थीटा निर्वात: Difference between revisions

From Vigyanwiki
No edit summary
m (10 revisions imported from alpha:थीटा_निर्वात)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Yang–Mills theory vacuum state}}
{{Short description|Yang–Mills theory vacuum state}}


[[क्वांटम क्षेत्र सिद्धांत]] में, थीटा वैक्यूम गैर-[[एबेलियन समूह]] यांग-मिल्स सिद्धांत की अर्ध-शास्त्रीय [[राज्य कितना खाली है]] है | यांग-मिल्स सिद्धांत वैक्यूम कोण ''θ'' द्वारा निर्दिष्ट होते हैं जो तब उत्पन्न होता है जब राज्य को क्वांटम के रूप में लिखा जाता है [[टोपोलॉजी]] के अलग-अलग निर्वात राज्यों के एक अनंत सेट [[जितना कि सुपरइम्पोज़िशन]] वैक्यूम के गतिशील प्रभावों को ''θ''-टर्म की उपस्थिति के माध्यम से [[लैग्रेंजियन यांत्रिकी]] में कैप्चर किया जाता है, जो [[क्वांटम क्रोमोडायनामिक्स]] में [[फ़ाइन-ट्यूनिंग (भौतिकी)]]भौतिकी) समस्या की ओर जाता है जिसे [[मजबूत सीपी समस्या]] के रूप में जाना जाता है। इसकी खोज 1976 में [[कर्टिस कैलन]], [[आंटी रोजर डी]] और [[डेविड ग्रॉस]] ने की थी।<ref>{{cite journal|last1=Callan|first1=C.G.|authorlink1=|last2=Dashen|first2=R.F.|authorlink2=|last3=Gross|first3=D.J.|authorlink3=|date=1976|title=गेज सिद्धांत निर्वात की संरचना|url=https://dx.doi.org/10.1016/0370-2693%2876%2990277-X|journal=Physics Letters B|volume=63|issue=3|pages=334–340|doi=10.1016/0370-2693(76)90277-X|pmid=|arxiv=|bibcode=1976PhLB...63..334C |s2cid=|access-date=}}</ref> और स्वतंत्र रूप से [[रोमन जैकिव]] और क्लाउडियो रेब्बी द्वारा। <ref>{{cite journal|last1=Jackiw|first1=R.|authorlink1=|last2=Rebbi|first2=C.|authorlink2=|date=1976|title=Vacuum Periodicity in a Yang–Mills Quantum Theory|url=https://link.aps.org/doi/10.1103/PhysRevLett.37.172|journal=Physical Review Letters|volume=37|issue=3|pages=172–175|doi=10.1103/PhysRevLett.37.172|pmid=|arxiv=|bibcode=1976PhRvL..37..172J |s2cid=|access-date=}}</ref>


क्वांटम क्षेत्र सिद्धांत में, '''थीटा''' '''निर्वात''' गैर-एबेलियन यांग-मिल्स सिद्धांतों की अर्ध-मौलिक निर्वात स्थिति है जो निर्वात कोण θ द्वारा निर्दिष्ट होती है जो तब उत्पन्न होती है जब स्थिति को टोपोलॉजिकल रूप से अलग-अलग निर्वात स्थिति के अनंत सेट के सुपरपोजिशन के रूप में लिखा जाता है। निर्वात के गतिशील प्रभावों को θ-टर्म की उपस्थिति के माध्यम से लैग्रेंजियन औपचारिकता में अधिकृत किया जाता है, जो क्वांटम क्रोमोडायनामिक्स में शसक्त सीपी समस्या के रूप में ज्ञात फाइन ट्यूनिंग समस्या की ओर ले जाता है। इसकी खोज 1976 में कर्टिस कैलन, रोजर डैशेन और डेविड ग्रॉस द्वारा और स्वतंत्र रूप से रोमन जैकीव और क्लाउडियो रेब्बी द्वारा की गई थी।<ref>{{cite journal|last1=Callan|first1=C.G.|authorlink1=|last2=Dashen|first2=R.F.|authorlink2=|last3=Gross|first3=D.J.|authorlink3=|date=1976|title=गेज सिद्धांत निर्वात की संरचना|url=https://dx.doi.org/10.1016/0370-2693%2876%2990277-X|journal=Physics Letters B|volume=63|issue=3|pages=334–340|doi=10.1016/0370-2693(76)90277-X|pmid=|arxiv=|bibcode=1976PhLB...63..334C |s2cid=|access-date=}}</ref><ref>{{cite journal|last1=Jackiw|first1=R.|authorlink1=|last2=Rebbi|first2=C.|authorlink2=|date=1976|title=Vacuum Periodicity in a Yang–Mills Quantum Theory|url=https://link.aps.org/doi/10.1103/PhysRevLett.37.172|journal=Physical Review Letters|volume=37|issue=3|pages=172–175|doi=10.1103/PhysRevLett.37.172|pmid=|arxiv=|bibcode=1976PhRvL..37..172J |s2cid=|access-date=}}</ref>
== यांग-मिल्स निर्वात                                                                          ==


== यांग-मिल्स वैक्यूम ==
=== टोपोलॉजिकल वेकुआ ===
 
गैर-एबेलियन यांग-मिल्स सिद्धांतों की अर्ध-मौलिक निर्वात संरचना की जांच अधिकांशत: यूक्लिडियन स्पेसटाइम में कुछ निश्चित गेज जैसे टेम्पोरल गेज <math>A_0 = 0</math> में की जाती है। इस सिद्धांत के मौलिक जमीनी स्थिति में एक लुप्त हो रही क्षेत्र शक्ति टेंसर होती है जो शुद्ध गेज से मेल खाती है कॉन्फ़िगरेशन <math>A_i = i\Omega \nabla_i \Omega^{-1}</math>, जहां स्पेसटाइम में प्रत्येक बिंदु पर <math>\Omega(x)</math> गैर-एबेलियन गेज समूह <math>G</math> से संबंधित कुछ गेज परिवर्तन है। यह सुनिश्चित करने के लिए कि कार्रवाई सीमित है, <math>\Omega(x)</math> कुछ निश्चित मूल्य <math>\Omega_\infty</math> तक पहुंचता है <math>|\boldsymbol x|\rightarrow \infty</math> के रूप में। चूंकि स्थानिक अनंत पर सभी बिंदु अब एक एकल नए बिंदु के रूप में व्यवहार करते हैं, इसलिए स्थानिक मैनिफोल्ड <math>\mathbb R^3</math> 3-गोले <math>S^3 = \mathbb R^3 \cup \{\infty\}</math> के रूप में व्यवहार करता है जिससे गेज क्षेत्र के लिए प्रत्येक शुद्ध गेज विकल्प को मैपिंग द्वारा <math>\Omega(x): S^3 \rightarrow G</math> वर्णित किया जा सकते है <ref>{{Citation|last=Tong|first=D.|author-link=David Tong (physicist)|title=Lecture Notes on Gauge Theory|chapter=3|date=2018|chapter-url=https://www.damtp.cam.ac.uk/user/tong/gaugetheory.html}}</ref>


=== टोपोलॉजिकल वेकुआ ===
जब प्रत्येक ग्राउंड स्थिति कॉन्फ़िगरेशन को सुचारू गेज परिवर्तन के माध्यम से हर दूसरे ग्राउंड स्थिति कॉन्फ़िगरेशन में सरलता से परिवर्तित किया जा सकता है तो सिद्धांत में एक एकल निर्वात स्थिति होता है, किन्तु यदि टोपोलॉजिकल रूप से अलग कॉन्फ़िगरेशन होते हैं तो इसमें एकाधिक रिक्तिका होती है। ऐसा इसलिए है क्योंकि यदि दो अलग-अलग कॉन्फ़िगरेशन हैं जो सुचारू रूप से जुड़े नहीं हैं, तो एक को दूसरे में बदलने के लिए गैर-लुप्त क्षेत्र शक्ति टेंसर के साथ कॉन्फ़िगरेशन से निकलना होगा, जिसमें गैर-शून्य ऊर्जा होगी। इसका अर्थ यह है कि दोनों रिक्तिकाओं के मध्य एक ऊर्जा अवरोध है, जो उन्हें अलग बनाता है।


गैर-एबेलियन यांग-मिल्स सिद्धांतों की अर्ध-शास्त्रीय भौतिकी | अर्ध-शास्त्रीय वैक्यूम संरचना की जांच अक्सर [[गेज फिक्सिंग]] जैसे कुछ निश्चित गेज में [[ बाती घुमाना ]] में की जाती है <math>A_0 = 0</math>. इस सिद्धांत की शास्त्रीय जमीनी अवस्थाओं में एक लुप्त विद्युतचुंबकीय टेंसर होता है जो गेज सिद्धांत#शुद्ध गेज विन्यास से मेल खाता है <math>A_i = i\Omega \nabla_i \Omega^{-1}</math>, जहां स्पेसटाइम में प्रत्येक बिंदु पर <math>\Omega(x)</math> गैर-एबेलियन गेज [[समूह (गणित)]] से संबंधित कुछ गेज परिवर्तन है <math>G</math>. यह सुनिश्चित करने के लिए कि [[क्रिया (भौतिकी)]] सीमित है, <math>\Omega(x)</math> कुछ निश्चित मूल्य तक पहुँचता है <math>\Omega_\infty</math> जैसा <math>|\boldsymbol x|\rightarrow \infty</math>. चूंकि स्थानिक अनंत पर सभी बिंदु अब एक एकल नए बिंदु, स्थानिक [[कई गुना]] के रूप में व्यवहार करते हैं <math>\mathbb R^3</math> 3-गोले के रूप में व्यवहार करता है <math>S^3 = \mathbb R^3 \cup \{\infty\}</math> ताकि गेज क्षेत्र के लिए प्रत्येक शुद्ध गेज विकल्प को मैपिंग द्वारा वर्णित किया जा सके <math>\Omega(x): S^3 \rightarrow G</math>.<ref>{{Citation|last=Tong|first=D.|author-link=David Tong (physicist)|title=Lecture Notes on Gauge Theory|chapter=3|date=2018|chapter-url=https://www.damtp.cam.ac.uk/user/tong/gaugetheory.html}}</ref>
यह प्रश्न कि क्या दो गेज विन्यासों को एक-दूसरे में सरलता से विकृत किया जा सकता है, मैपिंग <math>\Omega(x): S^3 \rightarrow G</math> के होमोटॉपी समूह द्वारा औपचारिक रूप से वर्णित किया गया है। उदाहरण के लिए, गेज समूह <math>G=\text{SU}(2)</math> में <math>S^3</math> का एक अंतर्निहित मैनिफोल्ड है जिससे मैपिंग <math>\Omega(x):S^3 \rightarrow S^3</math> हो, जिसमें <math>\pi_3(\text{SU}(2)) = \mathbb Z</math> का एक होमोटॉपी समूह हो। इसका अर्थ यह है कि प्रत्येक मैपिंग के साथ कुछ पूर्णांक जुड़ा होता है, जिसे उसका वाइंडिंग नंबर कहा जाता है, जिसे इसके पोंट्रीगिन इंडेक्स के रूप में भी जाना जाता है, यह समान्य रूप से बताता है कि स्थानिक <math>S^3</math> को समूह <math>S^3</math> पर कितनी बार मैप किया गया है। फ़्लिप ओरिएंटेशन के कारण होने वाली ऋणात्मक वाइंडिंग। केवल समान वाइंडिंग संख्या वाले मैपिंग को एक-दूसरे में सरलता से विकृत किया जा सकता है और कहा जाता है कि वे समान होमोटॉपी वर्ग से संबंधित हैं। गेज परिवर्तन जो वाइंडिंग संख्या को संरक्षित करते हैं उन्हें छोटे गेज परिवर्तन कहा जाता है जबकि जो परिवर्तन वाइंडिंग संख्या को बदलते हैं उन्हें बड़े गेज परिवर्तन कहा जाता है।<ref>{{cite book|last=Guidry|first=M. W.|author-link=|date=1991|title=Gauge Field Theories: An Introduction with Applications|url=|doi=|location=|publisher=Wiley VCH|chapter=13|page=447|isbn=978-0471631170}}</ref>
जब प्रत्येक [[ जमीनी राज्य ]] कॉन्फ़िगरेशन को [[चिकनाई]] गेज ट्रांसफॉर्मेशन के माध्यम से हर दूसरे ग्राउंड स्टेट कॉन्फ़िगरेशन में आसानी से परिवर्तित किया जा सकता है, तो सिद्धांत में एक एकल वैक्यूम स्टेट होता है, लेकिन यदि टोपोलॉजिकल रूप से अलग कॉन्फ़िगरेशन होते हैं तो इसमें एकाधिक रिक्तिका होती है। ऐसा इसलिए है क्योंकि यदि दो अलग-अलग कॉन्फ़िगरेशन हैं जो सुचारू रूप से जुड़े नहीं हैं, तो एक को दूसरे में बदलने के लिए गैर-लुप्त क्षेत्र शक्ति टेंसर के साथ कॉन्फ़िगरेशन से गुजरना होगा, जिसमें गैर-शून्य ऊर्जा होगी। इसका मतलब यह है कि दोनों रिक्तिकाओं के बीच एक ऊर्जा अवरोध है, जो उन्हें अलग बनाता है।


यह प्रश्न कि क्या दो गेज विन्यासों को एक-दूसरे में आसानी से विकृत किया जा सकता है, मैपिंग के होमोटॉपी समूह द्वारा औपचारिक रूप से वर्णित किया गया है <math>\Omega(x): S^3 \rightarrow G</math>. उदाहरण के लिए, गेज समूह <math>G=\text{SU}(2)</math> की अंतर्निहित विविधता है <math>S^3</math> ताकि मैपिंग हो <math>\Omega(x):S^3 \rightarrow S^3</math>, जिसका एक समरूप समूह है <math>\pi_3(\text{SU}(2)) = \mathbb Z</math>. इसका मतलब यह है कि प्रत्येक मैपिंग के साथ कुछ पूर्णांक जुड़े होते हैं, जिन्हें इसकी वाइंडिंग संख्या कहा जाता है, जिसे इसके [[पोंट्रीगिन सूचकांक]] के रूप में भी जाना जाता है, यह मोटे तौर पर बताता है कि स्थानिक कितनी बार है <math>S^3</math> समूह में मैप किया गया है <math>S^3</math>, फ़्लिप [[ उन्मुखता ]] के कारण होने वाली नकारात्मक वाइंडिंग के साथ। केवल समान वाइंडिंग संख्या वाले मैपिंग को एक-दूसरे में आसानी से विकृत किया जा सकता है और कहा जाता है कि वे समान होमोटॉपी वर्ग से संबंधित हैं। गेज परिवर्तन जो घुमावदार संख्या को संरक्षित करते हैं उन्हें छोटे गेज परिवर्तन कहा जाता है जबकि जो घुमावदार संख्या को बदलते हैं उन्हें [[बड़े गेज परिवर्तन]] कहा जाता है।<ref>{{cite book|last=Guidry|first=M. W.|author-link=|date=1991|title=Gauge Field Theories: An Introduction with Applications|url=|doi=|location=|publisher=Wiley VCH|chapter=13|page=447|isbn=978-0471631170}}</ref>
अन्य गैर-एबेलियन गेज समूह <math>G</math> के लिए उनके <math>\text{SU}(2)</math> उपसमूहों में से एक पर ध्यान केंद्रित करना पर्याप्त है, यह सुनिश्चित करते हुए कि <math>\pi_3(G) = \mathbb Z</math> ऐसा इसलिए है क्योंकि <math>G</math> पर <math>S^3</math> की प्रत्येक मैपिंग को निरंतर G के <math>\text{SU}(2)</math> उपसमूह पर मैपिंग में विकृत किया जा सकता है, जिसका परिणाम बॉट्स प्रमेय से होता है।<ref>{{cite journal | last1=Bott | first1=R. | author1-link=Raoul Bott | title=लाई-समूहों की टोपोलॉजी में मोर्स सिद्धांत का अनुप्रयोग| mr=0087035 | year=1956 | journal=Bulletin de la Société Mathématique de France | issn=0037-9484 | volume=84 | pages=251–281| doi=10.24033/bsmf.1472 | doi-access=free }}</ref> यह एबेलियन गेज समूहों के विपरीत है जहां प्रत्येक मैपिंग <math>S^3\rightarrow \text{U}(1)</math> को स्थिर मानचित्र में विकृत किया जा सकता है और इसलिए एक एकल कनेक्टेड निर्वात स्थिति होती है। गेज फ़ील्ड कॉन्फ़िगरेशन <math>A^i</math> के लिए, कोई सदैव इसकी वाइंडिंग संख्या की गणना वॉल्यूम इंटीग्रल से कर सकता है जो टेम्पोरल गेज में दी गई है
अन्य गैर-एबेलियन गेज समूहों के लिए <math>G</math> उनमें से किसी एक पर ध्यान केंद्रित करना पर्याप्त है <math>\text{SU}(2)</math> उपसमूह, यह सुनिश्चित करना <math>\pi_3(G) = \mathbb Z</math>. ऐसा इसलिए है क्योंकि हर मैपिंग <math>S^3</math> पर <math>G</math> निरंतर फ़ंक्शन को मैपिंग में विकृत किया जा सकता है <math>\text{SU}(2)</math> का उपसमूह <math>G</math>, एक परिणाम जो बॉटल आवधिकता प्रमेय से आता है।<ref>{{cite journal | last1=Bott | first1=R. | author1-link=Raoul Bott | title=लाई-समूहों की टोपोलॉजी में मोर्स सिद्धांत का अनुप्रयोग| mr=0087035 | year=1956 | journal=Bulletin de la Société Mathématique de France | issn=0037-9484 | volume=84 | pages=251–281| doi=10.24033/bsmf.1472 | doi-access=free }}</ref> यह एबेलियन गेज समूहों के विपरीत है जहां हर मैपिंग होती है <math>S^3\rightarrow \text{U}(1)</math> स्थिर मानचित्र में विकृत किया जा सकता है और इसलिए एक एकल कनेक्टेड वैक्यूम स्थिति है। गेज फ़ील्ड कॉन्फ़िगरेशन के लिए <math>A^i</math>, कोई हमेशा वॉल्यूम इंटीग्रल से इसकी वाइंडिंग संख्या की गणना कर सकता है जो टेम्पोरल गेज द्वारा दिया गया है


:<math>
:<math>
n = \frac{ig^3}{24\pi^2}\int d^3 r \ \text{Tr}(\epsilon_{ijk}A^iA^jA^k),
n = \frac{ig^3}{24\pi^2}\int d^3 r \ \text{Tr}(\epsilon_{ijk}A^iA^jA^k),
</math>
</math>
कहाँ <math>g</math> [[युग्मन स्थिरांक]] है. निर्वात के विभिन्न वर्ग अलग-अलग वाइंडिंग संख्याओं के साथ स्थित हैं <math>|n\rangle</math> टोपोलॉजिकल वेकुआ के रूप में जाना जाता है।
जहाँ g युग्मन स्थिरांक है. अलग-अलग वाइंडिंग नंबर <math>|n\rangle</math> के साथ निर्वात स्थित के विभिन्न वर्गों को टोपोलॉजिकल वेकुआ कहा जाता है।


=== थीटा वेकुआ ===
=== थीटा वेकुआ ===


टोपोलॉजिकल वेकुआ यांग-मिल्स सिद्धांतों के उम्मीदवार वैक्यूम राज्य नहीं हैं क्योंकि वे बड़े गेज परिवर्तनों के [[eigenfunction]] नहीं हैं और इसलिए गेज अपरिवर्तनीय नहीं हैं। इसके बजाय राज्य पर कार्रवाई करें <math>|n\rangle</math> बड़े गेज परिवर्तन के साथ <math>\Omega_{m}</math> घुमावदार संख्या के साथ <math>m</math> इसे एक अलग टोपोलॉजिकल वैक्यूम पर मैप करेगा <math>\Omega_m|n\rangle = |n+m\rangle</math>. वास्तविक निर्वात को छोटे और बड़े दोनों गेज परिवर्तनों का एक आदर्श होना चाहिए। इसी प्रकार बलोच प्रमेय|ब्लोच प्रमेय के अनुसार ईजेनस्टेट्स आवधिक क्षमता में जो रूप लेते हैं, निर्वात अवस्था टोपोलॉजिकल रिक्तिका का एक सुसंगत योग है
टोपोलॉजिकल वेकुआ यांग-मिल्स सिद्धांतों के उम्मीदवार निर्वात स्थिति नहीं हैं क्योंकि वे बड़े गेज परिवर्तनों के स्वदेशी नहीं हैं और इसलिए गेज अपरिवर्तनीय नहीं हैं। इसके अतिरिक्त स्थिति पर कार्य करना <math>|n\rangle</math> एक बड़े गेज परिवर्तन के साथ <math>\Omega_{m}</math> घुमावदार संख्या <math>m</math> के साथ इसे एक अलग टोपोलॉजिकल निर्वात <math>\Omega_m|n\rangle = |n+m\rangle</math> पर मैप करेगा। वास्तविक निर्वात को छोटे और बड़े दोनों गेज परिवर्तनों का एक आदर्श होना चाहिए। इसी प्रकार बलोच के प्रमेय के अनुसार ईजेनस्टेट्स आवधिक क्षमता में जो रूप लेते हैं, उसी प्रकार निर्वात अवस्था टोपोलॉजिकल रिक्तिका का एक सुसंगत योग है


:<math>
:<math>
|\theta\rangle = \sum_n e^{in\theta}|n\rangle.
|\theta\rangle = \sum_n e^{in\theta}|n\rangle.
</math>
</math>
राज्यों का यह सेट कोणीय चर द्वारा अनुक्रमित है <math>\theta \in [0,2\pi)</math> ''θ''-वेकुआ के नाम से जाने जाते हैं। वे अब से दोनों प्रकार के गेज परिवर्तनों के प्रतीक हैं <math>\Omega_m|\theta\rangle = e^{-i\theta m}|\theta\rangle</math>. शुद्ध यांग-मिल्स में, प्रत्येक मान <math>\theta</math> एक अलग जमीनी स्थिति देगा जिस पर उत्तेजित अवस्थाएँ निर्मित होती हैं, जिससे अलग-अलग भौतिकी प्राप्त होती है। दूसरे शब्दों में, हिल्बर्ट स्पेस [[अतिचयन]] में विघटित हो जाता है क्योंकि दो अलग-अलग θ-वैकुआ के बीच गेज इनवेरिएंट ऑपरेटरों के अपेक्षित मूल्य गायब हो जाते हैं। <math>\langle \theta|\mathcal O |\theta' \rangle = 0</math> अगर <math>\theta \neq \theta'</math>.<ref>{{cite book|last=Shifman|first=M.|author-link=Mikhail Shifman|date=2012|title=Advanced Topics in Quantum Field Theory: A Lecture Course|url=|doi=10.1017/CBO9781139013352|location=Cambridge|publisher=Cambridge University Press|chapter=5|page=178|isbn=978-0-521-19084-8}}</ref>
कोणीय चर <math>\theta \in [0,2\pi)</math> द्वारा अनुक्रमित अवस्थाओं के इस सेट को θ-वेकुआ के रूप में जाना जाता है। अब से वे दोनों प्रकार के गेज परिवर्तनों के मूलस्रोत हैं <math>\Omega_m|\theta\rangle = e^{-i\theta m}|\theta\rangle</math>शुद्ध यांग-मिल्स में, <math>\theta</math> का प्रत्येक मान एक अलग जमीनी स्थिति देगा, जिस पर उत्तेजित अवस्थाएँ निर्मित होती हैं, जिससे अलग-अलग भौतिकी प्राप्त होती है। दूसरे शब्दों में, हिल्बर्ट स्पेस दो अलग-अलग θ-वैकुआ विलुप्त <math>\langle \theta|\mathcal O |\theta' \rangle = 0</math> यदि <math>\theta \neq \theta'</math> के मध्य गेज अपरिवर्तनीय ऑपरेटरों के अपेक्षित मूल्यों के बाद से सुपरसेलेक्शन क्षेत्रों में विघटित हो जाता है।<ref>{{cite book|last=Shifman|first=M.|author-link=Mikhail Shifman|date=2012|title=Advanced Topics in Quantum Field Theory: A Lecture Course|url=|doi=10.1017/CBO9781139013352|location=Cambridge|publisher=Cambridge University Press|chapter=5|page=178|isbn=978-0-521-19084-8}}</ref>
यांग-मिल्स सिद्धांत गति के अपने समीकरणों के लिए परिमित क्रिया समाधान प्रदर्शित करते हैं जिन्हें [[ एक पल ]] कहा जाता है। वे वाइंडिंग नंबर वाले इंस्टेंटन के साथ विभिन्न टोपोलॉजिकल वेकुआ के बीच [[क्वांटम टनलिंग]] के लिए जिम्मेदार हैं <math>\nu</math> टोपोलॉजिकल वैक्यूम से सुरंग बनाने के लिए जिम्मेदार होना <math>|n_-\rangle</math> को <math>|n_+\rangle = |n_-+\nu\rangle</math>.<ref>{{cite book|last=Coleman|first=S.|author-link=Sidney Coleman|date=1985|title=समरूपता के पहलू|url=|location=|publisher=Cambridge University Press|chapter=7|pages=265–350|isbn=978-0521318273|doi=10.1017/CBO9780511565045}}</ref> Instantons के साथ <math>\nu=\pm 1</math> [[बीपीएसटी इंस्टेंटन]] के रूप में जाने जाते हैं। किसी भी सुरंग के बिना अलग-अलग θ-वैकुआ ऊर्जा के स्तर को कम कर देंगे, हालांकि इंस्टेंटन अध:पतन को उठाते हैं, जिससे विभिन्न अलग-अलग θ-वैकुआ शारीरिक रूप से एक दूसरे से अलग हो जाते हैं। विभिन्न रिक्तिका की जमीनी अवस्था की ऊर्जा विभाजित होकर रूप ले लेती है <math>E(\theta) \propto \cos \theta</math>, जहां आनुपातिकता का स्थिरांक इस बात पर निर्भर करेगा कि इंस्टेंटन टनलिंग कितनी मजबूत है।
 
यांग-मिल्स सिद्धांत गति के अपने समीकरणों के लिए परिमित क्रिया समाधान प्रदर्शित करते हैं जिन्हें इंस्टेंटन कहा जाता है। वे घुमावदार संख्या <math>\nu</math> के साथ एक इंस्टेंटन के साथ विभिन्न टोपोलॉजिकल वैकुआ के मध्य सुरंग बनाने के लिए जिम्मेदार हैं, जो टोपोलॉजिकल निर्वात <math>|n_-\rangle</math> से <math>|n_+\rangle = |n_-+\nu\rangle</math> तक सुरंग बनाने के लिए जिम्मेदार हैं।<ref>{{cite book|last=Coleman|first=S.|author-link=Sidney Coleman|date=1985|title=समरूपता के पहलू|url=|location=|publisher=Cambridge University Press|chapter=7|pages=265–350|isbn=978-0521318273|doi=10.1017/CBO9780511565045}}</ref> <math>\nu=\pm 1</math> वाले इंस्टेंटन को बीपीएसटी इंस्टेंटन के रूप में जाना जाता है। किसी भी सुरंग के बिना अलग-अलग θ-वैकुआ पतित हो जाएंगे, चूँकि इंस्टेंटन अध: पतन को उठाते हैं, जिससे विभिन्न अलग-अलग θ-वैकुआ निकाय रूप से एक दूसरे से अलग हो जाते हैं। विभिन्न रिक्तिका की जमीनी अवस्था की ऊर्जा को विभाजित करके <math>E(\theta) \propto \cos \theta</math> का रूप ले लिया जाता है, जहां आनुपातिकता का स्थिरांक इस बात पर निर्भर करेगा कि इंस्टेंटन टनलिंग कितनी शसक्त है।


[[पथ अभिन्न सूत्रीकरण]] औपचारिकता में वैक्यूम-वैक्यूम संक्रमणों पर विचार करके θ-वैक्यूम की जटिल संरचना को सीधे यांग-मिल्स [[लैग्रेंजियन (क्षेत्र सिद्धांत)]] में शामिल किया जा सकता है।<ref>{{cite book|last=Pokorski|first=S.|author-link=|date=2000|title=गेज फ़ील्ड सिद्धांत|series=Cambridge Monographs in Mathematical Physics|url=|doi=10.1017/CBO9780511612343|location=Cambridge|publisher=Cambridge University Press|chapter=8|pages=287–290|isbn=978-0537478169}}</ref>
[[पथ अभिन्न सूत्रीकरण]] औपचारिकता में निर्वात -निर्वात संक्रमणों पर विचार करके θ-निर्वात की सम्मिश्र संरचना को सीधे यांग-मिल्स [[लैग्रेंजियन (क्षेत्र सिद्धांत)]] में सम्मिलित किया जा सकता है।<ref>{{cite book|last=Pokorski|first=S.|author-link=|date=2000|title=गेज फ़ील्ड सिद्धांत|series=Cambridge Monographs in Mathematical Physics|url=|doi=10.1017/CBO9780511612343|location=Cambridge|publisher=Cambridge University Press|chapter=8|pages=287–290|isbn=978-0537478169}}</ref>
:<math>
:<math>
\lim_{T \rightarrow \infty}\langle \theta|e^{-iHT}|\theta\rangle = \int \mathcal D A e^{iS+ i\int d^4 x \mathcal L_\theta}.
\lim_{T \rightarrow \infty}\langle \theta|e^{-iHT}|\theta\rangle = \int \mathcal D A e^{iS+ i\int d^4 x \mathcal L_\theta}.
</math>
</math>
यहाँ <math>H</math> हैमिल्टनियन है, <math>S</math> यांग-मिल्स कार्रवाई, और <math>\mathcal L_\theta</math> लैग्रेंजियन में एक नया [[सीपी उल्लंघन]] योगदान है जिसे θ-टर्म कहा जाता है
यहां <math>H</math> हैमिल्टनियन है, <math>S</math> यांग-मिल्स कार्रवाई है, और <math>\mathcal L_\theta</math> एक नया सीपी है जो लैग्रेंजियन में योगदान का उल्लंघन करता है जिसे θ-टर्म कहा जाता है


:<math>
:<math>
\mathcal L_\theta =\theta \frac{g^2}{32 \pi^2}\text{Tr}[F^{\mu \nu}\tilde F_{\mu \nu}],
\mathcal L_\theta =\theta \frac{g^2}{32 \pi^2}\text{Tr}[F^{\mu \nu}\tilde F_{\mu \nu}],
</math>
</math>
कहाँ <math>\tilde F^{\mu \nu} = \tfrac{1}{2}\epsilon^{\mu \nu \rho \sigma}F_{\rho \sigma}</math> दोहरी क्षेत्र शक्ति टेंसर है और ट्रेस समूह [[जनरेटर (गणित)]] पर है। यह शब्द कुल व्युत्पन्न है जिसका अर्थ है कि इसे इस रूप में लिखा जा सकता है <math>\mathcal L_\theta = \partial_\mu K^\mu</math>. लैग्रेंजियन में जोड़े जा सकने वाले अन्य कुल व्युत्पन्नों के विपरीत, इसके गैर-परेशान भौतिकी में भौतिक परिणाम होते हैं क्योंकि <math>K^\mu</math> गेज अपरिवर्तनीय नहीं है. क्वांटम क्रोमोडायनामिक्स में इस शब्द की उपस्थिति मजबूत सीपी समस्या की ओर ले जाती है क्योंकि यह न्यूट्रॉन विद्युत द्विध्रुवीय क्षण को जन्म देती है जिसे अभी तक नहीं देखा गया है,<ref>{{Cite journal |last1=Baker |first1=C.A. |last2=Doyle |first2=D.D. |last3=Geltenbort |first3=P. |last4=Green |first4=K. |last5=van&nbsp;der&nbsp;Grinten |first5=M.G.D. |last6=Harris |first6=P.G. |last7=Iaydjiev |first7=P. |last8=Ivanov |first8=S.N. |last9=May|first9=D.J.R. |date=2006-09-27 |df=dmy-all |title=न्यूट्रॉन के विद्युत द्विध्रुव आघूर्ण पर प्रायोगिक सीमा में सुधार|journal=Physical Review Letters |volume=97 |issue=13 |page=131801 |doi=10.1103/PhysRevLett.97.131801 |pmid=17026025 |arxiv=hep-ex/0602020|bibcode=2006PhRvL..97m1801B |s2cid=119431442 }}</ref> की फाइन ट्यूनिंग की आवश्यकता है <math>\theta</math> बहुत छोटा होना.
जहां <math>\tilde F^{\mu \nu} = \tfrac{1}{2}\epsilon^{\mu \nu \rho \sigma}F_{\rho \sigma}</math> दोहरी क्षेत्र शक्ति टेंसर है और ट्रेस समूह जनरेटर पर है। यह शब्द कुल व्युत्पन्न है जिसका अर्थ है कि इसे <math>\mathcal L_\theta = \partial_\mu K^\mu</math> रूप में लिखा जा सकता है। लैग्रेंजियन में जोड़े जा सकने वाले अन्य कुल व्युत्पन्नों के विपरीत, इसके गैर-परेशान भौतिकी में भौतिक परिणाम होते हैं क्योंकि <math>K^\mu</math> गेज अपरिवर्तनीय नहीं है। क्वांटम क्रोमोडायनामिक्स में इस शब्द की उपस्थिति शसक्त सीपी समस्या को जन्म देती है क्योंकि यह एक न्यूट्रॉन विद्युत द्विध्रुवीय क्षण को जन्म देती है जिसे अभी तक नहीं देखा गया है,<ref>{{Cite journal |last1=Baker |first1=C.A. |last2=Doyle |first2=D.D. |last3=Geltenbort |first3=P. |last4=Green |first4=K. |last5=van&nbsp;der&nbsp;Grinten |first5=M.G.D. |last6=Harris |first6=P.G. |last7=Iaydjiev |first7=P. |last8=Ivanov |first8=S.N. |last9=May|first9=D.J.R. |date=2006-09-27 |df=dmy-all |title=न्यूट्रॉन के विद्युत द्विध्रुव आघूर्ण पर प्रायोगिक सीमा में सुधार|journal=Physical Review Letters |volume=97 |issue=13 |page=131801 |doi=10.1103/PhysRevLett.97.131801 |pmid=17026025 |arxiv=hep-ex/0602020|bibcode=2006PhRvL..97m1801B |s2cid=119431442 }}</ref> जिसके लिए <math>\theta</math> की निकट ट्यूनिंग बहुत छोटी होनी चाहिए।


== फर्मिऑन के कारण संशोधन ==
== फर्मिऑन के कारण संशोधन ==


यदि द्रव्यमान रहित [[फरमिओन्स]] सिद्धांत में मौजूद हैं तो निर्वात कोण अप्राप्य हो जाता है क्योंकि फर्मियन टोपोलॉजिकल वेकुआ के बीच इंस्टेंटन टनलिंग को दबा देते हैं।<ref>{{cite book|first=S.|last=Weinberg|author-link=Steven Weinberg|title=The Quantum Theory of Fields: Modern Applications|publisher=Cambridge University Press|date=1995|chapter=23|volume=2|pages=457–458|isbn=9780521670548}}</ref> इसे एकल द्रव्यमान रहित फर्मियन के साथ यांग-मिल्स सिद्धांत पर विचार करके देखा जा सकता है <math>\psi(x)</math>. अभिन्न औपचारिकता पथ में दो टोपोलॉजिकल रिक्तिका के बीच एक इंस्टेंटन द्वारा सुरंग बनाने का रूप लिया जाता है
यदि द्रव्यमान रहित फ़र्मियन सिद्धांत में उपस्थित हैं तो निर्वात कोण अप्राप्य हो जाता है क्योंकि फ़र्मियन टोपोलॉजिकल वेकुआ के मध्य इंस्टेंटन टनलिंग को दबा देते हैं। <ref>{{cite book|first=S.|last=Weinberg|author-link=Steven Weinberg|title=The Quantum Theory of Fields: Modern Applications|publisher=Cambridge University Press|date=1995|chapter=23|volume=2|pages=457–458|isbn=9780521670548}}</ref> इसे एकल द्रव्यमान रहित फर्मियन <math>\psi(x)</math> के साथ यांग-मिल्स सिद्धांत पर विचार करके देखा जा सकता है। अभिन्न औपचारिकता पथ में दो टोपोलॉजिकल रिक्तिका के मध्य एक इंस्टेंटन द्वारा सुरंग बनाने का रूप लिया जाता है


:<math>
:<math>
Line 50: Line 52:
\end{align}
\end{align}
</math>
</math>
यह फर्मियोनिक क्षेत्रों पर एकीकृत होने के बाद प्राप्त फर्मियन निर्धारक द्वारा शुद्ध यांग-मिल्स परिणाम से भिन्न होता है। निर्धारक गायब हो जाता है क्योंकि द्रव्यमान रहित फ़र्मियन वाले [[डिराक ऑपरेटर]] के पास किसी भी इंस्टेंटन कॉन्फ़िगरेशन के लिए कम से कम एक शून्य आइगेनवैल्यू होता है।<ref>{{cite book|last1=Witten|first1=E.|author-link1=Edward Witten|last2=Jackiw|first2=R.|author-link2=Roman Jackiw|last3=Treiman|first3=S.|author-link3=Sam Treiman|last4=Zumino|first4=B.|author-link4=Bruno Zumino|date=1985|title=वर्तमान बीजगणित और विसंगतियाँ|url=|doi=10.1142/0131|location=|publisher=World Scientific Publishing|pages=298–300|bibcode=1985caa..book.....J |isbn=978-9971966966}}</ref> जबकि इंस्टेंटन अब टोपोलॉजिकल वेकुआ के बीच सुरंग बनाने में योगदान नहीं देते हैं, इसके बजाय वे [[चिरल विसंगति]] का उल्लंघन करने में भूमिका निभाते हैं और इस प्रकार [[ चिरल घनीभूत ]] को जन्म देते हैं। यदि इसके बजाय सिद्धांत में बहुत हल्के फर्मियन हैं तो θ-अवधि अभी भी मौजूद है, लेकिन इसके प्रभाव भारी रूप से दबा दिए गए हैं क्योंकि उन्हें फर्मियन द्रव्यमान के आनुपातिक होना चाहिए।
यह फर्मियोनिक क्षेत्रों पर एकीकृत होने के बाद प्राप्त फर्मियन निर्धारक द्वारा शुद्ध यांग-मिल्स परिणाम से भिन्न होता है। निर्धारक विलुप्त हो जाता है क्योंकि द्रव्यमान रहित फ़र्मियन वाले [[डिराक ऑपरेटर]] के पास किसी भी इंस्टेंटन कॉन्फ़िगरेशन के लिए कम से कम शून्य आइगेनवैल्यू होता है।<ref>{{cite book|last1=Witten|first1=E.|author-link1=Edward Witten|last2=Jackiw|first2=R.|author-link2=Roman Jackiw|last3=Treiman|first3=S.|author-link3=Sam Treiman|last4=Zumino|first4=B.|author-link4=Bruno Zumino|date=1985|title=वर्तमान बीजगणित और विसंगतियाँ|url=|doi=10.1142/0131|location=|publisher=World Scientific Publishing|pages=298–300|bibcode=1985caa..book.....J |isbn=978-9971966966}}</ref> जबकि इंस्टेंटन अब टोपोलॉजिकल वेकुआ के मध्य सुरंग बनाने में योगदान नहीं देते हैं, इसके अतिरिक्त वे [[चिरल विसंगति]] का उल्लंघन करने में भूमिका निभाते हैं और इस प्रकार [[ चिरल घनीभूत |चिरल घनीभूत]] को जन्म देते हैं। यदि इसके अतिरिक्त सिद्धांत में बहुत हल्के फर्मियन हैं तो θ-अवधि अभी भी उपस्थित है, किन्तु इसके प्रभाव भारी रूप से दबा दिए गए हैं क्योंकि उन्हें फर्मियन द्रव्यमान के आनुपातिक होना चाहिए।


==यह भी देखें==
==यह भी देखें==
* पर पल
* इंस्टैंटन
* मजबूत सीपी समस्या
* तीव्र सीपी समस्या


==संदर्भ==
==संदर्भ==
Line 64: Line 66:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:30, 5 December 2023


क्वांटम क्षेत्र सिद्धांत में, थीटा निर्वात गैर-एबेलियन यांग-मिल्स सिद्धांतों की अर्ध-मौलिक निर्वात स्थिति है जो निर्वात कोण θ द्वारा निर्दिष्ट होती है जो तब उत्पन्न होती है जब स्थिति को टोपोलॉजिकल रूप से अलग-अलग निर्वात स्थिति के अनंत सेट के सुपरपोजिशन के रूप में लिखा जाता है। निर्वात के गतिशील प्रभावों को θ-टर्म की उपस्थिति के माध्यम से लैग्रेंजियन औपचारिकता में अधिकृत किया जाता है, जो क्वांटम क्रोमोडायनामिक्स में शसक्त सीपी समस्या के रूप में ज्ञात फाइन ट्यूनिंग समस्या की ओर ले जाता है। इसकी खोज 1976 में कर्टिस कैलन, रोजर डैशेन और डेविड ग्रॉस द्वारा और स्वतंत्र रूप से रोमन जैकीव और क्लाउडियो रेब्बी द्वारा की गई थी।[1][2]

यांग-मिल्स निर्वात

टोपोलॉजिकल वेकुआ

गैर-एबेलियन यांग-मिल्स सिद्धांतों की अर्ध-मौलिक निर्वात संरचना की जांच अधिकांशत: यूक्लिडियन स्पेसटाइम में कुछ निश्चित गेज जैसे टेम्पोरल गेज में की जाती है। इस सिद्धांत के मौलिक जमीनी स्थिति में एक लुप्त हो रही क्षेत्र शक्ति टेंसर होती है जो शुद्ध गेज से मेल खाती है कॉन्फ़िगरेशन , जहां स्पेसटाइम में प्रत्येक बिंदु पर गैर-एबेलियन गेज समूह से संबंधित कुछ गेज परिवर्तन है। यह सुनिश्चित करने के लिए कि कार्रवाई सीमित है, कुछ निश्चित मूल्य तक पहुंचता है के रूप में। चूंकि स्थानिक अनंत पर सभी बिंदु अब एक एकल नए बिंदु के रूप में व्यवहार करते हैं, इसलिए स्थानिक मैनिफोल्ड 3-गोले के रूप में व्यवहार करता है जिससे गेज क्षेत्र के लिए प्रत्येक शुद्ध गेज विकल्प को मैपिंग द्वारा वर्णित किया जा सकते है [3]

जब प्रत्येक ग्राउंड स्थिति कॉन्फ़िगरेशन को सुचारू गेज परिवर्तन के माध्यम से हर दूसरे ग्राउंड स्थिति कॉन्फ़िगरेशन में सरलता से परिवर्तित किया जा सकता है तो सिद्धांत में एक एकल निर्वात स्थिति होता है, किन्तु यदि टोपोलॉजिकल रूप से अलग कॉन्फ़िगरेशन होते हैं तो इसमें एकाधिक रिक्तिका होती है। ऐसा इसलिए है क्योंकि यदि दो अलग-अलग कॉन्फ़िगरेशन हैं जो सुचारू रूप से जुड़े नहीं हैं, तो एक को दूसरे में बदलने के लिए गैर-लुप्त क्षेत्र शक्ति टेंसर के साथ कॉन्फ़िगरेशन से निकलना होगा, जिसमें गैर-शून्य ऊर्जा होगी। इसका अर्थ यह है कि दोनों रिक्तिकाओं के मध्य एक ऊर्जा अवरोध है, जो उन्हें अलग बनाता है।

यह प्रश्न कि क्या दो गेज विन्यासों को एक-दूसरे में सरलता से विकृत किया जा सकता है, मैपिंग के होमोटॉपी समूह द्वारा औपचारिक रूप से वर्णित किया गया है। उदाहरण के लिए, गेज समूह में का एक अंतर्निहित मैनिफोल्ड है जिससे मैपिंग हो, जिसमें का एक होमोटॉपी समूह हो। इसका अर्थ यह है कि प्रत्येक मैपिंग के साथ कुछ पूर्णांक जुड़ा होता है, जिसे उसका वाइंडिंग नंबर कहा जाता है, जिसे इसके पोंट्रीगिन इंडेक्स के रूप में भी जाना जाता है, यह समान्य रूप से बताता है कि स्थानिक को समूह पर कितनी बार मैप किया गया है। फ़्लिप ओरिएंटेशन के कारण होने वाली ऋणात्मक वाइंडिंग। केवल समान वाइंडिंग संख्या वाले मैपिंग को एक-दूसरे में सरलता से विकृत किया जा सकता है और कहा जाता है कि वे समान होमोटॉपी वर्ग से संबंधित हैं। गेज परिवर्तन जो वाइंडिंग संख्या को संरक्षित करते हैं उन्हें छोटे गेज परिवर्तन कहा जाता है जबकि जो परिवर्तन वाइंडिंग संख्या को बदलते हैं उन्हें बड़े गेज परिवर्तन कहा जाता है।[4]

अन्य गैर-एबेलियन गेज समूह के लिए उनके उपसमूहों में से एक पर ध्यान केंद्रित करना पर्याप्त है, यह सुनिश्चित करते हुए कि ऐसा इसलिए है क्योंकि पर की प्रत्येक मैपिंग को निरंतर G के उपसमूह पर मैपिंग में विकृत किया जा सकता है, जिसका परिणाम बॉट्स प्रमेय से होता है।[5] यह एबेलियन गेज समूहों के विपरीत है जहां प्रत्येक मैपिंग को स्थिर मानचित्र में विकृत किया जा सकता है और इसलिए एक एकल कनेक्टेड निर्वात स्थिति होती है। गेज फ़ील्ड कॉन्फ़िगरेशन के लिए, कोई सदैव इसकी वाइंडिंग संख्या की गणना वॉल्यूम इंटीग्रल से कर सकता है जो टेम्पोरल गेज में दी गई है

जहाँ g युग्मन स्थिरांक है. अलग-अलग वाइंडिंग नंबर के साथ निर्वात स्थित के विभिन्न वर्गों को टोपोलॉजिकल वेकुआ कहा जाता है।

थीटा वेकुआ

टोपोलॉजिकल वेकुआ यांग-मिल्स सिद्धांतों के उम्मीदवार निर्वात स्थिति नहीं हैं क्योंकि वे बड़े गेज परिवर्तनों के स्वदेशी नहीं हैं और इसलिए गेज अपरिवर्तनीय नहीं हैं। इसके अतिरिक्त स्थिति पर कार्य करना एक बड़े गेज परिवर्तन के साथ घुमावदार संख्या के साथ इसे एक अलग टोपोलॉजिकल निर्वात पर मैप करेगा। वास्तविक निर्वात को छोटे और बड़े दोनों गेज परिवर्तनों का एक आदर्श होना चाहिए। इसी प्रकार बलोच के प्रमेय के अनुसार ईजेनस्टेट्स आवधिक क्षमता में जो रूप लेते हैं, उसी प्रकार निर्वात अवस्था टोपोलॉजिकल रिक्तिका का एक सुसंगत योग है

कोणीय चर द्वारा अनुक्रमित अवस्थाओं के इस सेट को θ-वेकुआ के रूप में जाना जाता है। अब से वे दोनों प्रकार के गेज परिवर्तनों के मूलस्रोत हैं । शुद्ध यांग-मिल्स में, का प्रत्येक मान एक अलग जमीनी स्थिति देगा, जिस पर उत्तेजित अवस्थाएँ निर्मित होती हैं, जिससे अलग-अलग भौतिकी प्राप्त होती है। दूसरे शब्दों में, हिल्बर्ट स्पेस दो अलग-अलग θ-वैकुआ विलुप्त यदि के मध्य गेज अपरिवर्तनीय ऑपरेटरों के अपेक्षित मूल्यों के बाद से सुपरसेलेक्शन क्षेत्रों में विघटित हो जाता है।[6]

यांग-मिल्स सिद्धांत गति के अपने समीकरणों के लिए परिमित क्रिया समाधान प्रदर्शित करते हैं जिन्हें इंस्टेंटन कहा जाता है। वे घुमावदार संख्या के साथ एक इंस्टेंटन के साथ विभिन्न टोपोलॉजिकल वैकुआ के मध्य सुरंग बनाने के लिए जिम्मेदार हैं, जो टोपोलॉजिकल निर्वात से तक सुरंग बनाने के लिए जिम्मेदार हैं।[7] वाले इंस्टेंटन को बीपीएसटी इंस्टेंटन के रूप में जाना जाता है। किसी भी सुरंग के बिना अलग-अलग θ-वैकुआ पतित हो जाएंगे, चूँकि इंस्टेंटन अध: पतन को उठाते हैं, जिससे विभिन्न अलग-अलग θ-वैकुआ निकाय रूप से एक दूसरे से अलग हो जाते हैं। विभिन्न रिक्तिका की जमीनी अवस्था की ऊर्जा को विभाजित करके का रूप ले लिया जाता है, जहां आनुपातिकता का स्थिरांक इस बात पर निर्भर करेगा कि इंस्टेंटन टनलिंग कितनी शसक्त है।

पथ अभिन्न सूत्रीकरण औपचारिकता में निर्वात -निर्वात संक्रमणों पर विचार करके θ-निर्वात की सम्मिश्र संरचना को सीधे यांग-मिल्स लैग्रेंजियन (क्षेत्र सिद्धांत) में सम्मिलित किया जा सकता है।[8]

यहां हैमिल्टनियन है, यांग-मिल्स कार्रवाई है, और एक नया सीपी है जो लैग्रेंजियन में योगदान का उल्लंघन करता है जिसे θ-टर्म कहा जाता है

जहां दोहरी क्षेत्र शक्ति टेंसर है और ट्रेस समूह जनरेटर पर है। यह शब्द कुल व्युत्पन्न है जिसका अर्थ है कि इसे रूप में लिखा जा सकता है। लैग्रेंजियन में जोड़े जा सकने वाले अन्य कुल व्युत्पन्नों के विपरीत, इसके गैर-परेशान भौतिकी में भौतिक परिणाम होते हैं क्योंकि गेज अपरिवर्तनीय नहीं है। क्वांटम क्रोमोडायनामिक्स में इस शब्द की उपस्थिति शसक्त सीपी समस्या को जन्म देती है क्योंकि यह एक न्यूट्रॉन विद्युत द्विध्रुवीय क्षण को जन्म देती है जिसे अभी तक नहीं देखा गया है,[9] जिसके लिए की निकट ट्यूनिंग बहुत छोटी होनी चाहिए।

फर्मिऑन के कारण संशोधन

यदि द्रव्यमान रहित फ़र्मियन सिद्धांत में उपस्थित हैं तो निर्वात कोण अप्राप्य हो जाता है क्योंकि फ़र्मियन टोपोलॉजिकल वेकुआ के मध्य इंस्टेंटन टनलिंग को दबा देते हैं। [10] इसे एकल द्रव्यमान रहित फर्मियन के साथ यांग-मिल्स सिद्धांत पर विचार करके देखा जा सकता है। अभिन्न औपचारिकता पथ में दो टोपोलॉजिकल रिक्तिका के मध्य एक इंस्टेंटन द्वारा सुरंग बनाने का रूप लिया जाता है

यह फर्मियोनिक क्षेत्रों पर एकीकृत होने के बाद प्राप्त फर्मियन निर्धारक द्वारा शुद्ध यांग-मिल्स परिणाम से भिन्न होता है। निर्धारक विलुप्त हो जाता है क्योंकि द्रव्यमान रहित फ़र्मियन वाले डिराक ऑपरेटर के पास किसी भी इंस्टेंटन कॉन्फ़िगरेशन के लिए कम से कम शून्य आइगेनवैल्यू होता है।[11] जबकि इंस्टेंटन अब टोपोलॉजिकल वेकुआ के मध्य सुरंग बनाने में योगदान नहीं देते हैं, इसके अतिरिक्त वे चिरल विसंगति का उल्लंघन करने में भूमिका निभाते हैं और इस प्रकार चिरल घनीभूत को जन्म देते हैं। यदि इसके अतिरिक्त सिद्धांत में बहुत हल्के फर्मियन हैं तो θ-अवधि अभी भी उपस्थित है, किन्तु इसके प्रभाव भारी रूप से दबा दिए गए हैं क्योंकि उन्हें फर्मियन द्रव्यमान के आनुपातिक होना चाहिए।

यह भी देखें

  • इंस्टैंटन
  • तीव्र सीपी समस्या

संदर्भ

  1. Callan, C.G.; Dashen, R.F.; Gross, D.J. (1976). "गेज सिद्धांत निर्वात की संरचना". Physics Letters B. 63 (3): 334–340. Bibcode:1976PhLB...63..334C. doi:10.1016/0370-2693(76)90277-X.
  2. Jackiw, R.; Rebbi, C. (1976). "Vacuum Periodicity in a Yang–Mills Quantum Theory". Physical Review Letters. 37 (3): 172–175. Bibcode:1976PhRvL..37..172J. doi:10.1103/PhysRevLett.37.172.
  3. Tong, D. (2018), "3", Lecture Notes on Gauge Theory
  4. Guidry, M. W. (1991). "13". Gauge Field Theories: An Introduction with Applications. Wiley VCH. p. 447. ISBN 978-0471631170.
  5. Bott, R. (1956). "लाई-समूहों की टोपोलॉजी में मोर्स सिद्धांत का अनुप्रयोग". Bulletin de la Société Mathématique de France. 84: 251–281. doi:10.24033/bsmf.1472. ISSN 0037-9484. MR 0087035.
  6. Shifman, M. (2012). "5". Advanced Topics in Quantum Field Theory: A Lecture Course. Cambridge: Cambridge University Press. p. 178. doi:10.1017/CBO9781139013352. ISBN 978-0-521-19084-8.
  7. Coleman, S. (1985). "7". समरूपता के पहलू. Cambridge University Press. pp. 265–350. doi:10.1017/CBO9780511565045. ISBN 978-0521318273.
  8. Pokorski, S. (2000). "8". गेज फ़ील्ड सिद्धांत. Cambridge Monographs in Mathematical Physics. Cambridge: Cambridge University Press. pp. 287–290. doi:10.1017/CBO9780511612343. ISBN 978-0537478169.
  9. Baker, C.A.; Doyle, D.D.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Harris, P.G.; Iaydjiev, P.; Ivanov, S.N.; May, D.J.R. (27 September 2006). "न्यूट्रॉन के विद्युत द्विध्रुव आघूर्ण पर प्रायोगिक सीमा में सुधार". Physical Review Letters. 97 (13): 131801. arXiv:hep-ex/0602020. Bibcode:2006PhRvL..97m1801B. doi:10.1103/PhysRevLett.97.131801. PMID 17026025. S2CID 119431442.
  10. Weinberg, S. (1995). "23". The Quantum Theory of Fields: Modern Applications. Vol. 2. Cambridge University Press. pp. 457–458. ISBN 9780521670548.
  11. Witten, E.; Jackiw, R.; Treiman, S.; Zumino, B. (1985). वर्तमान बीजगणित और विसंगतियाँ. World Scientific Publishing. pp. 298–300. Bibcode:1985caa..book.....J. doi:10.1142/0131. ISBN 978-9971966966.