विशिष्ट कोणीय संवेग: Difference between revisions

From Vigyanwiki
(text)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Vector quantity in celestial mechanics}}
{{Short description|Vector quantity in celestial mechanics}}
[[आकाशीय यांत्रिकी|खगोलीय यांत्रिकी]] में, '''विशिष्ट सापेक्ष कोणीय गति''' (अक्सर <math>\vec{h}</math> या <math>\mathbf{h}</math> से दर्शाया जाता है) किसी पिंड का कोणीय संवेग उसके द्रव्यमान से विभाजित होता है।<ref name="Vallado">{{cite book |last1=Vallado |first1=David A. |title=खगोलगतिकी और अनुप्रयोगों के मूल सिद्धांत|date=2001 |publisher=Kluwer Academic Publishers |location=Dordrecht |isbn=0-7923-6903-3 |pages=20–30 |edition=2nd}}</ref> दो परिक्रमी पिंडों के मामले में यह उनकी सापेक्ष स्थिति और सापेक्ष संवेग का सदिश उत्पाद है, जिसे संबंधित पिंड के द्रव्यमान से विभाजित किया जाता है।
[[आकाशीय यांत्रिकी|खगोलीय यांत्रिकी]] में, '''विशिष्ट कोणीय संवेग''' (अधिकांशतः <math>\vec{h}</math> या <math>\mathbf{h}</math> से दर्शाया जाता है) किसी पिंड का कोणीय संवेग उसके द्रव्यमान से विभाजित होता है।<ref name="Vallado">{{cite book |last1=Vallado |first1=David A. |title=खगोलगतिकी और अनुप्रयोगों के मूल सिद्धांत|date=2001 |publisher=Kluwer Academic Publishers |location=Dordrecht |isbn=0-7923-6903-3 |pages=20–30 |edition=2nd}}</ref> दो परिक्रमी पिंडों के स्थिति में यह उनकी सापेक्ष स्थिति और सापेक्ष संवेग का सदिश उत्पाद है, जिसे संबंधित पिंड के द्रव्यमान से विभाजित किया जाता है।


विशिष्ट सापेक्ष कोणीय [[गति]] दो-पिंड समस्या के विश्लेषण में महत्वपूर्ण भूमिका निभाती है, क्योंकि यह आदर्श परिस्थितियों में किसी दी गई कक्ष के लिए स्थिर रहती है। इस संदर्भ में "विशिष्ट" प्रति इकाई द्रव्यमान कोणीय गति को इंगित करता है। विशिष्ट सापेक्ष कोणीय गति के लिए एसआई इकाई (अन्तरराष्ट्रीय मात्रक प्रणाली) वर्ग मीटर प्रति सेकंड है।
विशिष्ट सापेक्ष कोणीय [[गति|संवेग]] दो-पिंड समस्या के विश्लेषण में महत्वपूर्ण भूमिका निभाती है, क्योंकि यह आदर्श परिस्थितियों में किसी दी गई कक्ष के लिए स्थिर रहती है। इस संदर्भ में "विशिष्ट" प्रति इकाई द्रव्यमान कोणीय संवेग को इंगित करता है। विशिष्ट सापेक्ष कोणीय संवेग के लिए एसआई इकाई (अन्तरराष्ट्रीय मात्रक प्रणाली) वर्ग मीटर प्रति सेकंड है।


== परिभाषा ==
== परिभाषा ==
विशिष्ट सापेक्ष कोणीय गति को सापेक्ष [[कक्षीय स्थिति वेक्टर|स्थिति सदिश]] <math> \mathbf{r}</math> और सापेक्ष [[कक्षीय वेग वेक्टर|वेग सदिश]] <math> \mathbf{v} </math> के सदिश गुणनफल के रूप में परिभाषित किया गया है,
विशिष्ट सापेक्ष कोणीय संवेग को सापेक्ष [[कक्षीय स्थिति वेक्टर|स्थिति सदिश]] <math> \mathbf{r}</math> और सापेक्ष [[कक्षीय वेग वेक्टर|वेग सदिश]] <math> \mathbf{v} </math> के सदिश गुणनफल के रूप में परिभाषित किया गया है,
<math display="block"> \mathbf{h} = \mathbf{r}\times \mathbf{v} = \frac{\mathbf{L}}{m} </math>
<math display="block"> \mathbf{h} = \mathbf{r}\times \mathbf{v} = \frac{\mathbf{L}}{m} </math>
जहाँ <math>\mathbf{L}</math> कोणीय संवेग सदिश है, जिसे इस प्रकार परिभाषित किया गया है <math> \mathbf{r} \times m \mathbf{v}</math>
जहाँ <math>\mathbf{L}</math> कोणीय संवेग सदिश है, जिसे इस प्रकार परिभाषित किया गया है <math> \mathbf{r} \times m \mathbf{v}</math>


<math> \mathbf{h}</math> सदिश हमेशा तात्कालिक [[ऑस्कुलेटिंग कक्षा|आश्लेषी]] [[कक्षीय तल (खगोल विज्ञान)]] के लंबवत होता है, जो तात्कालिक [[गड़बड़ी (खगोल विज्ञान)|क्षुब्ध कक्षा (खगोल विज्ञान)]] के साथ मेल खाता है। समय के साथ यह औसत कक्षीय तल के लंबवत हो यह आवश्यक नहीं है।
<math> \mathbf{h}</math> सदिश प्रायः तात्कालिक [[ऑस्कुलेटिंग कक्षा|आश्लेषी]] [[कक्षीय तल (खगोल विज्ञान)]] के लंबवत होता है, जो तात्कालिक [[गड़बड़ी (खगोल विज्ञान)|क्षुब्ध कक्षा (खगोल विज्ञान)]] के साथ मेल खाता है। समय के साथ यह औसत कक्षीय तल के लंबवत हो यह आवश्यक नहीं है।


== दो पिंड के मामले में स्थिरता का प्रमाण ==
== दो पिंड के स्थिति में स्थिरता का प्रमाण ==
[[File:FlightPathAngle.svg|thumb|दूरी सदिश <math> \mathbf{r} </math>, वेग सदिश <math> \mathbf{v} </math>, [[सच्ची विसंगति]] <math> \theta </math> और उड़ान पथ कोण <math> \phi </math> का <math> m_2 </math> चारों ओर कक्ष में <math> m_1 </math>. दीर्घवृत्त के सबसे महत्वपूर्ण मापों को भी दर्शाया गया है (जिनमें से, ध्यान दें कि वास्तविक विसंगति <math>\theta</math> के रूप में लेबल किया गया है <math>\nu</math>).]]कुछ शर्तों के तहत, यह साबित किया जा सकता है कि विशिष्ट कोणीय गति स्थिर है। इस प्रमाण की शर्तों में शामिल हैं:
[[File:FlightPathAngle.svg|thumb|दूरी सदिश <math> \mathbf{r} </math>, वेग सदिश <math> \mathbf{v} </math>, [[सच्ची विसंगति]] <math> \theta </math> और उड़ान पथ कोण <math> \phi </math> का <math> m_2 </math> चारों ओर कक्ष में <math> m_1 </math>. दीर्घवृत्त के सबसे महत्वपूर्ण मापों को भी दर्शाया गया है (जिनमें से, ध्यान दें कि वास्तविक विसंगति <math>\theta</math> के रूप में लेबल किया गया है <math>\nu</math>).]]कुछ शर्तों के अनुसार, यह सिद्ध किया जा सकता है कि विशिष्ट कोणीय संवेग स्थिर है। इस प्रमाण की शर्तों में सम्मिलित हैं:
* एक वस्तु का द्रव्यमान दूसरी वस्तु के द्रव्यमान से बहुत अधिक होता है। (<math> m_1 \gg m_2 </math>)
* एक वस्तु का द्रव्यमान दूसरी वस्तु के द्रव्यमान से बहुत अधिक होता है। (<math> m_1 \gg m_2 </math>)
* समन्वय प्रणाली जड़त्वीय संदर्भ प्रणाली है।
* समन्वय प्रणाली जड़त्वीय संदर्भ प्रणाली है।
* प्रत्येक वस्तु को गोलाकार सममित [[बिंदु कण]] के रूप में माना जा सकता है।
* प्रत्येक वस्तु को गोलाकार सममित [[बिंदु कण]] के रूप में माना जा सकता है।
* दो पिंडों को जोड़ने वाले गुरुत्वाकर्षण बल के अलावा कोई अन्य बल प्रणाली पर कार्य नहीं करता है।
* दो पिंडों को जोड़ने वाले गुरुत्वाकर्षण बल के अतिरिक्त कोई अन्य बल प्रणाली पर कार्य नहीं करता है।


=== प्रमाण ===
=== प्रमाण ===
Line 28: Line 28:
* <math>G</math> [[गुरुत्वाकर्षण स्थिरांक]] है।
* <math>G</math> [[गुरुत्वाकर्षण स्थिरांक]] है।


गति के समीकरण के साथ स्थिति सदिश का सदिश गुणनफल है:
संवेग के समीकरण के साथ स्थिति सदिश का सदिश गुणनफल है:


<math display="block"> \mathbf{r} \times \ddot{\mathbf{r}} + \mathbf{r} \times \frac{G m_1}{r^2}\frac{\mathbf{r}}{r} = 0</math>
<math display="block"> \mathbf{r} \times \ddot{\mathbf{r}} + \mathbf{r} \times \frac{G m_1}{r^2}\frac{\mathbf{r}}{r} = 0</math>
Line 42: Line 42:
इन दोनों समीकरणों को मिलाने पर प्राप्त होता है:
इन दोनों समीकरणों को मिलाने पर प्राप्त होता है:
<math display="block">\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathbf{r}\times\dot{\mathbf{r}}\right) = 0</math>
<math display="block">\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathbf{r}\times\dot{\mathbf{r}}\right) = 0</math>
चूँकि समय व्युत्पन्न शून्य के बराबर है, मात्रा <math>\mathbf{r} \times \dot{\mathbf{r}}</math> स्थिर है, स्थिति परिवर्तन की दर के स्थान पर वेग सदिश <math>\mathbf{v}</math> तथा विशिष्ट कोणीय गति के लिए <math>\mathbf{h}</math> का उपयोग करना:
चूँकि समय व्युत्पन्न शून्य के बराबर है, मात्रा <math>\mathbf{r} \times \dot{\mathbf{r}}</math> स्थिर है, स्थिति परिवर्तन की दर के स्थान पर वेग सदिश <math>\mathbf{v}</math> तथा विशिष्ट कोणीय संवेग के लिए <math>\mathbf{h}</math> का उपयोग करना:
<math display="block"> \mathbf{h} = \mathbf{r}\times\mathbf{v}</math> स्थिरांक है
<math display="block"> \mathbf{h} = \mathbf{r}\times\mathbf{v}</math> स्थिरांक है


यह संवेग के सामान्य निर्माण से भिन्न है, <math>\mathbf{r} \times \mathbf{p}</math>, क्योंकि इसमें विचाराधीन वस्तु का द्रव्यमान शामिल नहीं है।
यह संवेग के सामान्य निर्माण से भिन्न है, <math>\mathbf{r} \times \mathbf{p}</math>, क्योंकि इसमें विचाराधीन वस्तु का द्रव्यमान सम्मिलित नहीं है।


== ग्रहीय गति के केपलर के नियम ==
== ग्रहीय संवेग के केपलर के नियम ==
{{Main|ग्रहीय गति के केपलर के नियम}}
{{Main|ग्रहीय गति के केपलर के नियम}}


केप्लर के ग्रहीय गति के नियमों को उपरोक्त संबंधों से लगभग सीधे तौर पर सिद्ध किया जा सकता है।
केप्लर के ग्रहीय संवेग के नियमों को उपरोक्त संबंधों से लगभग सीधे तौर पर सिद्ध किया जा सकता है।


=== पहला नियम ===
=== पहला नियम ===
प्रमाण दो-पिंड समस्या के समीकरण के साथ फिर से प्रारंभ होता है। इस बार इसे (सदिश गुणनफल) विशिष्ट सापेक्ष कोणीय गति से गुणा करता है
प्रमाण दो-पिंड समस्या के समीकरण के साथ फिर से प्रारंभ होता है। इस बार इसे (सदिश गुणनफल) विशिष्ट सापेक्ष कोणीय संवेग से गुणा करता है
<math display="block"> \ddot{\mathbf{r}} \times \mathbf{h} = - \frac{\mu}{r^2}\frac{\mathbf{r}}{r} \times \mathbf{h} </math>
<math display="block"> \ddot{\mathbf{r}} \times \mathbf{h} = - \frac{\mu}{r^2}\frac{\mathbf{r}}{r} \times \mathbf{h} </math>
बायां पक्ष व्युत्पन्न <math display="inline"> \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{\mathbf{r}}\times\mathbf{h}\right)</math> के बराबर है क्योंकि कोणीय संवेग स्थिर है।
बायां पक्ष व्युत्पन्न <math display="inline"> \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{\mathbf{r}}\times\mathbf{h}\right)</math> के बराबर है क्योंकि कोणीय संवेग स्थिर है।


कुछ चरणों के बाद (जिसमें सदिशत्रिक गुणनफल का उपयोग करना और अदिश <math>\dot{r}</math> को <em>रेडियल वेग</em>  के रूप में परिभाषित करना शामिल है सदिश <math>\dot{\mathbf{r}}</math> के मानदंड के विपरीत, दाहिना पक्ष बन जाता है:
कुछ चरणों के बाद (जिसमें सदिशत्रिक गुणनफल का उपयोग करना और अदिश <math>\dot{r}</math> को <em>त्रिज्य वेग</em>  के रूप में परिभाषित करना सम्मिलित है सदिश <math>\dot{\mathbf{r}}</math> के मानदंड के विपरीत, दाहिना पक्ष बन जाता है:
<math display="block">
<math display="block">
   -\frac{\mu}{r^3}\left(\mathbf{r} \times \mathbf{h}\right) =
   -\frac{\mu}{r^3}\left(\mathbf{r} \times \mathbf{h}\right) =
Line 66: Line 66:
इन दोनों अभिव्यक्तियों को समान स्थापित करने और समय के साथ एकीकृत करने से (एकीकरण स्थिरांक <math> \mathbf{C} </math> के साथ) होता है
इन दोनों अभिव्यक्तियों को समान स्थापित करने और समय के साथ एकीकृत करने से (एकीकरण स्थिरांक <math> \mathbf{C} </math> के साथ) होता है
<math display="block"> \dot{\mathbf{r}}\times\mathbf{h} = \mu\frac{\mathbf{r}}{r} + \mathbf{C} </math>
<math display="block"> \dot{\mathbf{r}}\times\mathbf{h} = \mu\frac{\mathbf{r}}{r} + \mathbf{C} </math>
अब इस समीकरण को <math> \mathbf{r} </math> ([[डॉट उत्पाद|अदिश गुणनफल]]) से गुणा किया जाता है और पुनर्व्यवस्थित किया गया
अब इस समीकरण को <math> \mathbf{r} </math> ([[डॉट उत्पाद|अदिश गुणनफल]]) से गुणा किया जाता है और पुनर्व्यवस्थित किया गया
<math display="block">\begin{align}
<math display="block">\begin{align}
             \mathbf{r} \cdot \left(\dot{\mathbf{r}}\times\mathbf{h}\right) &= \mathbf{r} \cdot \left(\mu\frac{\mathbf{r}}{r} + \mathbf{C}\right) \\
             \mathbf{r} \cdot \left(\dot{\mathbf{r}}\times\mathbf{h}\right) &= \mathbf{r} \cdot \left(\mu\frac{\mathbf{r}}{r} + \mathbf{C}\right) \\
Line 77: Line 77:


=== दूसरा नियम ===
=== दूसरा नियम ===
विशिष्ट सापेक्ष कोणीय गति के निरपेक्ष मान की गणना करने के लिए दूसरा नियम तीन समीकरणों में से दूसरे समीकरण का तुरंत पालन करता है।<ref name="Vallado" />
विशिष्ट सापेक्ष कोणीय संवेग के निरपेक्ष मान की गणना करने के लिए दूसरा नियम तीन समीकरणों में से दूसरे समीकरण का तुरंत पालन करता है।<ref name="Vallado" />


यदि कोई अनंत छोटे कोण <math> \mathrm{d}\theta </math> (एक बहुत छोटी भुजा वाला त्रिभुज) वाले त्रिज्यखंड के क्षेत्रफल के लिए समीकरण <math display="inline"> \mathrm{d}t = \frac{r^2}{h} \, \mathrm{d}\theta </math> के इस रूप को संबंध <math display="inline"> \mathrm{d}A = \frac{r^2}{2} \, \mathrm{d}\theta </math> से जोड़ता है, तो समीकरण
यदि कोई अनंत छोटे कोण <math> \mathrm{d}\theta </math> (एक बहुत छोटी भुजा वाला त्रिभुज) वाले त्रिज्यखंड के क्षेत्रफल के लिए समीकरण <math display="inline"> \mathrm{d}t = \frac{r^2}{h} \, \mathrm{d}\theta </math> के इस रूप को संबंध <math display="inline"> \mathrm{d}A = \frac{r^2}{2} \, \mathrm{d}\theta </math> से जोड़ता है, तो समीकरण
Line 83: Line 83:
केप्लर का तीसरा नियम दूसरे नियम का प्रत्यक्ष परिणाम है। परिक्रमण में एकीकृत करने से [[कक्षीय अवधि]] मिलती है<ref name="Vallado" />
केप्लर का तीसरा नियम दूसरे नियम का प्रत्यक्ष परिणाम है। परिक्रमण में एकीकृत करने से [[कक्षीय अवधि]] मिलती है<ref name="Vallado" />
<math display="block"> T = \frac{2\pi ab}{h} </math>
<math display="block"> T = \frac{2\pi ab}{h} </math>
एक दीर्घवृत्त के क्षेत्रफल <math> \pi ab </math> के लिए। अर्ध-लघु अक्ष को <math> b=\sqrt{ap} </math> के साथ और विशिष्ट सापेक्ष कोणीय गति को <math> h = \sqrt{\mu p} </math>  के साथ बदलने पर प्राप्त होता है
एक दीर्घवृत्त के क्षेत्रफल <math> \pi ab </math> के लिए। अर्ध-लघु अक्ष को <math> b=\sqrt{ap} </math> के साथ और विशिष्ट सापेक्ष कोणीय संवेग को <math> h = \sqrt{\mu p} </math>  के साथ बदलने पर प्राप्त होता है
<math display="block"> T = 2\pi \sqrt{\frac{a^3}{\mu}} </math>
<math display="block"> T = 2\pi \sqrt{\frac{a^3}{\mu}} </math>
इस प्रकार अर्ध-प्रमुख अक्ष और उपग्रह की कक्षीय अवधि के बीच एक संबंध होता है जिसे केंद्रीय निकाय के स्थिरांक तक कम किया जा सकता है।
इस प्रकार अर्ध-प्रमुख अक्ष और उपग्रह की कक्षीय अवधि के बीच एक संबंध होता है जिसे केंद्रीय निकाय के स्थिरांक तक कम किया जा सकता है।
Line 89: Line 89:
== यह भी देखें ==
== यह भी देखें ==
* [[विशिष्ट कक्षीय ऊर्जा]], दो-पिंड समस्या में एक और संरक्षित मात्रा।
* [[विशिष्ट कक्षीय ऊर्जा]], दो-पिंड समस्या में एक और संरक्षित मात्रा।
* {{slink|Classical central-force problem#Specific angular momentum}}
* {{slink|चिरसम्मत केंद्रीय-बल समस्या#विशिष्ट कोणीय गति}}


==संदर्भ==
==संदर्भ==
Line 99: Line 99:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/11/2023]]
[[Category:Created On 17/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:10, 1 December 2023

खगोलीय यांत्रिकी में, विशिष्ट कोणीय संवेग (अधिकांशतः या से दर्शाया जाता है) किसी पिंड का कोणीय संवेग उसके द्रव्यमान से विभाजित होता है।[1] दो परिक्रमी पिंडों के स्थिति में यह उनकी सापेक्ष स्थिति और सापेक्ष संवेग का सदिश उत्पाद है, जिसे संबंधित पिंड के द्रव्यमान से विभाजित किया जाता है।

विशिष्ट सापेक्ष कोणीय संवेग दो-पिंड समस्या के विश्लेषण में महत्वपूर्ण भूमिका निभाती है, क्योंकि यह आदर्श परिस्थितियों में किसी दी गई कक्ष के लिए स्थिर रहती है। इस संदर्भ में "विशिष्ट" प्रति इकाई द्रव्यमान कोणीय संवेग को इंगित करता है। विशिष्ट सापेक्ष कोणीय संवेग के लिए एसआई इकाई (अन्तरराष्ट्रीय मात्रक प्रणाली) वर्ग मीटर प्रति सेकंड है।

परिभाषा

विशिष्ट सापेक्ष कोणीय संवेग को सापेक्ष स्थिति सदिश और सापेक्ष वेग सदिश के सदिश गुणनफल के रूप में परिभाषित किया गया है,

जहाँ कोणीय संवेग सदिश है, जिसे इस प्रकार परिभाषित किया गया है

सदिश प्रायः तात्कालिक आश्लेषी कक्षीय तल (खगोल विज्ञान) के लंबवत होता है, जो तात्कालिक क्षुब्ध कक्षा (खगोल विज्ञान) के साथ मेल खाता है। समय के साथ यह औसत कक्षीय तल के लंबवत हो यह आवश्यक नहीं है।

दो पिंड के स्थिति में स्थिरता का प्रमाण

दूरी सदिश , वेग सदिश , सच्ची विसंगति और उड़ान पथ कोण का चारों ओर कक्ष में . दीर्घवृत्त के सबसे महत्वपूर्ण मापों को भी दर्शाया गया है (जिनमें से, ध्यान दें कि वास्तविक विसंगति के रूप में लेबल किया गया है ).

कुछ शर्तों के अनुसार, यह सिद्ध किया जा सकता है कि विशिष्ट कोणीय संवेग स्थिर है। इस प्रमाण की शर्तों में सम्मिलित हैं:

  • एक वस्तु का द्रव्यमान दूसरी वस्तु के द्रव्यमान से बहुत अधिक होता है। ()
  • समन्वय प्रणाली जड़त्वीय संदर्भ प्रणाली है।
  • प्रत्येक वस्तु को गोलाकार सममित बिंदु कण के रूप में माना जा सकता है।
  • दो पिंडों को जोड़ने वाले गुरुत्वाकर्षण बल के अतिरिक्त कोई अन्य बल प्रणाली पर कार्य नहीं करता है।

प्रमाण

प्रमाण दो-पिंड की समस्या से प्रारंभ होता है, जो न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम से लिया गया है:

जहाँ:

  • अदिश परिमाण के साथ से तक स्थिति सदिश है।
  • , का दूसरी बार व्युत्पन्न है। (त्वरण)
  • गुरुत्वाकर्षण स्थिरांक है।

संवेग के समीकरण के साथ स्थिति सदिश का सदिश गुणनफल है:

क्योंकि दूसरा पद लुप्त हो जाता है:

इससे यह भी निकाला जा सकता है कि:
इन दोनों समीकरणों को मिलाने पर प्राप्त होता है:
चूँकि समय व्युत्पन्न शून्य के बराबर है, मात्रा स्थिर है, स्थिति परिवर्तन की दर के स्थान पर वेग सदिश तथा विशिष्ट कोणीय संवेग के लिए का उपयोग करना:
स्थिरांक है

यह संवेग के सामान्य निर्माण से भिन्न है, , क्योंकि इसमें विचाराधीन वस्तु का द्रव्यमान सम्मिलित नहीं है।

ग्रहीय संवेग के केपलर के नियम

केप्लर के ग्रहीय संवेग के नियमों को उपरोक्त संबंधों से लगभग सीधे तौर पर सिद्ध किया जा सकता है।

पहला नियम

प्रमाण दो-पिंड समस्या के समीकरण के साथ फिर से प्रारंभ होता है। इस बार इसे (सदिश गुणनफल) विशिष्ट सापेक्ष कोणीय संवेग से गुणा करता है

बायां पक्ष व्युत्पन्न के बराबर है क्योंकि कोणीय संवेग स्थिर है।

कुछ चरणों के बाद (जिसमें सदिशत्रिक गुणनफल का उपयोग करना और अदिश को त्रिज्य वेग के रूप में परिभाषित करना सम्मिलित है सदिश के मानदंड के विपरीत, दाहिना पक्ष बन जाता है:

इन दोनों अभिव्यक्तियों को समान स्थापित करने और समय के साथ एकीकृत करने से (एकीकरण स्थिरांक के साथ) होता है
अब इस समीकरण को (अदिश गुणनफल) से गुणा किया जाता है और पुनर्व्यवस्थित किया गया
अंततः कक्ष समीकरण प्राप्त होता है[1]
जो अर्ध-लैटस मलाशय के साथ ध्रुवीय निर्देशांक में शंकु अनुभाग है और विलक्षणता है।

दूसरा नियम

विशिष्ट सापेक्ष कोणीय संवेग के निरपेक्ष मान की गणना करने के लिए दूसरा नियम तीन समीकरणों में से दूसरे समीकरण का तुरंत पालन करता है।[1]

यदि कोई अनंत छोटे कोण (एक बहुत छोटी भुजा वाला त्रिभुज) वाले त्रिज्यखंड के क्षेत्रफल के लिए समीकरण के इस रूप को संबंध से जोड़ता है, तो समीकरण

तीसरा नियम केप्लर का तीसरा नियम दूसरे नियम का प्रत्यक्ष परिणाम है। परिक्रमण में एकीकृत करने से कक्षीय अवधि मिलती है[1]
एक दीर्घवृत्त के क्षेत्रफल के लिए। अर्ध-लघु अक्ष को के साथ और विशिष्ट सापेक्ष कोणीय संवेग को के साथ बदलने पर प्राप्त होता है
इस प्रकार अर्ध-प्रमुख अक्ष और उपग्रह की कक्षीय अवधि के बीच एक संबंध होता है जिसे केंद्रीय निकाय के स्थिरांक तक कम किया जा सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Vallado, David A. (2001). खगोलगतिकी और अनुप्रयोगों के मूल सिद्धांत (2nd ed.). Dordrecht: Kluwer Academic Publishers. pp. 20–30. ISBN 0-7923-6903-3.