प्रकाशिक गहराई: Difference between revisions
m (12 revisions imported from alpha:प्रकाशिक_गहराई) |
|||
(8 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
[[File:Aerosol Optical Depth (haze) at Geronimo Creek Observatory, Texas (1990-2016).jpg|thumb|830 एनएम पर एरोसोल प्रकाशिक डेप्थ (एओडी) को 1990 से 2016 तक गेरोनिमो क्रीक ऑब्ज़र्वेटरी, टेक्सास में एक ही एलईडी सन फोटोमीटर से मापा गया। माप सौर दोपहर के समय या उसके निकट किया जाता है जब सूर्य बादलों से बाधित नहीं होता है। चोटियाँ धुएँ, धूल और धुंध का संकेत देती हैं। सहारन धूल की घटनाओं को प्रत्येक गर्मियों में मापा जाता है।]]भौतिकी में, '''प्रकाशिक गहराई''' या '''प्रकाशिक मोटाई''' किसी पदार्थ के माध्यम से घटना और संचारित दीप्तिमान शक्ति के अनुपात का प्राकृतिक लघुगणक है। इस प्रकार, प्रकाशिक गहराई जितनी बड़ी होगी, पदार्थ के माध्यम से संचारित उज्ज्वल शक्ति की मात्रा उतनी ही कम होगी। '''वर्णक्रमीय प्रकाशिक गहराई''' या '''वर्णक्रमीय प्रकाशिक मोटाई''' किसी पदार्थ के माध्यम से संचारित वर्णक्रमीय उज्ज्वल शक्ति के लिए घटना के अनुपात का प्राकृतिक लघुगणक है।<ref name="GoldBook">{{GoldBookRef|title=Absorbance|file=A00028|accessdate=2015-03-15}}</ref> प्रकाशिक गहराई आयामहीन है, और विशेष रूप से लंबाई नहीं है, हालांकि यह प्रकाशिक पथ की लंबाई का एक नीरस रूप से बढ़ता हुआ कार्य है, और जैसे-जैसे पथ की लंबाई शून्य के करीब पहुंचती है, यह शून्य के करीब पहुंच जाती है। प्रकाशिक गहराई के लिए "प्रकाशिक घनत्व" शब्द का उपयोग हतोत्साहित किया जाता है।<ref name="GoldBook" /> | [[File:Aerosol Optical Depth (haze) at Geronimo Creek Observatory, Texas (1990-2016).jpg|thumb|830 एनएम पर एरोसोल प्रकाशिक डेप्थ (एओडी) को 1990 से 2016 तक गेरोनिमो क्रीक ऑब्ज़र्वेटरी, टेक्सास में एक ही एलईडी सन फोटोमीटर से मापा गया। माप सौर दोपहर के समय या उसके निकट किया जाता है जब सूर्य बादलों से बाधित नहीं होता है। चोटियाँ धुएँ, धूल और धुंध का संकेत देती हैं। सहारन धूल की घटनाओं को प्रत्येक गर्मियों में मापा जाता है।]]भौतिकी में, '''प्रकाशिक गहराई''' या '''प्रकाशिक मोटाई''' किसी पदार्थ के माध्यम से घटना और संचारित दीप्तिमान शक्ति के अनुपात का प्राकृतिक लघुगणक है। इस प्रकार, प्रकाशिक गहराई जितनी बड़ी होगी, पदार्थ के माध्यम से संचारित उज्ज्वल शक्ति की मात्रा उतनी ही कम होगी। '''वर्णक्रमीय प्रकाशिक गहराई''' या '''वर्णक्रमीय प्रकाशिक मोटाई''' किसी पदार्थ के माध्यम से संचारित वर्णक्रमीय उज्ज्वल शक्ति के लिए घटना के अनुपात का प्राकृतिक लघुगणक है।<ref name="GoldBook">{{GoldBookRef|title=Absorbance|file=A00028|accessdate=2015-03-15}}</ref> प्रकाशिक गहराई आयामहीन है, और विशेष रूप से लंबाई नहीं है, हालांकि यह प्रकाशिक पथ की लंबाई का एक नीरस रूप से बढ़ता हुआ कार्य है, और जैसे-जैसे पथ की लंबाई शून्य के करीब पहुंचती है, यह शून्य के करीब पहुंच जाती है। प्रकाशिक गहराई के लिए "प्रकाशिक घनत्व" शब्द का उपयोग हतोत्साहित किया जाता है।<ref name="GoldBook" /> | ||
रसायन विज्ञान में, | रसायन विज्ञान में, प्रकाशिक गहराई के स्थान पर "अवशोषण" या "दशकीय अवशोषक" नामक समीप संबंधित मात्रा का उपयोग किया जाता है: किसी पदार्थ के माध्यम से प्रेषित उज्ज्वल शक्ति के लिए घटना के अनुपात का सामान्य लघुगणक, जो प्रकाशिक गहराई को एलएन 10 से विभाजित किया जाता है। | ||
=='''गणितीय परिभाषाएँ'''== | =='''गणितीय परिभाषाएँ'''== | ||
Line 16: | Line 16: | ||
===वर्णक्रमीय प्रकाशिक गहराई=== | ===वर्णक्रमीय प्रकाशिक गहराई=== | ||
किसी पदार्थ की आवृत्ति में वर्णक्रमीय प्रकाशिक गहराई और तरंग दैर्ध्य में वर्णक्रमीय | किसी पदार्थ की आवृत्ति में वर्णक्रमीय प्रकाशिक गहराई और तरंग दैर्ध्य में वर्णक्रमीय प्रकाशिक गहराई, क्रमशः <math>\tau_\nu</math> और <math>\tau_\lambda</math> द्वारा दी गई है:<ref name=GoldBook /> | ||
<math display="block">\tau_\nu = \ln\!\left(\frac{\Phi_{\mathrm{e},\nu}^\mathrm{i}}{\Phi_{\mathrm{e},\nu}^\mathrm{t}}\right) = -\ln T_\nu</math><math display="block">\tau_\lambda = \ln\!\left(\frac{\Phi_{\mathrm{e},\lambda}^\mathrm{i}}{\Phi_{\mathrm{e},\lambda}^\mathrm{t}}\right) = -\ln T_\lambda,</math> | <math display="block">\tau_\nu = \ln\!\left(\frac{\Phi_{\mathrm{e},\nu}^\mathrm{i}}{\Phi_{\mathrm{e},\nu}^\mathrm{t}}\right) = -\ln T_\nu</math><math display="block">\tau_\lambda = \ln\!\left(\frac{\Phi_{\mathrm{e},\lambda}^\mathrm{i}}{\Phi_{\mathrm{e},\lambda}^\mathrm{t}}\right) = -\ln T_\lambda,</math> | ||
जहाँ | जहाँ | ||
Line 37: | Line 37: | ||
{{Main article|क्षीणन}} | {{Main article|क्षीणन}} | ||
प्रकाशिक गहराई किसी सामग्री में संचारित उज्ज्वल शक्ति के क्षीणन को मापती है। क्षीणन न केवल अवशोषण के कारण हो सकता है, बल्कि प्रतिबिंब, बिखराव और अन्य भौतिक प्रक्रियाओं के कारण भी हो सकता है। किसी सामग्री की प्रकाशिक गहराई उसके क्षीणन के लगभग बराबर होती है जब अवशोषण 1 से बहुत कम होता है और उस सामग्री का उत्सर्जन (उज्ज्वल निकास या उत्सर्जन के साथ भ्रमित नहीं होना) प्रकाशिक गहराई से बहुत कम होता है:<math display="block">\Phi_\mathrm{e}^\mathrm{t} + \Phi_\mathrm{e}^\mathrm{att} = \Phi_\mathrm{e}^\mathrm{i} + \Phi_\mathrm{e}^\mathrm{e},</math><math display="block">T + ATT = 1 + E,</math> | |||
जहाँ | जहाँ | ||
Line 52: | Line 52: | ||
===[[क्षीणन गुणांक]]=== | ===[[क्षीणन गुणांक]]=== | ||
किसी पदार्थ की प्रकाशिक गहराई भी उसके क्षीणन गुणांक से संबंधित होती है:<math display="block">\tau = \int_0^l \alpha(z)\, \mathrm{d}z,</math>जहाँ | किसी पदार्थ की प्रकाशिक गहराई भी उसके क्षीणन गुणांक से संबंधित होती है:<math display="block">\tau = \int_0^l \alpha(z)\, \mathrm{d}z,</math>जहाँ | ||
* | *''l'' उस पदार्थ की मोटाई है जिसके माध्यम से प्रकाश यात्रा करता है; | ||
*α(z) z पर उस पदार्थ का क्षीणन गुणांक या नेपियरियन क्षीणन गुणांक है, | *α(z) z पर उस पदार्थ का क्षीणन गुणांक या नेपियरियन क्षीणन गुणांक है, | ||
और यदि α(z) पथ के अनुदिश | और यदि α(z) पथ के अनुदिश एकसमान है, तो क्षीणन को रैखिक क्षीणन कहा जाता है और संबंध बन जाता है:<math display="block">\tau = \alpha l</math> | ||
कभी-कभी संबंध पदार्थ के [[क्रॉस सेक्शन (भौतिकी)]] का उपयोग करके दिया जाता है, यानी इसके क्षीणन गुणांक को इसकी [[संख्या घनत्व]] से विभाजित किया जाता है:<math display="block">\tau = \int_0^l \sigma n(z)\, \mathrm{d}z,</math>जहाँ | कभी-कभी संबंध पदार्थ के [[क्रॉस सेक्शन (भौतिकी)]] का उपयोग करके दिया जाता है, यानी इसके क्षीणन गुणांक को इसकी [[संख्या घनत्व]] से विभाजित किया जाता है:<math display="block">\tau = \int_0^l \sigma n(z)\, \mathrm{d}z,</math>जहाँ | ||
*σ उस पदार्थ का क्षीणन क्रॉस सेक्शन है; | *σ उस पदार्थ का क्षीणन क्रॉस सेक्शन है; | ||
Line 61: | Line 61: | ||
और अगर <math>n</math> पथ के साथ एक समान है, अर्थात, <math>n(z)\equiv N</math>, संबंध बन जाता है:<math display="block">\tau = \sigma Nl</math> | और अगर <math>n</math> पथ के साथ एक समान है, अर्थात, <math>n(z)\equiv N</math>, संबंध बन जाता है:<math display="block">\tau = \sigma Nl</math> | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
===[[परमाणु भौतिकी]]=== | ===[[परमाणु भौतिकी]]=== | ||
परमाणु भौतिकी में, परमाणुओं के बादल की वर्णक्रमीय प्रकाशिक गहराई की गणना परमाणुओं के क्वांटम-यांत्रिक गुणों से की जा सकती है। यह द्वारा दिया | परमाणु भौतिकी में, परमाणुओं के बादल की वर्णक्रमीय प्रकाशिक गहराई की गणना परमाणुओं के क्वांटम-यांत्रिक गुणों से की जा सकती है। यह द्वारा दिया जाता है<math display="block">\tau_\nu = \frac{d^2 n\nu} {2\mathrm{c} \hbar \varepsilon_0 \sigma \gamma} </math>जहाँ | ||
*d संक्रमण द्विध्रुव आघूर्ण है; | *''d'' संक्रमण द्विध्रुव आघूर्ण है; | ||
*n परमाणुओं की संख्या है; | *''n'' परमाणुओं की संख्या है; | ||
*ν किरण की आवृत्ति है; | *''ν'' किरण की आवृत्ति है; | ||
* | *''c'' [[प्रकाश की गति]] है; | ||
*ħ प्लैंक स्थिरांक है; | *''ħ'' प्लैंक स्थिरांक है; | ||
*ε<sub>0</sub> [[निर्वात पारगम्यता]] है; | *ε<sub>0</sub> [[निर्वात पारगम्यता]] है; | ||
*σ बीम का क्रॉस सेक्शन; | *σ बीम का क्रॉस सेक्शन है; | ||
*γ संक्रमण की | *γ संक्रमण की प्राकृतिक रेखा चौड़ाई है। | ||
===वायुमंडलीय विज्ञान=== | ===वायुमंडलीय विज्ञान=== | ||
{{See also| | {{See also|बीयर-लैंबर्ट नियम}} | ||
वायुमंडलीय विज्ञान में, प्रायः वायुमंडल की प्रकाशिक गहराई को पृथ्वी की सतह से बाह्य अंतरिक्ष तक ऊर्ध्वाधर पथ के अनुरूप संदर्भित किया जाता है; अन्य समय में प्रकाशिक पथ प्रेक्षक की ऊंचाई से बाह्य अंतरिक्ष तक होता है। एक तिरछे पथ के लिए प्रकाशिक गहराई {{nobreak|1=''τ'' = ''mτ''′}} है, जहां τ′ एक ऊर्ध्वाधर पथ को संदर्भित करता है, m को सापेक्ष वायु द्रव्यमान कहा जाता है, और एक समतल-समानांतर वायुमंडल के लिए इसे {{nobreak|1=''m'' = sec ''θ''}} के रूप में निर्धारित किया जाता है, जहां θ दिए गए पथ के अनुरूप आंचल कोण है। अतः,<math display="block">T = e^{-\tau} = e^{-m\tau'}</math> | |||
वायुमंडल | वायुमंडल की प्रकाशिक गहराई को कई घटकों में विभाजित किया जा सकता है, जिसका श्रेय [[रेले स्कैटरिंग]], एयरोसोल और गैसीय अवशोषण को दिया जाता है। सूर्य प्रकाशमापी से वायुमंडल की प्रकाशिक गहराई मापी जा सकती है। | ||
<math display="block">\tau(0) = k_aw_1\rho_0H</math> | वायुमंडल के भीतर ऊंचाई के संबंध में प्रकाशिक गहराई दी गई है।<ref name=":0" /><math display="block">\tau(z) = k_aw_1\rho_0H e^{-z/H}</math>और इससे यह निष्कर्ष निकलता है कि कुल वायुमंडलीय प्रकाशीय गहराई <ref name=":0" /> द्वारा दी गई है।<math display="block">\tau(0) = k_aw_1\rho_0H</math> | ||
दोनों समीकरणों में: | दोनों समीकरणों में: | ||
* | |||
* | * k<sub>a</sub> अवशोषण गुणांक है | ||
* w<sub>1</sub> मिश्रण अनुपात है | |||
* ρ<sub>0</sub> समुद्र तल पर वायु का घनत्व है | * ρ<sub>0</sub> समुद्र तल पर वायु का घनत्व है | ||
*H वायुमंडल की स्केल ऊँचाई है | * H वायुमंडल की स्केल ऊँचाई है | ||
* z विचाराधीन ऊँचाई है | * z विचाराधीन ऊँचाई है | ||
एक समतल समानांतर बादल परत की प्रकाशिक गहराई किसके द्वारा दी जाती | एक समतल समानांतर बादल परत की प्रकाशिक गहराई किसके द्वारा दी जाती है।<ref name=":0">{{Cite book|title=वायुमंडलीय विकिरण में पहला कोर्स|last=Petty|first=Grant W.|year=2006|publisher=Sundog Pub|isbn=9780972903318|oclc=932561283}}</ref><math display="block">\tau = Q_e \left[\frac{9\pi L^2 H N}{16\rho_l^2}\right]^{1/3}</math>जहाँ: | ||
* | |||
* L | * Q<sub>e</sub> विलुप्ति दक्षता है | ||
* | * L द्रव जल पथ है | ||
* | * H ज्यामितीय मोटाई है | ||
* ρ<sub>l</sub> | * N बूंदों की सांद्रता है | ||
* ρ<sub>l</sub> द्रव जल का घनत्व है | |||
तो, एक निश्चित गहराई और कुल तरल जल पथ के साथ, <math display="inline">\tau \propto N^{1/3}</math>.<ref name=":0" /> | तो, एक निश्चित गहराई और कुल तरल जल पथ के साथ, <math display="inline">\tau \propto N^{1/3}</math>.<ref name=":0" /> | ||
===खगोल विज्ञान=== | ===खगोल विज्ञान=== | ||
{{Main article| | {{Main article|प्रकाशिक गहराई (खगोल भौतिकी)}} | ||
खगोल विज्ञान में, किसी तारे के प्रकाशमंडल को उस सतह के रूप में परिभाषित किया जाता है जहां इसकी ऑप्टिकल गहराई 2/3 है। इसका मतलब यह है कि फोटोस्फीयर पर उत्सर्जित प्रत्येक फोटॉन पर्यवेक्षक तक पहुंचने से पहले औसतन एक से भी कम प्रकीर्णन का अनुभव करता है। प्रकाशीय गहराई 2/3 पर तापमान पर, तारे द्वारा उत्सर्जित ऊर्जा (मूल व्युत्पत्ति सूर्य के लिए है) उत्सर्जित कुल ऊर्जा से मेल खाती है। | |||
ध्यान दें कि प्रकाश के विभिन्न रंगों (तरंग दैर्ध्य) के लिए किसी दिए गए माध्यम की ऑप्टिकल गहराई अलग-अलग होगी। | |||
ग्रहीय वलय के लिए, ऑप्टिकल गहराई, वलय द्वारा अवरुद्ध प्रकाश का अनुपात (ऋणात्मक लघुगणक) है जब यह स्रोत और पर्यवेक्षक के बीच स्थित होता है। यह सामान्यतः तारकीय गूढ़तापों के अवलोकन से प्राप्त होता है। | |||
==यह भी देखें== | ==यह भी देखें== | ||
* [[वायु द्रव्यमान (खगोल विज्ञान)]] | * [[वायु द्रव्यमान (खगोल विज्ञान)]] | ||
*अवशोषण | *अवशोषण दर | ||
* [[एक्टिनोमीटर]] | * [[एक्टिनोमीटर]] | ||
* [[एयरोसोल]] | * [[एयरोसोल]] | ||
Line 121: | Line 120: | ||
* [[विकिरण स्थानांतरण]] | * [[विकिरण स्थानांतरण]] | ||
* सूर्य प्रकाशमापी | * सूर्य प्रकाशमापी | ||
*[[पारदर्शिता और पारदर्शीता]] | *[[पारदर्शिता और पारदर्शीता|पारदर्शिता और पारभासी]] | ||
==संदर्भ== | ==संदर्भ== | ||
Line 135: | Line 134: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/11/2023]] | [[Category:Created On 17/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:33, 5 December 2023
भौतिकी में, प्रकाशिक गहराई या प्रकाशिक मोटाई किसी पदार्थ के माध्यम से घटना और संचारित दीप्तिमान शक्ति के अनुपात का प्राकृतिक लघुगणक है। इस प्रकार, प्रकाशिक गहराई जितनी बड़ी होगी, पदार्थ के माध्यम से संचारित उज्ज्वल शक्ति की मात्रा उतनी ही कम होगी। वर्णक्रमीय प्रकाशिक गहराई या वर्णक्रमीय प्रकाशिक मोटाई किसी पदार्थ के माध्यम से संचारित वर्णक्रमीय उज्ज्वल शक्ति के लिए घटना के अनुपात का प्राकृतिक लघुगणक है।[1] प्रकाशिक गहराई आयामहीन है, और विशेष रूप से लंबाई नहीं है, हालांकि यह प्रकाशिक पथ की लंबाई का एक नीरस रूप से बढ़ता हुआ कार्य है, और जैसे-जैसे पथ की लंबाई शून्य के करीब पहुंचती है, यह शून्य के करीब पहुंच जाती है। प्रकाशिक गहराई के लिए "प्रकाशिक घनत्व" शब्द का उपयोग हतोत्साहित किया जाता है।[1]
रसायन विज्ञान में, प्रकाशिक गहराई के स्थान पर "अवशोषण" या "दशकीय अवशोषक" नामक समीप संबंधित मात्रा का उपयोग किया जाता है: किसी पदार्थ के माध्यम से प्रेषित उज्ज्वल शक्ति के लिए घटना के अनुपात का सामान्य लघुगणक, जो प्रकाशिक गहराई को एलएन 10 से विभाजित किया जाता है।
गणितीय परिभाषाएँ
प्रकाशिक गहराई
किसी पदार्थ की प्रकाशिक गहराई, निरूपित , द्वारा दिया गया है:[2]
- उस पदार्थ द्वारा प्राप्त दीप्तिमान प्रवाह है;
- उस पदार्थ द्वारा प्रसारित दीप्तिमान प्रवाह है;
- उस पदार्थ का संप्रेषण है।
अवशोषण प्रकाशिक गहराई से संबंधित है:
वर्णक्रमीय प्रकाशिक गहराई
किसी पदार्थ की आवृत्ति में वर्णक्रमीय प्रकाशिक गहराई और तरंग दैर्ध्य में वर्णक्रमीय प्रकाशिक गहराई, क्रमशः और द्वारा दी गई है:[1]
- उस पदार्थ द्वारा प्रसारित दीप्तिमान प्रवाह है;
- उस पदार्थ द्वारा प्राप्त आवृत्ति में वर्णक्रमीय दीप्तिमान प्रवाह है;
- उस पदार्थ का संप्रेषण है;
- उस पदार्थ द्वारा प्रसारित दीप्तिमान प्रवाह है;
- उस पदार्थ द्वारा प्राप्त तरंग दैर्ध्य में वर्णक्रमीय दीप्तिमान प्रवाह है;
- उस पदार्थ का संप्रेषण है।
वर्णक्रमीय अवशोषण वर्णक्रमीय प्रकाशिक गहराई से संबंधित है:
जहाँ
- आवृत्ति में वर्णक्रमीय अवशोषण है;
- तरंग दैर्ध्य में वर्णक्रमीय अवशोषण है।
क्षीणन के साथ संबंध
क्षीणन
प्रकाशिक गहराई किसी सामग्री में संचारित उज्ज्वल शक्ति के क्षीणन को मापती है। क्षीणन न केवल अवशोषण के कारण हो सकता है, बल्कि प्रतिबिंब, बिखराव और अन्य भौतिक प्रक्रियाओं के कारण भी हो सकता है। किसी सामग्री की प्रकाशिक गहराई उसके क्षीणन के लगभग बराबर होती है जब अवशोषण 1 से बहुत कम होता है और उस सामग्री का उत्सर्जन (उज्ज्वल निकास या उत्सर्जन के साथ भ्रमित नहीं होना) प्रकाशिक गहराई से बहुत कम होता है:
- Φet उस सामग्री द्वारा संचारित दीप्तिमान शक्ति है;
- Φeatt उस सामग्री द्वारा क्षीण की गई दीप्तिमान शक्ति है;
- Φei उस सामग्री द्वारा प्राप्त दीप्तिमान शक्ति है;
- Φee उस सामग्री द्वारा उत्सर्जित दीप्तिमान शक्ति है;
- T = Φet/Φei उस सामग्री का संप्रेषण है;
- ATT = Φeatt/Φei उस सामग्री का क्षीणन है;
- E = Φee/Φei उस सामग्री का उत्सर्जन है,
और बीयर-लैंबर्ट नियम के अनुसार,
क्षीणन गुणांक
किसी पदार्थ की प्रकाशिक गहराई भी उसके क्षीणन गुणांक से संबंधित होती है:
- l उस पदार्थ की मोटाई है जिसके माध्यम से प्रकाश यात्रा करता है;
- α(z) z पर उस पदार्थ का क्षीणन गुणांक या नेपियरियन क्षीणन गुणांक है,
और यदि α(z) पथ के अनुदिश एकसमान है, तो क्षीणन को रैखिक क्षीणन कहा जाता है और संबंध बन जाता है:
- σ उस पदार्थ का क्षीणन क्रॉस सेक्शन है;
- n(z) z पर उस पदार्थ का संख्या घनत्व है,
और अगर पथ के साथ एक समान है, अर्थात, , संबंध बन जाता है:
अनुप्रयोग
परमाणु भौतिकी
परमाणु भौतिकी में, परमाणुओं के बादल की वर्णक्रमीय प्रकाशिक गहराई की गणना परमाणुओं के क्वांटम-यांत्रिक गुणों से की जा सकती है। यह द्वारा दिया जाता है
- d संक्रमण द्विध्रुव आघूर्ण है;
- n परमाणुओं की संख्या है;
- ν किरण की आवृत्ति है;
- c प्रकाश की गति है;
- ħ प्लैंक स्थिरांक है;
- ε0 निर्वात पारगम्यता है;
- σ बीम का क्रॉस सेक्शन है;
- γ संक्रमण की प्राकृतिक रेखा चौड़ाई है।
वायुमंडलीय विज्ञान
वायुमंडलीय विज्ञान में, प्रायः वायुमंडल की प्रकाशिक गहराई को पृथ्वी की सतह से बाह्य अंतरिक्ष तक ऊर्ध्वाधर पथ के अनुरूप संदर्भित किया जाता है; अन्य समय में प्रकाशिक पथ प्रेक्षक की ऊंचाई से बाह्य अंतरिक्ष तक होता है। एक तिरछे पथ के लिए प्रकाशिक गहराई τ = mτ′ है, जहां τ′ एक ऊर्ध्वाधर पथ को संदर्भित करता है, m को सापेक्ष वायु द्रव्यमान कहा जाता है, और एक समतल-समानांतर वायुमंडल के लिए इसे m = sec θ के रूप में निर्धारित किया जाता है, जहां θ दिए गए पथ के अनुरूप आंचल कोण है। अतः,
वायुमंडल की प्रकाशिक गहराई को कई घटकों में विभाजित किया जा सकता है, जिसका श्रेय रेले स्कैटरिंग, एयरोसोल और गैसीय अवशोषण को दिया जाता है। सूर्य प्रकाशमापी से वायुमंडल की प्रकाशिक गहराई मापी जा सकती है।
वायुमंडल के भीतर ऊंचाई के संबंध में प्रकाशिक गहराई दी गई है।[3]
- ka अवशोषण गुणांक है
- w1 मिश्रण अनुपात है
- ρ0 समुद्र तल पर वायु का घनत्व है
- H वायुमंडल की स्केल ऊँचाई है
- z विचाराधीन ऊँचाई है
एक समतल समानांतर बादल परत की प्रकाशिक गहराई किसके द्वारा दी जाती है।[3]
- Qe विलुप्ति दक्षता है
- L द्रव जल पथ है
- H ज्यामितीय मोटाई है
- N बूंदों की सांद्रता है
- ρl द्रव जल का घनत्व है
तो, एक निश्चित गहराई और कुल तरल जल पथ के साथ, .[3]
खगोल विज्ञान
खगोल विज्ञान में, किसी तारे के प्रकाशमंडल को उस सतह के रूप में परिभाषित किया जाता है जहां इसकी ऑप्टिकल गहराई 2/3 है। इसका मतलब यह है कि फोटोस्फीयर पर उत्सर्जित प्रत्येक फोटॉन पर्यवेक्षक तक पहुंचने से पहले औसतन एक से भी कम प्रकीर्णन का अनुभव करता है। प्रकाशीय गहराई 2/3 पर तापमान पर, तारे द्वारा उत्सर्जित ऊर्जा (मूल व्युत्पत्ति सूर्य के लिए है) उत्सर्जित कुल ऊर्जा से मेल खाती है।
ध्यान दें कि प्रकाश के विभिन्न रंगों (तरंग दैर्ध्य) के लिए किसी दिए गए माध्यम की ऑप्टिकल गहराई अलग-अलग होगी।
ग्रहीय वलय के लिए, ऑप्टिकल गहराई, वलय द्वारा अवरुद्ध प्रकाश का अनुपात (ऋणात्मक लघुगणक) है जब यह स्रोत और पर्यवेक्षक के बीच स्थित होता है। यह सामान्यतः तारकीय गूढ़तापों के अवलोकन से प्राप्त होता है।
यह भी देखें
- वायु द्रव्यमान (खगोल विज्ञान)
- अवशोषण दर
- एक्टिनोमीटर
- एयरोसोल
- एंगस्ट्रॉम प्रतिपादक
- क्षीणन गुणांक
- बीयर-लैंबर्ट नियम
- पायरानोमीटर
- विकिरण स्थानांतरण
- सूर्य प्रकाशमापी
- पारदर्शिता और पारभासी
संदर्भ
- ↑ 1.0 1.1 1.2 IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Absorbance". doi:10.1351/goldbook.A00028
- ↑ Christopher Robert Kitchin (1987). Stars, Nebulae and the Interstellar Medium: Observational Physics and Astrophysics. CRC Press.
- ↑ 3.0 3.1 3.2 3.3 Petty, Grant W. (2006). वायुमंडलीय विकिरण में पहला कोर्स. Sundog Pub. ISBN 9780972903318. OCLC 932561283.