षक, और उनके निहितार्थ|year=2011 |last1=Rami |first1=Mustapha Ait |last2=Tadeo |first2=Fernando |last3=Helmke |first3=Uwe |journal=International Journal of Control |volume=84 |issue=4 |pages=716–725 |bibcode=2011IJC....84..716A |s2cid=21211012 }}</ref> ऊपरी सीमा के लिए एक <math> \hat{x}_U(k) </math> (जो यह सुनिश्चित करता है <math> e(k) = \hat{x}_U(k) - x(k) </math> ,<math> k \to \infty </math> होने पर ऊपर से शून्य में परिवर्तित हो जाता है, ध्वनि और अनिश्चितता के अभाव में), और निचली सीमा <math> \hat{x}_L(k) </math> (जो सुनिश्चित करता है कि <math> e(k) = \hat{x}_L(k) - x(k) </math> नीचे से शून्य पर अभिसरण करता है)। अथार्त सदैव <math> \hat{x}_U(k) \ge x(k) \ge \hat{x}_L(k) </math>.
== यह भी देखें ==
== यह भी देखें ==
* [[गतिशील क्षितिज अनुमान]]
* [[गतिशील क्षितिज अनुमान]]
Line 384: Line 384:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 15/08/2023]]
[[Category:Created On 15/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:04, 17 October 2023


नियंत्रण सिद्धांत में,अवस्था प्रेक्षक या अवस्था अनुमानक ऐसी प्रणाली है जो वास्तविक प्रणाली के इनपुट/आउटपुट और आउटपुट के माप से किसी दिए गए वास्तविक प्रणाली के अवस्था स्थान (नियंत्रण) का अनुमान प्रदान करती है। यह समान रूप से कंप्यूटर द्वारा क्रियान्वित किया जाता है, और विभिन्न व्यावहारिक अनुप्रयोगों का आधार प्रदान करता है।

विभिन्न नियंत्रण सिद्धांत समस्याओं को हल करने के लिए प्रणाली स्थिति को जानना आवश्यक है; उदाहरण के लिए, पूर्ण अवस्था फीडबैक का उपयोग करके किसी प्रणाली को स्थिर करना। अधिकांश व्यावहारिक स्थितियों में, प्रणाली की भौतिक स्थिति को प्रत्यक्ष अवलोकन द्वारा निर्धारित नहीं किया जा सकता है। इसके अतिरिक्त , प्रणाली आउटपुट के माध्यम से आंतरिक स्थिति के अप्रत्यक्ष प्रभाव देखे जाते हैं। जिसमे सरल उदाहरण सुरंग में वाहनों का है: जिस दर और वेग से वाहन सुरंग में प्रवेश करते हैं और निकलते हैं उसे सीधे देखा जा सकता है, किन्तु सुरंग के अंदर की स्पष्ट स्थिति का केवल अनुमान लगाया जा सकता है। यदि कोई प्रणाली अवलोकनीयता है, तो अवस्था प्रेक्षक का उपयोग करके उसके आउटपुट माप से प्रणाली स्थिति को पूरी तरह से पुनर्निर्माण करना संभव है।

विशिष्ट प्रेक्षक मॉडल

लुएनबर्गर प्रेक्षक का ब्लॉक आरेख है। पर्यवेक्षक लाभ एल का इनपुट है।

रैखिक, विलंबित, स्लाइडिंग मोड, उच्च लाभ, ताऊ, समरूपता-आधारित, विस्तारित और घन प्रेक्षक रैखिक और गैर-रेखीय प्रणालियों के अवस्था आकलन के लिए उपयोग की जाने वाली विभिन्न प्रेक्षक संरचनाओं में से हैं। जो रैखिक प्रेक्षक संरचना का वर्णन निम्नलिखित अनुभागों में किया गया है।

असतत-समय का स्थिति

एक रैखिक, समय-अपरिवर्तनीय असतत-समय प्रणाली की स्थिति को संतुष्ट माना जाता है

जहां, समय पर, पौधे की अवस्था है क्या इसका इनपुट है; और इसका आउटपुट है. ये समीकरण समान्य रूप से कहते हैं कि संयंत्र के वर्तमान आउटपुट और इसकी भविष्य की स्थिति दोनों पूरी तरह से इसकी वर्तमान स्थिति और वर्तमान इनपुट द्वारा निर्धारित होते हैं। (यद्यपि ये समीकरण अलग-अलग गणित समय चरणों के संदर्भ में व्यक्त किए जाते हैं, निरंतर कार्य प्रणालियों के लिए बहुत समान समीकरण प्रयुक्त होते हैं)। यदि यह प्रणाली अवलोकनीयता है तो संयंत्र का उत्पादन, , का उपयोग अवस्था प्रेक्षक की स्थिति को नियंत्रित करने के लिए किया जा सकता है।

भौतिक प्रणाली का प्रेक्षक मॉडल समान रूप से उपरोक्त समीकरणों से प्राप्त होता है। यह सुनिश्चित करने के लिए अतिरिक्त नियम सम्मिलित की जा सकती हैं कि, संयंत्र के इनपुट और आउटपुट के क्रमिक मापा मूल्य प्राप्त करने पर, इस मॉडल की स्थिति संयंत्र की स्थिति में परिवर्तित हो जाती है। जो कि विशेष रूप से, प्रेक्षक के आउटपुट को संयंत्र के आउटपुट से घटाया जा सकता है और फिर आव्यूह द्वारा गुणा किया जा सकता है; फिर इसे नीचे दिए गए समीकरणों द्वारा परिभाषिततथाकथित डेविड लुएनबर्गर प्रेक्षक बनाने के लिए प्रेक्षक की स्थिति के समीकरणों में जोड़ा जाता है। ध्यान दें कि अवस्था प्रेक्षक के वेरिएबल समान्य रूप से टोपी द्वारा दर्शाए जाते हैं: जो और उन्हें भौतिक प्रणाली द्वारा संतुष्ट समीकरणों के वेरिएबल्स से अलग करना होता है।

प्रेक्षक को स्पर्शोन्मुख रूप से स्थिर कहा जाता है यदि प्रेक्षक त्रुटि , होने पर शून्य में परिवर्तित हो जाती है। लुएनबर्गर पर्यवेक्षक के लिए, पर्यवेक्षक त्रुटि को संतुष्ट करती है। इस असतत-समय प्रणाली के लिए लुएनबर्गर पर्यवेक्षक इसलिए असम्बद्ध रूप से स्थिर होता है जब आव्यूह में ईकाई वृत्त के अंदर सभी आइगेनवैल्यू होते हैं।

नियंत्रण उद्देश्यों के लिए पर्यवेक्षक प्रणाली का आउटपुट लाभ आव्यूह के माध्यम से पर्यवेक्षक और संयंत्र दोनों के इनपुट में वापस फीड किया जाता है।

प्रेक्षक समीकरण तब बन जाते हैं:

या, अधिक सरलता से,


पृथक्करण सिद्धांत के कारण हम जानते हैं कि हम प्रणाली की समग्र स्थिरता को हानि पहुंचाए बिना और को स्वतंत्र रूप से चुन सकते हैं। एक नियम के रूप में, पर्यवेक्षक के ध्रुवों को समान्य रूप से प्रणाली के ध्रुवों की तुलना में 10 गुना तेजी से अभिसरण करने के लिए चुना जाता है।

सतत-समय स्थिति

पिछला उदाहरण एक अलग-समय एलटीआई प्रणाली में कार्यान्वित पर्यवेक्षक के लिए था। चूँकि, निरंतर-समय के स्थिति के लिए प्रक्रिया समान है; पर्यवेक्षक लाभ को निरंतर समय त्रुटि गतिशीलता को स्पर्शोन्मुख रूप से शून्य में परिवर्तित करने के लिए चुना जाता है (अथार्त, जब एक हर्विट्ज़ आव्यूह है)।

एक सतत-समय रैखिक प्रणाली के लिए

जहाँ , प्रेक्षक ऊपर वर्णित असतत-समय के स्थिति के समान दिखता है:

.

प्रेक्षक त्रुटि समीकरण को संतुष्ट करता है

.

जब जोड़ी अवलोकन योग्य होती है, अथार्त अवलोकन की स्थिति बनी रहती है, तो आव्यूह के आइगेनवैल्यू को पर्यवेक्षक लाभ की उचित पसंद से इच्छित रूप से चुना जा सकता है। विशेष रूप से, इसे हर्विट्ज़ बनाया जा सकता है, इसलिए होने पर पर्यवेक्षक त्रुटि {

पीकिंग और अन्य प्रेक्षक विधियां

जब प्रेक्षक को लाभ होता है उच्च है, जो कि रैखिक लुएनबर्गर प्रेक्षक प्रणाली स्थितियों में बहुत तेज़ी से परिवर्तित होता है। चूँकि , उच्च प्रेक्षक लाभचरम घटना की ओर ले जाता है जिसमें प्रारंभिक अनुमानक त्रुटि निषेधात्मक रूप से बड़ी हो सकती है (अथार्त , अव्यावहारिक या उपयोग करने के लिए असुरक्षित)।[1] परिणामस्वरूप, गैर-रैखिक उच्च-लाभ प्रेक्षक विधियां उपलब्ध हैं जो चरम घटना के बिना जल्दी से अभिसरण करती हैं। उदाहरण के लिए, स्लाइडिंग मोड नियंत्रण का उपयोगपर्यवेक्षक को डिजाइन करने के लिए किया जा सकता है जो माप त्रुटि की उपस्थिति में भी सीमित समय मेंअनुमानित अवस्था की त्रुटि को शून्य पर लाता है; अन्य स्थिति में त्रुटि है जो शिखर के कम होने के बाद लुएनबर्गर प्रेक्षक में त्रुटि के समान व्यवहार करती है। जिसका स्लाइडिंग मोड पर्यवेक्षकों में आकर्षक ध्वनि लचीलापन गुण भी होते हैं जो कलमन फ़िल्टर के समान होते हैं।[2][3]

एक अन्य दृष्टिकोण बहु प्रेक्षक को प्रयुक्त करना है, जो ट्रांजिएंट्स में अधिक सुधार करता है और प्रेक्षक ओवरशूट को कम करता है। बहु-प्रेक्षक को हर उस प्रणाली के लिए अनुकूलित किया जा सकता है जहां उच्च-लाभ प्रेक्षक प्रयुक्त होता है।[4]


अरेखीय प्रणालियों के लिए अवस्था पर्यवेक्षक

उच्च लाभ, स्लाइडिंग मोड और विस्तारित प्रेक्षक नॉनलाइनियर प्रणाली के लिए सबसे समान्य प्रेक्षक हैं।

नॉनलीनियर प्रणाली के लिए स्लाइडिंग मोड पर्यवेक्षकों के अनुप्रयोग को स्पष्ट करने के लिए, पहले नो-इनपुट नॉन-लीनियर प्रणाली पर विचार करें:

जहां . यह भी मान लें कि एक मापने योग्य आउटपुट दिया गया है

किसी प्रेक्षक को डिज़ाइन करने के लिए विभिन्न गैर-अनुमानित दृष्टिकोण हैं। नीचे दिए गए दो प्रेक्षक उस स्थिति पर भी प्रयुक्त होते हैं जब प्रणाली में कोई इनपुट होता है। वह है,


रेखीय त्रुटि गतिशीलता

क्रेनर और इसिडोरी[5] और क्रेनर और रेस्पोंडेक[6] के एक सुझाव को ऐसी स्थिति में प्रयुक्त किया जा सकता है जब एक रैखिक परिवर्तन उपस्थित होता है (अथार्त, एक भिन्नता, जैसा कि फीडबैक रैखिककरण में उपयोग किया जाता है) जैसे नए वेरिएबल्स में प्रणाली समीकरण पढ़ते हैं

लुएनबर्गर प्रेक्षक को तब डिज़ाइन किया गया है

.

रूपांतरित वेरिएबल के लिए प्रेक्षक त्रुटि मौलिक रैखिक स्थिति के समान समीकरण को संतुष्ट करता है।

.

जैसा कि गॉथियर, हैमौरी, और ओथमान[7] और हैमौरी और किन्नार्ट द्वारा दिखाया गया है,[8] यदि परिवर्तन उपस्थित है जो कि जैसे कि प्रणाली को स्वरूप में परिवर्तित किया जा सकता है

तब प्रेक्षक को इस प्रकार डिज़ाइन किया गया है

,

जहाँ समय-परिवर्तनशील प्रेक्षक लाभ है।

सिस्कारेला, दल्ला मोरा, और जर्मनी[9] अधिक उन्नत और सामान्य परिणाम प्राप्त किए,गैर-रेखीय परिवर्तन की आवश्यकता को हटा दिया और नियमितता पर केवल सरल मान्यताओं का उपयोग करके अनुमानित स्थिति के वैश्विक स्पर्शोन्मुख अभिसरण को वास्तविक स्थिति में सिद्ध किया गया था ।

परिवर्तित पर्यवेक्षक

जैसा कि ऊपर रैखिक स्थिति के लिए विचार की गई है, जो कि लुएनबर्गर पर्यवेक्षकों में उपस्थित चरम घटना स्विच किए गए पर्यवेक्षकों के उपयोग को उचित ठहराती है। जिसमे स्विच्ड प्रेक्षक मेंरिले या बाइनरी स्विच सम्मिलित होता है जो मापा आउटपुट में मिनट परिवर्तन का पता लगाने पर कार्य करता है। कुछ सामान्य प्रकार के स्विच्ड पर्यवेक्षकों में स्लाइडिंग मोड पर्यवेक्षक, नॉनलाइनियर विस्तारित अवस्था प्रेक्षक सम्मिलित हैं।[10] निश्चित समय पर्यवेक्षक,[11] उच्च लाभ प्रेक्षक को स्विच किया गया था [12] और प्रेक्षक को एकजुट करना था।[13] जिससे स्लाइडिंग मोड नियंत्रण या स्लाइडिंग मोड प्रेक्षक अनुमानित स्थितियों को ऊनविम पृष्ठ पर ले जाने के लिए गैर-रेखीय उच्च-लाभ फीडबैक का उपयोग करता है जहां अनुमानित आउटपुट और मापा आउटपुट के बीच कोई अंतर नहीं होता है। जो कि प्रेक्षक में उपयोग किए जाने वाले गैर-रैखिक लाभ को समान्य रूप से अनुमानित - मापा आउटपुट त्रुटि के साइन फलन (अथार्त , एसजीएन) जैसे स्केल किए गए स्विचिंग फलन के साथ कार्यान्वित किया जाता है। इसलिए, इस उच्च-लाभ प्रतिक्रिया के कारण, प्रेक्षक के सदिश क्षेत्र में क्रीज होती है जिससे प्रेक्षक प्रक्षेपवक्रवक्र के साथ स्लाइड करें जहां अनुमानित आउटपुट मापा आउटपुट से बिल्कुल मेल खाता है। इसलिए, यदि प्रणाली अपने आउटपुट से अवलोकन योग्य है, तो प्रेक्षक स्थितियों को वास्तविक प्रणाली स्थितियों में ले जाया जाएगा। इसके अतिरिक्त, स्लाइडिंग मोड प्रेक्षक को चलाने के लिए त्रुटि के संकेत का उपयोग करने से, प्रेक्षक प्रक्षेप पथ विभिन्न प्रकार के ध्वनि के प्रति असंवेदनशील हो जाते हैं। इसलिए, कुछ स्लाइडिंग मोड पर्यवेक्षकों में कलमन फ़िल्टर के समान आकर्षक गुण होते हैं किन्तु सरल कार्यान्वयन के साथ लाया जाता है ।[2][3]

जैसा कि ड्रैकुनोव ने सुझाव दिया था, [14] एक स्लाइडिंग मोड प्रेक्षकको गैर-रेखीय प्रणालियों के एक वर्ग के लिए भी डिज़ाइन किया जा सकता है। ऐसे पर्यवेक्षक को मूल वेरिएबल अनुमान के संदर्भ में लिखा जा सकता है और उसका रूप होता है

जहाँ :

  • सदिश स्केलर साइनम फलन को आयामों तक विस्तारित करता है। वह है,
    सदिश के लिए .
  • सदिश इसमें ऐसे घटक हैं जो आउटपुट फलन हैं और इसके दोहराए गए लाई डेरिवेटिव है। जो कि विशेष रूप से,
    जहां सदिश क्षेत्र के साथ आउटपुट फलन का ith Lie व्युत्पन्न है (अथार्त , गैर-रेखीय प्रणाली के प्रक्षेपवक्र के साथ)। विशेष स्थिति में जहां प्रणाली में कोई इनपुट नहीं है या n की सापेक्ष डिग्री है, आउटपुट और इसके डेरिवेटिव का एक संग्रह है। क्योंकि इस पर्यवेक्षक को अच्छी तरह से परिभाषित करने के लिए के जैकोबियन रैखिककरण का व्युत्क्रम उपस्थित होना चाहिए, परिवर्तन एक स्थानीय भिन्नता होने की गारंटी है।
  • विकर्ण आव्यूह लाभ का इतना है कि
    जहाँ , प्रत्येक के लिए , तत्व और स्लाइडिंग मोड की पहुंच सुनिश्चित करने के लिए उपयुक्त रूप से बड़ा होता है ।
  • प्रेक्षक सदिश इस प्रकार कि
    जहाँ यहां स्केलर के लिए परिभाषित सामान्य साइन फलन है, और स्लाइडिंग मोड मेंअसंतत फलन के समतुल्य मान ऑपरेटर को दर्शाता है।

इस विचार को संक्षेप में इस प्रकार समझाया जा सकता है। स्लाइडिंग मोड के सिद्धांत के अनुसार, प्रणाली व्यवहार का वर्णन करने के लिए, बार स्लाइडिंग मोड प्रारंभ होने पर, फलन समकक्ष मानों द्वारा प्रतिस्थापित किया जाना चाहिए (स्लाइडिंग मोड नियंत्रण के सिद्धांत में समकक्ष नियंत्रण देखें)। जो कि वास्तव में, यह उच्च आवृत्ति के साथ स्विच (चैटर) करता है और धीमा घटक समतुल्य मूल्य के समान होता है। उच्च आवृत्ति घटक से छुटकारा पाने के लिए उपयुक्त लोपास फ़िल्टर प्रयुक्त करने से समतुल्य नियंत्रण का मूल्य प्राप्त किया जा सकता है, जिसमें अनुमानित प्रणाली की स्थिति के बारे में अधिक जानकारी होती है। जो ऊपर वर्णित प्रेक्षक आदर्श रूप से सीमित समय में गैर-रेखीय प्रणाली की स्थिति प्राप्त करने के लिए इस विधि का विभिन्न बार उपयोग करता है।


संशोधित अवलोकन त्रुटि को परिवर्तित अवस्थाओं में लिखा जा सकता है। विशेष रूप से,

इसलिए