तांबे की पानी की नलिकाओं का क्षरण: Difference between revisions
No edit summary |
m (12 revisions imported from alpha:तांबे_की_पानी_की_नलिकाओं_का_क्षरण) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''[[कटाव]] संक्षारण''', जिसे इंपिंगमेंट क्षति के रूप में भी जाना जाता है, तेजी से बहने वाले अशांत [[पानी]] के कारण होने वाले क्षरण और क्षरण का संयुक्त प्रभाव का रूप है। यह संभवतः टाइप 1 पिटिंग के बाद तांबा ट्यूब विफलताओं का दूसरा सबसे सामान्य कारण है, जिसे [[ ताँबा ]] ट्यूब के ठंडे पानी की पिटिंग के रूप में भी जाना जाता है। | '''[[कटाव]] संक्षारण''', जिसे इंपिंगमेंट क्षति के रूप में भी जाना जाता है, तेजी से बहने वाले अशांत [[पानी]] के कारण होने वाले क्षरण और क्षरण का संयुक्त प्रभाव का रूप है। यह संभवतः टाइप 1 पिटिंग के बाद तांबा ट्यूब विफलताओं का दूसरा सबसे सामान्य कारण है, जिसे [[ ताँबा ]] ट्यूब के ठंडे पानी की पिटिंग के रूप में भी जाना जाता है। | ||
Line 86: | Line 81: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 15/08/2023]] | [[Category:Created On 15/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:23, 17 October 2023
कटाव संक्षारण, जिसे इंपिंगमेंट क्षति के रूप में भी जाना जाता है, तेजी से बहने वाले अशांत पानी के कारण होने वाले क्षरण और क्षरण का संयुक्त प्रभाव का रूप है। यह संभवतः टाइप 1 पिटिंग के बाद तांबा ट्यूब विफलताओं का दूसरा सबसे सामान्य कारण है, जिसे ताँबा ट्यूब के ठंडे पानी की पिटिंग के रूप में भी जाना जाता है।
तांबे की जल नलियाँ
कई वर्षों से इमारतों के भीतर पीने का पानी वितरित करने के लिए तांबे की ट्यूबों का उपयोग किया जाता रहा है और हर साल पूरे यूरोप में सैकड़ों मील के रूप में स्थापित किया जाता है। प्राकृतिक जल के संपर्क में आने पर तांबे का लंबा जीवन इसकी थर्मोडायनामिक स्थिरता पर्यावरण के साथ प्रतिक्रिया करने के लिए इसके उच्च प्रतिरोध और अघुलनशील संक्षारण उत्पादों के गठन का परिणाम है, जो धातु को पर्यावरण से भिन्न करते हैं। अधिकांश पीने योग्य पानी में तांबे की संक्षारण दर 2.5 µm/वर्ष से कम है, इस दर पर 0.7 मिमी की दीवार मोटाई वाली 15 मिमी ट्यूब लगभग 280 वर्षों तक चलेगी। कुछ शीतल जल में सामान्य संक्षारण दर 12.5 µm/वर्ष के रूप में बढ़ सकती है, लेकिन इस दर पर भी उसी ट्यूब को छिद्रित करने में 50 वर्ष से अधिक का समय लगेगा।
घटना
यदि किसी इंस्टॉलेशन में पानी की सामान्य गति या स्थानीय अशांति के रूप में डिग्री अधिक है, तो सुरक्षात्मक फिल्म जो सामान्य रूप से साधारण प्रारंभिक जंग के परिणामस्वरूप तांबे की ट्यूब के रूप में बनती है, स्थानीय रूप में सतह से फट सकती है, जिससे उस पर आगे जंग लग सकती है। उस बिंदु पर रखें. यदि यह प्रक्रिया जारी रहती है, तो यह क्षरण-संक्षारण या टकराव क्षति के रूप में जाना जाने वाला गहरा स्थानीयकृत हमला उत्पन्न कर सकता है। धातु पर वास्तविक हमला पानी की संक्षारक क्रिया के कारण होता है, जिसके संपर्क में वह आती है, जबकि क्षरण कारक सतह से संक्षारण उत्पाद का यांत्रिक निष्कासन के रूप में होता है।
टकराव के हमले से अत्यधिक विशिष्ट जल-भरे गड्ढे के रूप में उत्पन्न होते हैं, जो अधिकांशतः घोड़े की नाल के बनावट के रूप में होते हैं या यह हमले के व्यापक क्षेत्रों का उत्पादन कर सकते हैं। पानी के घूमने की क्रिया से गड्ढे का अग्रणी किनारा बार-बार कट जाता है। सामान्यतः, गड्ढों या हमले के क्षेत्रों के भीतर धातु की सतह चिकनी होती है और इसमें कोई महत्वपूर्ण संक्षारण उत्पाद नहीं होता है। यह ज्ञात है, कि कटाव-संक्षारण पंप-परिसंचरण गर्म पानी वितरण प्रणालियों में होता है और यहां तक कि ठंडे पानी वितरण प्रणालियों में भी होता है, यदि पानी का वेग बहुत अधिक है। हमले को प्रभावित करने वाले कारकों में सिस्टम से गुजरने वाले पानी का रासायनिक चरित्र, तापमान, सिस्टम में औसत पानी का वेग और पानी की धारा में अशांति उत्पन्न करने वाली किसी भी स्थानीय विशेषता की उपस्थिति सम्मिलित होती है।
किसी प्रणाली में सामान्य जल वेग का इतना अधिक होना असामान्य है, कि पूरे तांबे के पाइपवर्क में टकराव के रूप में हमला होता है। सामान्यतः, संतोषजनक सुरक्षात्मक फिल्मों के बनने और सिस्टम के अधिकांश हिस्सों पर स्थिति में बने रहने के लिए वेग पर्याप्त रूप से कम होता है, जहां पानी के प्रवाह की दिशा में अचानक बदलाव होता है, जिससे उच्च स्तर की क्षति होने की संभावना अधिक होती है, जैसे कि टी के टुकड़ों और कोहनी की फिटिंग में अशांति की स्थिति पैदा होती है । यह सामान्यतः रूप अनुभव नहीं किया जाता है, कि पाइप-कार्य प्रणाली में पानी के प्रवाह पैटर्न पर छोटे अवरोधों का कितना बड़ा प्रभाव हो सकता है और वे किस हद तक अशांति उत्पन्न कर सकते हैं और संक्षारण-क्षरण का कारण बन सकते हैं। उदाहरण के लिए,जहां तक संभव हो यह सबसे महत्वपूर्ण है, यह सुनिश्चित करना कि ट्यूब कटर से काटी गई तांबे की ट्यूबों को जोड़ बनाने से पहले हटा दिया जाए। इसके अतिरिक्त ट्यूब के सिरे और फिटिंग में स्टॉप के बीच एक गैप भी है, क्योंकि ट्यूब को सही लंबाई में नहीं काटा गया है और पूरी प्रकार से फिटिंग के सॉकेट में नहीं डाला गया है, जो पानी की धारा में अशांति उत्पन्न कर सकता है।
अनुरोध
तांबे पर आक्रमण की दर कुछ हद तक पानी के तापमान पर भी निर्भर करती है। स्वीडन में अनुशंसित विभिन्न तापमानों पर ताजे पानी के लिए अधिकतम वेग नीचे दी गई तालिका में दिए गए हैं। ये आंकड़े लगभग 7 से कम पीएच वाले वातित जल के लिए हैं।
तांबे के लिए विभिन्न तापमानों पर अनुशंसित अधिकतम जल वेग (एम/एस)
10 °C | 50 °C | 70 °C | 90 °C | |
---|---|---|---|---|
बदले जा सकने वाले पाइपों के लिए: | 4.0 | 3.0 | 2.5 | 2.0 |
उन पाइपों के लिए जिन्हें बदला नहीं जा सकता. | 2.0 | 1.5 | 1.3 | 1.0 |
नल आदि के छोटे कनेक्शन के लिए§: | 16.0 | 12.0 | 10.0 | 8.0 |
§ ये वेग टकराव के हमले का हानि देते हैं और मात्र नल, फ्लशिंग सिस्टर्न आदि के छोटे बोर कनेक्शन के लिए स्वीकार्य हैं, जिनके माध्यम से पानी का प्रवाह रुक-रुक कर होता है।
बीएस 6700 निम्नलिखित अधिकतम जल वेग के रूप में देता है, चूंकि यह नोट करता है, कि ये वर्तमान में जांच के अधीन हैं और यदि इस जांच के परिणामों की आवश्यकता होगी, तो निर्दिष्ट वेगों में संशोधन किया जाएगा।
पानी का तापमान डिग्री सेल्सियस | अधिकतम जल वेग (एम/एस) |
---|---|
10 | 3.0 |
50 | 3.0 |
70 | 2.5 |
90 | 2.0 |
पानी की न्यूनतम गति जिस पर तांबे के पाइपों पर टकराव के रूप में हमला होता है, कुछ हद तक पानी की संरचना पर भी निर्भर करता है। आक्रामक जल जो कप्रो-विलायक होते हैं, उनमें टकराव के हमले को जन्म देने की सबसे अधिक संभावना होती है। बड़ी इमारतों में स्थापित प्रतिष्ठान जहां प्रवाह दर अधिक हो सकती है और पानी निरंतर प्रवाहित होता है, सामान्य घरेलू प्रतिष्ठानों की तुलना में हमले के प्रति अधिक संवेदनशील होते हैं। एक उच्च खनिज सामग्री या 7 से नीचे का पीएच संक्षारण-क्षरण होने की संभावना को बढ़ा सकता है, जबकि एक सकारात्मक हार्ड वॉटर लैंगेलियर संतृप्ति सूचकांक एलएसआई और परिणामस्वरूप कैल्शियम कार्बोनेट स्केल जमा करने की प्रवृत्ति सामान्यतः रूप से फायदेमंद होती है। कोलाइडल कार्बनिक पदार्थ की उपस्थिति या अनुपस्थिति भी संभवतः कुछ महत्व रखती है।
टकराव के हमले के उपचारात्मक माध्यमों में औसत जल वेग को कम करने के लिए सिस्टम में संशोधन सम्मिलित होता हैं, उदाहरण के लिए बड़े व्यास ट्यूबों का उपयोग करके या यदि उपयुक्त हो, तो पंप की गति को कम करने के लिए और/या स्थानीय अशांति के कारण को खत्म करने के लिए संबंधित स्थापना के भाग को फिर से डिज़ाइन करें, उदाहरण के लिए कोहनी और चौकोर टीज़ के अतिरिक्त धीमी या घुमावदार मोड़ और टी फिटिंग का उपयोग करके। यह सुनिश्चित करके किसी भी स्थानीय अशांति की संभावना को कम करना महत्वपूर्ण है, कि ट्यूब कटर से काटे गए ट्यूबों के सिरों को हटा दिया जाए और जोड़ों को बनाने से पहले ट्यूबों को फिटिंग में स्टॉप पर पूरी तरह से डाला जाए, जैसा कि पहले बताया गया है। यह अनुभाग। कुछ स्थितियों में जहां उपरोक्त दृष्टिकोण संभव नहीं हैं, प्रभावित तांबे की ट्यूब की लंबाई को कभी-कभी संक्षारण-क्षरण के प्रति अधिक प्रतिरोधी सामग्री के रूप में बदला जा सकता है, जैसे उचित फिटिंग का उपयोग करके 90/10 कॉपर-निकल बीएस पदनाम सीएन102 या बीएस 4127:1994 के लिए स्टेनलेस स्टील है।
यह भी देखें
- ऑक्सीजनयुक्त उपचार
- प्रवाह-त्वरित संक्षारण
बाहरी संबंध
- Erosion Corrosion संक्षारण परीक्षण प्रयोगशालाओं, इंक. से
- Copper pipe Corrosion कॉपर पाइप संक्षारण सिद्धांत और तंत्र