सांस्थितिक प्रदिश गुणनफल: Difference between revisions
No edit summary |
m (10 revisions imported from alpha:सांस्थितिक_प्रदिश_गुणनफल) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Tensor product constructions for topological vector spaces}}गणित में, सामान्य रूप से | {{Short description|Tensor product constructions for topological vector spaces}}गणित में, सामान्य रूप से दो [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश स्थान]] के '''टोपोलॉजिकल [[टेंसर उत्पाद]]''' का निर्माण करने के कई अलग-अलग विधि होते हैं। हिल्बर्ट रिक्त स्थान या परमाणु रिक्त स्थान के लिए टेंसर उत्पादों का एक सरल व्यवहार सिद्धांत है ([[हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद]] देखें), किन्तु सामान्य बानाच रिक्त स्थान या स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश रिक्त स्थान के लिए सिद्धांत अधिक सूक्ष्म है। | ||
== प्रेरणा == | == प्रेरणा == | ||
Line 8: | Line 8: | ||
:<math>C^\infty(\R^n) \mathop{\hat{\otimes}} C^\infty(\R^m) \cong C^\infty(\R^{n+m}).</math> | :<math>C^\infty(\R^n) \mathop{\hat{\otimes}} C^\infty(\R^m) \cong C^\infty(\R^{n+m}).</math> | ||
यह लेख सबसे पहले बानाच अंतरिक्ष स्थिति में निर्माण का विवरण देता है। <math>C^\infty(\R^n)</math> | यह लेख सबसे पहले बानाच अंतरिक्ष स्थिति में निर्माण का विवरण देता है। <math>C^\infty(\R^n)</math> कोई बानाच स्थान नहीं है और आगे के स्थितियों पर अंत में विचार की जाती है। | ||
==हिल्बर्ट रिक्त स्थान के टेंसर उत्पाद== | ==हिल्बर्ट रिक्त स्थान के टेंसर उत्पाद== | ||
{{Main|हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद}} | {{Main|हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद}} | ||
दो हिल्बर्ट रिक्त स्थान ''A'' और ''B'' | दो हिल्बर्ट रिक्त स्थान ''A'' और ''B'' के बीजगणितीय टेंसर उत्पाद में ''A'' और ''B'' के [[सेसक्विलिनियर फॉर्म]] से प्रेरित एक प्राकृतिक सकारात्मक निश्चित सेसक्विलिनियर रूप (स्केलर उत्पाद) होता है। इसलिए विशेष रूप से इसमें एक प्राकृतिक [[सकारात्मक निश्चित द्विघात रूप]] होता है, और संबंधित पूर्णता एक होती है हिल्बर्ट स्पेस ''A'' ⊗ ''B'', जिसे ''A'' और ''B'' का (हिल्बर्ट स्पेस) टेंसर उत्पाद कहा जाता है। | ||
यदि सदिश ''a<sub>i</sub>'' और ''b<sub>j</sub>'' j, A और B के ऑर्थोनॉर्मल आधारों से होकर निकलते हैं, तो सदिश ''a<sub>i</sub>''⊗''b<sub>j</sub>'' | यदि सदिश ''a<sub>i</sub>'' और ''b<sub>j</sub>'' j, A और B के ऑर्थोनॉर्मल आधारों से होकर निकलते हैं, तो सदिश ''a<sub>i</sub>''⊗''b<sub>j</sub>'' A ⊗ B का ऑर्थोनॉर्मल आधार बनाते हैं। | ||
== बैनाच रिक्त स्थान के क्रॉस मानदंड और टेंसर उत्पाद == | == बैनाच रिक्त स्थान के क्रॉस मानदंड और टेंसर उत्पाद == | ||
हम इस अनुभाग में (रयान 2002) से नोटेशन का उपयोग करेंगे। दो बानाच रिक्त स्थान | हम इस अनुभाग में (रयान 2002) से नोटेशन का उपयोग करेंगे। दो बानाच रिक्त स्थान <math>A</math> और <math>B</math> के टेंसर उत्पाद को परिभाषित करने का स्पष्ट विधि हिल्बर्ट रिक्त स्थान के लिए विधि की प्रतिलिपि बनाना है: बीजगणितीय टेंसर उत्पाद पर एक मानदंड परिभाषित करें, फिर इस मानदंड में पूर्णता लें। समस्या यह है कि टेंसर उत्पाद पर एक मानदंड को परिभाषित करने के लिए एक से अधिक प्राकृतिक विधि हैं। | ||
यदि | यदि <math>A</math> और <math>B</math> बानाच स्थान हैं तो <math>A</math> और <math>B</math> के बीजगणितीय टेंसर उत्पाद का अर्थ सदिश रिक्त स्थान के रूप में <math>A</math> और <math>B</math> का टेंसर उत्पाद है और इसे <math>A \otimes B</math> द्वारा निरूपित किया जाता है। बीजगणितीय टेंसर उत्पाद <math>A \otimes B</math> सभी परिमित राशियों से मिलकर बना है। | ||
<math display=block>x = \sum_{i=1}^n a_i \otimes b_i,</math> | <math display=block>x = \sum_{i=1}^n a_i \otimes b_i,</math> | ||
जहां <math>n</math> एक प्राकृत संख्या है जो <math>x</math> और <math>a_i \in A</math> और <math>b_i \in B</math> पर निर्भर करती है, <math>i = 1, \ldots, n.</math> | जहां <math>n</math> एक प्राकृत संख्या है जो <math>x</math> और <math>a_i \in A</math> और <math>b_i \in B</math> पर निर्भर करती है, <math>i = 1, \ldots, n.</math> | ||
Line 30: | Line 30: | ||
यहां | |||
यहां <math>a^{\prime}</math> और <math>b^{\prime}</math> क्रमशः <math>A</math> और <math>B,</math> के टोपोलॉजिकल दोहरे स्थानों के तत्व हैं, और <math>p^{\prime}</math> <math>p.</math> का दोहरा मानदंड है। उपरोक्त परिभाषा के लिए उचित क्रॉसनॉर्म शब्द का भी उपयोग किया जाता है। | |||
एक क्रॉस मानदंड <math>\pi</math> है जिसे प्रोजेक्टिव क्रॉस मानदंड कहा जाता है, द्वारा दिया गया है | एक क्रॉस मानदंड <math>\pi</math> है जिसे प्रोजेक्टिव क्रॉस मानदंड कहा जाता है, द्वारा दिया गया है | ||
Line 46: | Line 47: | ||
इन दो मानदंडों में बीजगणितीय टेंसर उत्पाद की पूर्णता को प्रक्षेप्य और इंजेक्शन टेंसर उत्पाद कहा जाता है, और <math>A \operatorname{\hat{\otimes}}_\pi B</math> और <math>A \operatorname{\hat{\otimes}}_\varepsilon B.</math> द्वारा दर्शाया जाता है | इन दो मानदंडों में बीजगणितीय टेंसर उत्पाद की पूर्णता को प्रक्षेप्य और इंजेक्शन टेंसर उत्पाद कहा जाता है, और <math>A \operatorname{\hat{\otimes}}_\pi B</math> और <math>A \operatorname{\hat{\otimes}}_\varepsilon B.</math> द्वारा दर्शाया जाता है | ||
जब <math>A</math> और <math>B</math> | जब <math>A</math> और <math>B</math> हिल्बर्ट स्पेस हैं, तो उनके हिल्बर्ट स्पेस टेंसर उत्पाद के लिए उपयोग किया जाने वाला मानदंड सामान्य रूप से इनमें से किसी भी मानदंड के समान नहीं है। कुछ लेखक इसे <math>\sigma,</math> द्वारा निरूपित करते हैं, इसलिए उपरोक्त अनुभाग में हिल्बर्ट स्पेस टेंसर उत्पाद <math>A \operatorname{\hat{\otimes}}_\sigma B.</math> होगा। | ||
एक समान क्रॉसनॉर्म <math>\alpha</math> | एक समान क्रॉसनॉर्म <math>\alpha</math> <math>X \otimes Y</math> पर एक उचित क्रॉसनॉर्म के बैनाच रिक्त स्थान के प्रत्येक जोड़े <math>(X, Y)</math> के लिए एक असाइनमेंट है, जिससे यदि <math>X, W, Y, Z</math> इच्छित रूप से बनच रिक्त स्थान हैं तो सभी (निरंतर रैखिक) ऑपरेटरों के लिए <math>S : X \to W</math> और <math>T : Y \to Z</math> ऑपरेटर <math>S \otimes T : X \otimes_\alpha Y \to W \otimes_\alpha Z</math> निरंतर है और <math>\|S \otimes T\| \leq \|S\| \|T\|.</math> यदि <math>A</math> और <math>B</math> दो बैनाच स्थान हैं और <math>\alpha</math> एक समान क्रॉस मानदंड है तो <math>\alpha</math> बीजगणित पर एक उचित क्रॉस मानदंड को परिभाषित करता है टेंसर उत्पाद <math>A \otimes B.</math> <math>A \otimes B</math> को उस मानक से सुसज्जित करके प्राप्त मानक रैखिक स्थान को <math>A \otimes_\alpha B.</math>} द्वारा दर्शाया जाता है,<math>A \otimes_\alpha B,</math>का पूरा होना जो कि एक बानाच स्थान है, को <math>A \operatorname{\hat{\otimes}}_\alpha B.</math> द्वारा निरूपित किया जाता है। <math>\alpha</math> द्वारा दिए गए मानदंड का मान <math>A \otimes B</math> और पूर्ण टेंसर उत्पाद पर <math>A \operatorname{\hat{\otimes}}_\alpha B</math> एक तत्व <math>x</math> के लिए <math>A \operatorname{\hat{\otimes}}_\alpha B</math> (या <math>A \otimes_\alpha B</math>) में <math>\alpha_{A,B}(x) \text{ or } \alpha(x).</math> द्वारा दर्शाया गया है | ||
एक समान क्रॉसनॉर्म <math>\alpha</math> को परिमित रूप से उत्पन्न माना जाता है, यदि, बनच रिक्त स्थान के प्रत्येक जोड़े <math>(X, Y)</math> और प्रत्येक <math>u \in X \otimes Y,</math> के लिए। | एक समान क्रॉसनॉर्म <math>\alpha</math> को परिमित रूप से उत्पन्न माना जाता है, यदि, बनच रिक्त स्थान के प्रत्येक जोड़े <math>(X, Y)</math> और प्रत्येक <math>u \in X \otimes Y,</math> के लिए। | ||
Line 66: | Line 67: | ||
स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस ए और बी की टोपोलॉजी सेमीनॉर्म्स के परिवारों द्वारा दी गई है। सेमिनॉर्म के प्रत्येक विकल्प के लिए | स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस ए और बी की टोपोलॉजी सेमीनॉर्म्स के परिवारों द्वारा दी गई है। सेमिनॉर्म के प्रत्येक विकल्प के लिए | ||
<math>A</math> और <math>B</math> पर हम बीजगणितीय टेंसर उत्पाद <math>A\otimes B,</math> पर क्रॉस मानदंडों के संबंधित परिवार को परिभाषित कर सकते हैं और प्रत्येक वर्ग | <math>A</math> और <math>B</math> पर हम बीजगणितीय टेंसर उत्पाद <math>A\otimes B,</math> पर क्रॉस मानदंडों के संबंधित परिवार को परिभाषित कर सकते हैं और प्रत्येक वर्ग से एक क्रॉस मानदंड चुनकर हमें टोपोलॉजी को परिभाषित करने पर <math>A\otimes B,</math> पर कुछ क्रॉस मानदंड प्राप्त होते हैं। सामान्यतः ऐसा करने के बहुत सारे विधि हैं। दो सबसे महत्वपूर्ण विधि सभी प्रक्षेप्य क्रॉस मानदंडों, या सभी इंजेक्शन क्रॉस मानदंडों को लेना है। <math>A\otimes B</math> पर परिणामी टोपोलॉजी की पूर्णता को प्रोजेक्टिव और इंजेक्टिव टेंसर उत्पाद कहा जाता है, और <math>A\otimes_{\gamma} B</math> और <math>A\otimes_{\lambda} B.</math> द्वारा दर्शाया जाता है, <math>A\otimes_{\gamma} B</math> को <math>A\otimes_{\lambda} B.</math> तक एक प्राकृतिक मानचित्र होता है। | ||
यदि <math>A</math> या <math>B</math> एक परमाणु स्थान है तो | यदि <math>A</math> या <math>B</math> एक परमाणु स्थान है तो <math>A\otimes_{\gamma} B</math> को <math>A\otimes_{\lambda} B</math> का प्राकृतिक मानचित्र एक समरूपता है। समान्य रूप से , इसका अर्थयह है कि यदि <math>A</math> या <math>B</math> परमाणु है, तो <math>A</math> और <math>B</math> का केवल एक समझदार टेंसर उत्पाद है। यह गुण परमाणु स्थानों की विशेषता बताती है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* | ** फ़्रेचेट स्पेस - एक स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस जो एक पूर्ण मीट्रिक स्पेस भी है | ||
* | ** फ्रेडहोम कर्नेल - बनच स्पेस पर कर्नेल का प्रकार | ||
* | ** आगमनात्मक टेंसर उत्पाद - टोपोलॉजिकल वेक्टर स्पेस पर बाइनरी ऑपरेशन | ||
* | ** इंजेक्टिव टेंसर उत्पाद | ||
* | ** प्रक्षेप्य टेंसर उत्पाद - दो टोपोलॉजिकल वेक्टर स्थानों पर परिभाषित टेंसर उत्पाद | ||
* | ** प्रोजेक्टिव टोपोलॉजी - सबसे मोटे टोपोलॉजी जो कुछ कार्यों को निरंतर बनाती है | ||
* | ** हिल्बर्ट स्पेस का टेंसर उत्पाद - टेंसर उत्पाद स्पेस एक विशेष आंतरिक उत्पाद से संपन्न है | ||
== संदर्भ == | == संदर्भ == | ||
Line 91: | Line 92: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 18/11/2023]] | [[Category:Created On 18/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:48, 5 December 2023
गणित में, सामान्य रूप से दो टोपोलॉजिकल सदिश स्थान के टोपोलॉजिकल टेंसर उत्पाद का निर्माण करने के कई अलग-अलग विधि होते हैं। हिल्बर्ट रिक्त स्थान या परमाणु रिक्त स्थान के लिए टेंसर उत्पादों का एक सरल व्यवहार सिद्धांत है (हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद देखें), किन्तु सामान्य बानाच रिक्त स्थान या स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश रिक्त स्थान के लिए सिद्धांत अधिक सूक्ष्म है।
प्रेरणा
टोपोलॉजिकल टेंसर उत्पादों के लिए मूल प्रेरणाओं में से एक यह तथ्य है कि पर सुचारू कार्यों के स्थानों के टेंसर उत्पाद अपेक्षा के अनुरूप व्यवहार नहीं करते हैं। एक इंजेक्शन है
किन्तु यह एक समरूपता नहीं है. उदाहरण के लिए, फ़ंक्शन को में सुचारु कार्यों के एक सीमित रैखिक संयोजन के रूप में व्यक्त नहीं किया जा सकता है। हमें केवल टोपोलॉजिकल टेंसर उत्पाद के निर्माण के बाद एक समरूपता मिलती है;[1] अर्थात।,
यह लेख सबसे पहले बानाच अंतरिक्ष स्थिति में निर्माण का विवरण देता है। कोई बानाच स्थान नहीं है और आगे के स्थितियों पर अंत में विचार की जाती है।
हिल्बर्ट रिक्त स्थान के टेंसर उत्पाद
दो हिल्बर्ट रिक्त स्थान A और B के बीजगणितीय टेंसर उत्पाद में A और B के सेसक्विलिनियर फॉर्म से प्रेरित एक प्राकृतिक सकारात्मक निश्चित सेसक्विलिनियर रूप (स्केलर उत्पाद) होता है। इसलिए विशेष रूप से इसमें एक प्राकृतिक सकारात्मक निश्चित द्विघात रूप होता है, और संबंधित पूर्णता एक होती है हिल्बर्ट स्पेस A ⊗ B, जिसे A और B का (हिल्बर्ट स्पेस) टेंसर उत्पाद कहा जाता है।
यदि सदिश ai और bj j, A और B के ऑर्थोनॉर्मल आधारों से होकर निकलते हैं, तो सदिश ai⊗bj A ⊗ B का ऑर्थोनॉर्मल आधार बनाते हैं।
बैनाच रिक्त स्थान के क्रॉस मानदंड और टेंसर उत्पाद
हम इस अनुभाग में (रयान 2002) से नोटेशन का उपयोग करेंगे। दो बानाच रिक्त स्थान और के टेंसर उत्पाद को परिभाषित करने का स्पष्ट विधि हिल्बर्ट रिक्त स्थान के लिए विधि की प्रतिलिपि बनाना है: बीजगणितीय टेंसर उत्पाद पर एक मानदंड परिभाषित करें, फिर इस मानदंड में पूर्णता लें। समस्या यह है कि टेंसर उत्पाद पर एक मानदंड को परिभाषित करने के लिए एक से अधिक प्राकृतिक विधि हैं।
यदि और बानाच स्थान हैं तो और के बीजगणितीय टेंसर उत्पाद का अर्थ सदिश रिक्त स्थान के रूप में और का टेंसर उत्पाद है और इसे द्वारा निरूपित किया जाता है। बीजगणितीय टेंसर उत्पाद सभी परिमित राशियों से मिलकर बना है।
जब और बैनाच रिक्त स्थान हैं, तो बीजगणितीय टेंसर उत्पाद पर एक क्रॉसनॉर्म (या क्रॉस मानदंड) नियमो को पूरा करने वाला एक मानदंड है
यहां और क्रमशः और के टोपोलॉजिकल दोहरे स्थानों के तत्व हैं, और का दोहरा मानदंड है। उपरोक्त परिभाषा के लिए उचित क्रॉसनॉर्म शब्द का भी उपयोग किया जाता है।
एक क्रॉस मानदंड है जिसे प्रोजेक्टिव क्रॉस मानदंड कहा जाता है, द्वारा दिया गया है
यह पता चला है कि प्रक्षेप्य क्रॉस मानदंड सबसे बड़े क्रॉस मानदंड से सहमत है ((Ryan 2002), प्रस्ताव 2.1).
एक क्रॉस मानदंड है जिसे इंजेक्शन क्रॉस मानदंड कहा जाता है, द्वारा दिया गया है
यहां ध्यान दें कि इंजेक्टिव क्रॉस मानदंड केवल कुछ उचित अर्थों में सबसे छोटा है।
इन दो मानदंडों में बीजगणितीय टेंसर उत्पाद की पूर्णता को प्रक्षेप्य और इंजेक्शन टेंसर उत्पाद कहा जाता है, और और द्वारा दर्शाया जाता है
जब और हिल्बर्ट स्पेस हैं, तो उनके हिल्बर्ट स्पेस टेंसर उत्पाद के लिए उपयोग किया जाने वाला मानदंड सामान्य रूप से इनमें से किसी भी मानदंड के समान नहीं है। कुछ लेखक इसे द्वारा निरूपित करते हैं, इसलिए उपरोक्त अनुभाग में हिल्बर्ट स्पेस टेंसर उत्पाद होगा।
एक समान क्रॉसनॉर्म पर एक उचित क्रॉसनॉर्म के बैनाच रिक्त स्थान के प्रत्येक जोड़े के लिए एक असाइनमेंट है, जिससे यदि इच्छित रूप से बनच रिक्त स्थान हैं तो सभी (निरंतर रैखिक) ऑपरेटरों के लिए और ऑपरेटर निरंतर है और यदि और दो बैनाच स्थान हैं और एक समान क्रॉस मानदंड है तो बीजगणित पर एक उचित क्रॉस मानदंड को परिभाषित करता है टेंसर उत्पाद को उस मानक से सुसज्जित करके प्राप्त मानक रैखिक स्थान को } द्वारा दर्शाया जाता है,का पूरा होना जो कि एक बानाच स्थान है, को द्वारा निरूपित किया जाता है। द्वारा दिए गए मानदंड का मान और पूर्ण टेंसर उत्पाद पर एक तत्व के लिए (या ) में द्वारा दर्शाया गया है
एक समान क्रॉसनॉर्म को परिमित रूप से उत्पन्न माना जाता है, यदि, बनच रिक्त स्थान के प्रत्येक जोड़े और प्रत्येक के लिए।
यदि और इच्छित रूप से बनच स्थान हैं और तो यह एक इच्छित समान क्रॉस मानदंड है
स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थानों के टेंसर उत्पाद
स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस ए और बी की टोपोलॉजी सेमीनॉर्म्स के परिवारों द्वारा दी गई है। सेमिनॉर्म के प्रत्येक विकल्प के लिए
और पर हम बीजगणितीय टेंसर उत्पाद पर क्रॉस मानदंडों के संबंधित परिवार को परिभाषित कर सकते हैं और प्रत्येक वर्ग से एक क्रॉस मानदंड चुनकर हमें टोपोलॉजी को परिभाषित करने पर पर कुछ क्रॉस मानदंड प्राप्त होते हैं। सामान्यतः ऐसा करने के बहुत सारे विधि हैं। दो सबसे महत्वपूर्ण विधि सभी प्रक्षेप्य क्रॉस मानदंडों, या सभी इंजेक्शन क्रॉस मानदंडों को लेना है। पर परिणामी टोपोलॉजी की पूर्णता को प्रोजेक्टिव और इंजेक्टिव टेंसर उत्पाद कहा जाता है, और और द्वारा दर्शाया जाता है, को तक एक प्राकृतिक मानचित्र होता है।
यदि या एक परमाणु स्थान है तो को का प्राकृतिक मानचित्र एक समरूपता है। समान्य रूप से , इसका अर्थयह है कि यदि या परमाणु है, तो और का केवल एक समझदार टेंसर उत्पाद है। यह गुण परमाणु स्थानों की विशेषता बताती है।
यह भी देखें
- फ़्रेचेट स्पेस - एक स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस जो एक पूर्ण मीट्रिक स्पेस भी है
- फ्रेडहोम कर्नेल - बनच स्पेस पर कर्नेल का प्रकार
- आगमनात्मक टेंसर उत्पाद - टोपोलॉजिकल वेक्टर स्पेस पर बाइनरी ऑपरेशन
- इंजेक्टिव टेंसर उत्पाद
- प्रक्षेप्य टेंसर उत्पाद - दो टोपोलॉजिकल वेक्टर स्थानों पर परिभाषित टेंसर उत्पाद
- प्रोजेक्टिव टोपोलॉजी - सबसे मोटे टोपोलॉजी जो कुछ कार्यों को निरंतर बनाती है
- हिल्बर्ट स्पेस का टेंसर उत्पाद - टेंसर उत्पाद स्पेस एक विशेष आंतरिक उत्पाद से संपन्न है
संदर्भ
- Ryan, R.A. (2002), Introduction to Tensor Products of Banach Spaces, New York: Springer.
- Grothendieck, A. (1955), "Produits tensoriels topologiques et espaces nucléaires", Memoirs of the American Mathematical Society, 16.