जेनेरिक बिंदु: Difference between revisions

From Vigyanwiki
No edit summary
m (12 revisions imported from alpha:जेनेरिक_बिंदु)
 
(4 intermediate revisions by one other user not shown)
Line 17: Line 17:


== इतिहास ==
== इतिहास ==
बीजगणितीय ज्यामिति की अपनी नींव में विकसित आंद्रे वेइल के आधारभूत दृष्टिकोण में, सामान्य बिंदुओं ने एक महत्वपूर्ण भूमिका निभाई, लेकिन उन्हें एक अलग तरीके से संभाला गया। एक फ़ील्ड के पर एक बीजगणितीय किस्म वी के लिए, वी के सामान्य बिंदु वी के बिंदुओं का एक संपूर्ण वर्ग था, जो एक सार्वभौमिक डोमेन Ω में मान लेता है, एक बीजगणितीय रूप से बंद क्षेत्र जिसमें के होता है, लेकिन ताजा अनिश्चित की अनंत आपूर्ति भी होती है। इस दृष्टिकोण ने वी (के-ज़ारिस्की टोपोलॉजी, यानी) की टोपोलॉजी से सीधे निपटने की आवश्यकता के बिना काम किया, क्योंकि सभी विशेषज्ञताओं पर क्षेत्र स्तर पर चर्चा की जा सकती है (जैसा कि बीजगणितीय ज्यामिति के मूल्यांकन सिद्धांत दृष्टिकोण में लोकप्रिय है) 1930 के दशक)।
बीजगणितीय ज्यामिति की अपनी नींव में विकसित आंद्रे वेइल के आधारभूत दृष्टिकोण में, सामान्य बिंदुओं ने एक महत्वपूर्ण भूमिका निभाई, लेकिन उन्हें अलग तरीके से संभाला गया। एक फ़ील्ड के पर एक बीजगणितीय किस्म वी के लिए, वी के सामान्य बिंदु वी के बिंदुओं का एक संपूर्ण वर्ग था, जो एक सार्वभौमिक डोमेन Ω में मान लेता है, एक बीजगणितीय रूप से बंद क्षेत्र जिसमें के होता है, लेकिन ताजा अनिश्चित की अनंत आपूर्ति भी होती है। इस दृष्टिकोण ने वी (के-ज़ारिस्की टोपोलॉजी, यानी) की टोपोलॉजी से सीधे निपटने की आवश्यकता के बिना काम किया, क्योंकि सभी विशेषज्ञताओं पर क्षेत्र स्तर पर चर्चा की जा सकती है (जैसा कि बीजगणितीय ज्यामिति के मूल्यांकन सिद्धांत दृष्टिकोण में लोकप्रिय है) 1930 के दशक)।


यह समान रूप से सामान्य बिंदुओं का एक विशाल संग्रह होने की कीमत पर था। द्वितीय विश्व युद्ध के ठीक बाद साओ पाउलो में वील्स के एक सहयोगी ऑस्कर ज़रिस्की ने हमेशा जोर देकर कहा कि सामान्य बिंदु अद्वितीय होने चाहिए। (इसे टोपोलॉजिस्ट की शर्तों में वापस रखा जा सकता है: वील का विचार कोलमोगोरोव स्पेस देने में विफल रहता है और ज़रिस्की कोलमोगोरोव भागफल के संदर्भ में सोचता है।)
यह समान रूप से सामान्य बिंदुओं का एक विशाल संग्रह होने की कीमत पर था। द्वितीय विश्व युद्ध के ठीक बाद साओ पाउलो में वील्स के एक सहयोगी ऑस्कर ज़रिस्की ने हमेशा जोर देकर कहा कि सामान्य बिंदु अद्वितीय होने चाहिए। (इसे टोपोलॉजिस्ट की शर्तों में वापस रखा जा सकता है: वील का विचार कोलमोगोरोव स्पेस देने में विफल रहता है और ज़रिस्की कोलमोगोरोव भागफल के संदर्भ में सोचता है।)
Line 35: Line 35:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 08:58, 25 October 2023

बीजगणितीय ज्यामिति में, बीजगणितीय किस्म आयाम d की एक एफ़िन या प्रोजेक्टिव बीजगणितीय विविधता का एक बिंदु ऐसा है कि इसके निर्देशांक द्वारा उत्पन्न क्षेत्र में विविधता के समीकरणों के गुणांक द्वारा उत्पन्न क्षेत्र पर ट्रान्सेंडेंस डिग्री d है।

योजना सिद्धांत में, एक अभिन्न डोमेन का स्पेक्ट्रम है एक अद्वितीय सामान्य बिंदु, जो शून्य आदर्श है।

चूँकि ज़ारिस्की टोपोलॉजी के लिए इस बिंदु का समापन संपूर्ण स्पेक्ट्रम है, परिभाषा को सामान्य टोपोलॉजी तक बढ़ा दिया गया है, जहां टोपोलॉजिकल स्पेस X का एक सामान्य बिंदु एक बिंदु है जिसका समापन X है।

टोपोलॉजिकल स्पेस X का एक सामान्य बिंदु एक बिंदु पी है जिसका बंद होना X का है, अर्थात्, एक बिंदु जो X में घना है। [1]

शब्दावली एक बीजगणितीय सेट के उपवर्गों के सेट पर ज़ारिस्की टोपोलॉजी के मामले से उत्पन्न होती है: बीजगणितीय सेट अप्रासंगिक है (यानी, यह दो उचित बीजगणित उपसमुच्चय का संघ नहीं है) यदि और केवल अगर उप -अवैधता के सामयिक स्थान का स्थान है। एक सामान्य बिंदु है।

उदाहरण

  • एकमात्र हॉसडॉर्फ स्पेस जिसमें एक सामान्य बिंदु है, सिंगलटन सेट है।
  • किसी भी अभिन्न योजना में एक (अद्वितीय) सामान्य बिंदु होता है; एक एफाइन इंटीग्रल स्कीम (यानी, एक अभिन्न डोमेन का प्रमुख स्पेक्ट्रम) के मामले में जेनेरिक बिंदु प्राइम आइडियल (0) से जुड़ा बिंदु है।

इतिहास

बीजगणितीय ज्यामिति की अपनी नींव में विकसित आंद्रे वेइल के आधारभूत दृष्टिकोण में, सामान्य बिंदुओं ने एक महत्वपूर्ण भूमिका निभाई, लेकिन उन्हें अलग तरीके से संभाला गया। एक फ़ील्ड के पर एक बीजगणितीय किस्म वी के लिए, वी के सामान्य बिंदु वी के बिंदुओं का एक संपूर्ण वर्ग था, जो एक सार्वभौमिक डोमेन Ω में मान लेता है, एक बीजगणितीय रूप से बंद क्षेत्र जिसमें के होता है, लेकिन ताजा अनिश्चित की अनंत आपूर्ति भी होती है। इस दृष्टिकोण ने वी (के-ज़ारिस्की टोपोलॉजी, यानी) की टोपोलॉजी से सीधे निपटने की आवश्यकता के बिना काम किया, क्योंकि सभी विशेषज्ञताओं पर क्षेत्र स्तर पर चर्चा की जा सकती है (जैसा कि बीजगणितीय ज्यामिति के मूल्यांकन सिद्धांत दृष्टिकोण में लोकप्रिय है) 1930 के दशक)।

यह समान रूप से सामान्य बिंदुओं का एक विशाल संग्रह होने की कीमत पर था। द्वितीय विश्व युद्ध के ठीक बाद साओ पाउलो में वील्स के एक सहयोगी ऑस्कर ज़रिस्की ने हमेशा जोर देकर कहा कि सामान्य बिंदु अद्वितीय होने चाहिए। (इसे टोपोलॉजिस्ट की शर्तों में वापस रखा जा सकता है: वील का विचार कोलमोगोरोव स्पेस देने में विफल रहता है और ज़रिस्की कोलमोगोरोव भागफल के संदर्भ में सोचता है।)

1950 के दशक के तेजी से मूलभूत परिवर्तन में वेइल का दृष्टिकोण अप्रचलित हो गया। योजना सिद्धांत में, हालांकि, 1957 से, जेनेरिक पॉइंट वापस आ गए: इस बार ला ज़ारिस्की। उदाहरण के लिए, एक असतत मूल्यांकन की अंगूठी के लिए, कल्पना (आर) में दो बिंदु होते हैं, एक सामान्य बिंदु (प्राइम आदर्श {0} से आ रहा है) और एक बंद बिंदु या विशेष बिंदु अद्वितीय अधिकतम आदर्श से आने वाला। स्पेक (आर) के लिए मॉर्फिज्म के लिए, विशेष बिंदु के ऊपर फाइबर विशेष फाइबर है, उदाहरण के लिए एक महत्वपूर्ण अवधारणा मोडुलो पी, मोनोड्रॉमी सिद्धांत और अध: पतन के बारे में अन्य सिद्धांत। जेनेरिक फाइबर, समान रूप से, सामान्य बिंदु के ऊपर फाइबर है। अध: पतन की ज्यामिति बड़े पैमाने पर सामान्य रूप से सामान्य से विशेष फाइबर तक के मार्ग के बारे में है, या दूसरे शब्दों में, मापदंडों की विशेषज्ञता मामलों को कैसे प्रभावित करती है। (एक असतत मूल्यांकन की अंगूठी के लिए, प्रश्न में टोपोलॉजिकल स्पेस टोपोलॉजिस्ट का सिएरपिंस्की स्थान है। अन्य स्थानीय रिंगों में अद्वितीय सामान्य और विशेष बिंदु हैं, लेकिन एक अधिक जटिल स्पेक्ट्रम, क्योंकि वे सामान्य आयामों का प्रतिनिधित्व करते हैं। असतत मूल्यांकन मामला जटिल इकाई की तरह है। डिस्क, इन उद्देश्यों के लिए।)

संदर्भ

  • विकर्स, स्टीवन (1989). तर्क के माध्यम से टोपोलॉजी. सैद्धांतिक कंप्यूटर विज्ञान में कैम्ब्रिज ट्रैक्ट्स. Vol. 5. p. 65. ISBN 0-521-36062-5.
  • वेल, आंद्रे (1946). बीजगणितीय ज्यामिति की नींव. अमेरिकन मैथमेटिकल सोसायटी कॉलोक्वियम प्रकाशन. Vol. XXIX. ISBN 978-1-4704-3176-1. OCLC 1030398184.