घनत्व आव्यूह पुनर्सामान्यीकरण समूह: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{short description|Numerical variational technique}}
{{short description|Numerical variational technique}}
'''घनत्व आव्यूह पुनर्सामान्यीकरण समूह''' (डीएमआरजी) संख्यात्मक भिन्नता विधि (क्वांटम यांत्रिकी) तकनीक है जो [[ स्थूल पैमाने |स्थूल माप]] के साथ क्वांटम कई-निकाय प्रणालियों की कम-ऊर्जा भौतिकी प्राप्त करने के लिए तैयार की गई है। परिवर्तनशील विधि (क्वांटम यांत्रिकी) के रूप में, डीएमआरजी कुशल एल्गोरिदम है जो हैमिल्टन के सबसे कम ऊर्जा आव्यूह उत्पाद अवस्था तरंग फलन को खोजने का प्रयास करता है। इसका आविष्कार 1992 में स्टीवन आर. व्हाइट द्वारा किया गया था और यह वर्तमान में 1-आयामी प्रणालियों के लिए सबसे कुशल विधि है।<ref>{{Citation|last=Nakatani|first=Naoki|title=Matrix Product States and Density Matrix Renormalization Group Algorithm|date=2018|url=http://dx.doi.org/10.1016/b978-0-12-409547-2.11473-8|work=Reference Module in Chemistry, Molecular Sciences and Chemical Engineering|publisher=Elsevier|doi=10.1016/b978-0-12-409547-2.11473-8|isbn=978-0-12-409547-2|access-date=2021-04-21}}</ref>
'''घनत्व आव्यूह पुनर्सामान्यीकरण समूह''' (डीएमआरजी) संख्यात्मक भिन्नता विधि (क्वांटम यांत्रिकी) तकनीक है जो [[ स्थूल पैमाने |स्थूल माप]] के साथ क्वांटम कई-निकाय प्रणालियों की कम-ऊर्जा भौतिकी प्राप्त करने के लिए तैयार की गई है। परिवर्तनशील विधि (क्वांटम यांत्रिकी) के रूप में, डीएमआरजी कुशल एल्गोरिदम है जो हैमिल्टन के सबसे कम ऊर्जा आव्यूह उत्पाद अवस्था तरंग फलन को खोजने का प्रयास करता है। इसका आविष्कार 1992 में स्टीवन आर. व्हाइट द्वारा किया गया था और यह वर्तमान में 1-आयामी प्रणालियों के लिए सबसे कुशल विधि है।<ref>{{Citation|last=Nakatani|first=Naoki|title=Matrix Product States and Density Matrix Renormalization Group Algorithm|date=2018|url=http://dx.doi.org/10.1016/b978-0-12-409547-2.11473-8|work=Reference Module in Chemistry, Molecular Sciences and Chemical Engineering|publisher=Elsevier|doi=10.1016/b978-0-12-409547-2.11473-8|isbn=978-0-12-409547-2|access-date=2021-04-21}}</ref>
== इतिहास ==
== इतिहास ==
डीएमआरजी का पहला अनुप्रयोग, स्टीवन आर. व्हाइट और [[रेइनहार्ड नॉक]] द्वारा, टॉय मॉडल था: 1डी बॉक्स में [[स्पिन (भौतिकी)|चक्रण (भौतिकी)]] 0 कण के स्पेक्ट्रम को खोजने के लिए।{{When|date=July 2023}} यह मॉडल केनेथ जी. विल्सन द्वारा किसी भी नए [[पुनर्सामान्यीकरण समूह]] विधि के परीक्षण के रूप में प्रस्तावित किया गया था, क्योंकि वे सभी इस सरल समस्या से विफल हो गए थे।{{When|date=July 2023}} डीएमआरजी ने प्रत्येक चरण में ब्लॉक में केवल स्थल जोड़ने के अतिरिक्त बीच में दो स्थलों के साथ दो ब्लॉकों को जोड़कर और साथ ही सबसे महत्वपूर्ण अवस्थाओ की पहचान करने के लिए [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] का उपयोग करके पिछले पुनर्सामान्यीकरण समूह विधियों की समस्याओं पर अधिकृत पा लिया था। प्रत्येक चरण के अंत में रखा जाए। टॉय मॉडल में सफल होने के बाद, डीएमआरजी पद्धति को [[हाइजेनबर्ग मॉडल (क्वांटम)]] पर सफलतापूर्वक परीक्षा ली गई।
डीएमआरजी का पहला अनुप्रयोग, स्टीवन आर. व्हाइट और [[रेइनहार्ड नॉक]] द्वारा, टॉय श्रृंखला था: 1डी बॉक्स में [[स्पिन (भौतिकी)|चक्रण (भौतिकी)]] 0 कण के स्पेक्ट्रम को खोजने के लिए।{{When|date=July 2023}} यह श्रृंखला केनेथ जी. विल्सन द्वारा किसी भी नए [[पुनर्सामान्यीकरण समूह]] विधि के परीक्षण के रूप में प्रस्तावित किया गया था, क्योंकि वे सभी इस सरल समस्या से विफल हो गए थे।{{When|date=July 2023}} डीएमआरजी ने प्रत्येक चरण में ब्लॉक में केवल स्थल जोड़ने के अतिरिक्त बीच में दो स्थलों के साथ दो ब्लॉकों को जोड़कर और साथ ही सबसे महत्वपूर्ण अवस्थाओ की पहचान करने के लिए [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] का उपयोग करके पिछले पुनर्सामान्यीकरण समूह विधियों की समस्याओं पर अधिकृत पा लिया था। प्रत्येक चरण के अंत में रखा जाए। टॉय श्रृंखला में सफल होने के बाद, डीएमआरजी पद्धति को [[हाइजेनबर्ग मॉडल (क्वांटम)|हाइजेनबर्ग श्रृंखला (क्वांटम)]] पर सफलतापूर्वक परीक्षा ली गई।


==सिद्धांत==
==सिद्धांत==


क्वांटम अनेक-निकाय भौतिकी की मुख्य समस्या यह तथ्य है कि [[हिल्बर्ट स्थान]] आकार के साथ तेजी से बढ़ता है। दूसरे शब्दों में यदि कोई जालक पर विचार करता है, जिसमें आयाम <math>d</math> के कुछ हिल्बर्ट स्थान होते हैं जालक के प्रत्येक स्थल पर, कुल हिल्बर्ट स्थान का आयाम <math>d^{N}</math> होगा , जहाँ <math>N</math> जालक पर स्थलों की संख्या है. उदाहरण के लिए, लंबाई L की एक चक्रण-1/2 श्रृंखला में स्वतंत्रता की 2L डिग्री होती है। डीएमआरजी एक पुनरावृत्तीय, परिवर्तनशील विधि है जो लक्ष्य अवस्था के लिए सबसे महत्वपूर्ण स्वतंत्रता की प्रभावी डिग्री को कम कर देती है। जिस अवस्था में सबसे अधिक रुचि होती है वह निम्नतम अवस्था है।
क्वांटम अनेक-निकाय भौतिकी की मुख्य समस्या यह तथ्य है कि [[हिल्बर्ट स्थान]] आकार के साथ तेजी से बढ़ता है। दूसरे शब्दों में यदि कोई जालक पर विचार करता है, जिसमें आयाम <math>d</math> के कुछ हिल्बर्ट स्थान होते हैं जालक के प्रत्येक स्थल पर, कुल हिल्बर्ट स्थान का आयाम <math>d^{N}</math> होगा , जहाँ <math>N</math> जालक पर स्थलों की संख्या है. उदाहरण के लिए, लंबाई L की एक चक्रण-1/2 श्रृंखला में स्वतंत्रता की 2L डिग्री होती है। डीएमआरजी एक पुनरावृत्तीय, परिवर्तनशील विधि है जो लक्ष्य अवस्था के लिए सबसे महत्वपूर्ण स्वतंत्रता की प्रभावी डिग्री को कम कर देती है। जिस अवस्था में सबसे अधिक रुचि होती है वह निम्नतम अवस्था है।


वार्मअप चक्र के बाद, विधि प्रणाली को दो उपप्रणालियों या ब्लॉकों में विभाजित करती है, जिनके समान आकार की आवश्यकता नहीं होती है, और बीच में दो स्थलें होती हैं। वार्मअप के दौरान ब्लॉक के लिए प्रतिनिधि अवस्थाओ का समुच्चय चुना गया है। बाएँ ब्लॉक + दो स्थल + दाएँ ब्लॉक के इस समुच्चय को 'सुपरब्लॉक' के रूप में जाना जाता है। अब सुपरब्लॉक की निम्नतम स्थिति के लिए प्रत्याशी, जो कि पूर्ण प्रणाली का छोटा संस्करण है, मिल सकता है। इसमें थोड़ी स्पष्टतः हो सकती है, किन्तु यह विधि पुनरावृत्तीय है और नीचे दिए गए चरणों के साथ इसमें सुधार होता है।
वार्मअप चक्र के बाद, विधि प्रणाली को दो उपप्रणालियों या ब्लॉकों में विभाजित करती है, जिनके समान आकार की आवश्यकता नहीं होती है, और बीच में दो स्थलें होती हैं। वार्मअप के समय ब्लॉक के लिए प्रतिनिधि अवस्थाओ का समुच्चय चुना गया है। बाएँ ब्लॉक + दो स्थल + दाएँ ब्लॉक के इस समुच्चय को 'सुपरब्लॉक' के रूप में जाना जाता है। अब सुपरब्लॉक की निम्नतम स्थिति के लिए प्रत्याशी, जो कि पूर्ण प्रणाली का छोटा संस्करण है, मिल सकता है। इसमें थोड़ी स्पष्टतः हो सकती है, किन्तु यह विधि पुनरावृत्तीय है और नीचे दिए गए चरणों के साथ इसमें सुधार होता है।


[[Image:Dmrg1.png|thumb|300px|right|डीएमआरजी के अनुसार, प्रणाली को बाएँ और दाएँ ब्लॉक में विघटित करना।]]जो प्रत्याशी निम्नतम स्थिति पाई गई है, उसे घनत्व आव्यूह का उपयोग करके प्रत्येक ब्लॉक के लिए रैखिक उप-स्थान में प्रक्षेपित किया जाता है, इसलिए यह नाम दिया गया है। इस प्रकार, प्रत्येक ब्लॉक के लिए प्रासंगिक स्थिति अद्यतन की जाती है।  
[[Image:Dmrg1.png|thumb|300px|right|डीएमआरजी के अनुसार, प्रणाली को बाएँ और दाएँ ब्लॉक में विघटित करना।]]जो प्रत्याशी निम्नतम स्थिति पाई गई है, उसे घनत्व आव्यूह का उपयोग करके प्रत्येक ब्लॉक के लिए रैखिक उप-स्थान में प्रक्षेपित किया जाता है, इसलिए यह नाम दिया गया है। इस प्रकार, प्रत्येक ब्लॉक के लिए प्रासंगिक स्थिति अद्यतन की जाती है।  


अब ब्लॉक दूसरे की व्यय पर बढ़ता है और प्रक्रिया दोहराई जाती है। जब बढ़ता हुआ ब्लॉक अधिकतम आकार तक पहुँच जाता है, तो उसके स्थान पर दूसरा बढ़ना प्रारंभ हो जाता है। प्रत्येक बार जब हम मूल (समान आकार) स्थिति में लौटते हैं, तो हम कहते हैं कि स्वीप पूरा हो गया है। सामान्यतः, 1D जालक के लिए 10<sup>10</sup> में भाग की स्पष्टतः प्राप्त करने के लिए कुछ स्वीप पर्याप्त होते हैं।
अब ब्लॉक दूसरे की व्यय पर बढ़ता है और प्रक्रिया दोहराई जाती है। जब बढ़ता हुआ ब्लॉक अधिकतम आकार तक पहुँच जाता है, तो उसके स्थान पर दूसरा बढ़ना प्रारंभ हो जाता है। प्रत्येक बार जब हम मूल (समान आकार) स्थिति में लौटते हैं, तो हम कहते हैं कि स्वीप पूरा हो गया है। सामान्यतः, 1D जालक के लिए 10<sup>10</sup> में भाग की स्पष्टतः प्राप्त करने के लिए कुछ स्वीप पर्याप्त होते हैं।


[[Image:Dmrg2.png|thumb|300px|right|डीएमआरजी स्वीप।]]
[[Image:Dmrg2.png|thumb|300px|right|डीएमआरजी स्वीप।]]
Line 22: Line 22:
* चूंकि पुनर्सामान्यीकृत हैमिल्टनियन का आकार सामान्यतः कुछ या दसियों हजार के क्रम में होता है, जबकि मांगी गई ईजेनस्टेट सिर्फ निम्नतम स्थिति है, सुपरब्लॉक के लिए निम्नतम स्थिति आव्यूह विकर्णीकरण के [[लैंज़ोस एल्गोरिदम]] जैसे पुनरावृत्त एल्गोरिदम के माध्यम से प्राप्त की जाती है। अन्य विकल्प अर्नोल्डी पुनरावृत्ति है, विशेषकर जब गैर-हर्मिटियन आव्यूह से निपटना हो।
* चूंकि पुनर्सामान्यीकृत हैमिल्टनियन का आकार सामान्यतः कुछ या दसियों हजार के क्रम में होता है, जबकि मांगी गई ईजेनस्टेट सिर्फ निम्नतम स्थिति है, सुपरब्लॉक के लिए निम्नतम स्थिति आव्यूह विकर्णीकरण के [[लैंज़ोस एल्गोरिदम]] जैसे पुनरावृत्त एल्गोरिदम के माध्यम से प्राप्त की जाती है। अन्य विकल्प अर्नोल्डी पुनरावृत्ति है, विशेषकर जब गैर-हर्मिटियन आव्यूह से निपटना हो।
* लैंज़ोस एल्गोरिदम सामान्यतः समाधान के सर्वोत्तम अनुमान से प्रारंभ होता है। यदि कोई अनुमान उपलब्ध नहीं है तो यादृच्छिक सदिश चुना जाता है। डीएमआरजी में, निश्चित डीएमआरजी चरण में प्राप्त निम्नतम स्थिति, उपयुक्त रूप से रूपांतरित, उचित अनुमान है और इस प्रकार अगले डीएमआरजी चरण में यादृच्छिक प्रारंभिक सदिश की तुलना में अधिक उत्तम काम करती है।
* लैंज़ोस एल्गोरिदम सामान्यतः समाधान के सर्वोत्तम अनुमान से प्रारंभ होता है। यदि कोई अनुमान उपलब्ध नहीं है तो यादृच्छिक सदिश चुना जाता है। डीएमआरजी में, निश्चित डीएमआरजी चरण में प्राप्त निम्नतम स्थिति, उपयुक्त रूप से रूपांतरित, उचित अनुमान है और इस प्रकार अगले डीएमआरजी चरण में यादृच्छिक प्रारंभिक सदिश की तुलना में अधिक उत्तम काम करती है।
* समरूपता वाले प्रणाली में, हमने क्वांटम संख्याओं को संरक्षित किया हो सकता है, जैसे हाइजेनबर्ग मॉडल में कुल चक्रण। हिल्बर्ट क्षेत्र को जिन सेक्टरों में विभाजित किया गया है, उनमें से प्रत्येक के अन्दर निम्नतम स्थिति का पता लगाना सुविधाजनक है।
* समरूपता वाले प्रणाली में, हमने क्वांटम संख्याओं को संरक्षित किया हो सकता है, जैसे हाइजेनबर्ग श्रृंखला में कुल चक्रण आदि। हिल्बर्ट क्षेत्र को जिन क्षेत्रों में विभाजित किया गया है, उनमें से प्रत्येक के अन्दर निम्नतम स्थिति का पता लगाना सुविधाजनक है।


==अनुप्रयोग==
==अनुप्रयोग==


डीएमआरजी को चक्रण श्रृंखलाओं के कम ऊर्जा गुणों को प्राप्त करने के लिए सफलतापूर्वक प्रयुक्त किया गया है: अनुप्रस्थ क्षेत्र में [[आइसिंग मॉडल]], हाइजेनबर्ग मॉडल (क्वांटम), आदि, फर्मियोनिक प्रणाली, जैसे [[हबर्ड मॉडल]], [[कोंडो प्रभाव]] जैसी अशुद्धियों के साथ समस्याएं, [[बोसॉन]] प्रणाली, और [[क्वांटम डॉट्स]] की भौतिकी [[कितना तार|क्वांटम]] वायर से जुड़ गई। इसे [[वृक्ष ग्राफ|ट्री ग्राफ]] पर काम करने के लिए भी विस्तारित किया गया है, और [[डेनड्रीमर]] के अध्ययन में इसका अनुप्रयोग पाया गया है। 2D प्रणाली के लिए जिसका आयाम दूसरे से अधिक बड़ा है, डीएमआरजी भी स्पष्ट है, और सीढ़ी के अध्ययन में उपयोगी प्रमाणित हुआ है।
डीएमआरजी को चक्रण श्रृंखलाओं के कम ऊर्जा गुणों को प्राप्त करने के लिए सफलतापूर्वक प्रयुक्त किया गया है: अनुप्रस्थ क्षेत्र में [[आइसिंग मॉडल|आइसिंग श्रृंखला]], हाइजेनबर्ग श्रृंखला (क्वांटम), आदि, फर्मियोनिक प्रणाली, जैसे [[हबर्ड मॉडल|हबर्ड श्रृंखला]], [[कोंडो प्रभाव]] जैसी अशुद्धियों के साथ समस्याएं, [[बोसॉन]] प्रणाली, और [[क्वांटम डॉट्स]] की भौतिकी [[कितना तार|क्वांटम]] वायर से जुड़ गई। इसे [[वृक्ष ग्राफ|ट्री ग्राफ]] पर काम करने के लिए भी विस्तारित किया गया है, और [[डेनड्रीमर]] के अध्ययन में इसका अनुप्रयोग पाया गया है। 2D प्रणाली के लिए जिसका आयाम दूसरे से अधिक बड़ा है, डीएमआरजी भी स्पष्ट है, और सीढ़ी के अध्ययन में उपयोगी प्रमाणित हुआ है।


इस पद्धति का विस्तार 2D में संतुलन [[सांख्यिकीय भौतिकी]] का अध्ययन करने और 1D में | गैर-संतुलन घटना का विश्लेषण करने के लिए किया गया है।
इस पद्धति का विस्तार 2D में संतुलन [[सांख्यिकीय भौतिकी]] का अध्ययन करने और 1D में गैर-संतुलन घटना का विश्लेषण करने के लिए किया गया है।


दृढ़ता से सहसंबद्ध प्रणालियों का अध्ययन करने के लिए डीएमआरजी को क्वांटम रसायन विज्ञान के क्षेत्र में भी प्रयुक्त किया गया है।
दृढ़ता से सहसंबद्ध प्रणालियों का अध्ययन करने के लिए डीएमआरजी को क्वांटम रसायन विज्ञान के क्षेत्र में भी प्रयुक्त किया गया है।


== उदाहरण: क्वांटम हाइजेनबर्ग मॉडल ==
== उदाहरण: क्वांटम हाइजेनबर्ग श्रृंखला ==
आइए इसके लिए अनंत डीएमआरजी एल्गोरिदम पर विचार करें <math>S=1</math> प्रति-लौहचुंबकीय [[क्वांटम हाइजेनबर्ग मॉडल]] है। यह व्यंजन विधि प्रत्येक अनुवादात्मक रूप से अपरिवर्तनीय एक-आयामी [[जाली (समूह)|जालक (समूह)]] के लिए प्रयुक्त किया जा सकता है।
आइए इसके लिए <math>S=1</math> प्रति-लौहचुंबकीय [[क्वांटम हाइजेनबर्ग मॉडल|क्वांटम हाइजेनबर्ग श्रृंखला]] अनंत डीएमआरजी एल्गोरिदम पर विचार करें। यह व्यंजन विधि प्रत्येक अनुवादात्मक रूप से अपरिवर्तनीय एक-आयामी [[जाली (समूह)|जालक (समूह)]] के लिए प्रयुक्त किया जा सकता है।


डीएमआरजी पुनर्सामान्यीकरण समूह तकनीक है| क्योंकि यह एक-आयामी क्वांटम प्रणाली के हिल्बर्ट स्थान का कुशल खंडन प्रदान करता है।
डीएमआरजी पुनर्सामान्यीकरण समूह तकनीक है| क्योंकि यह एक-आयामी क्वांटम प्रणाली के हिल्बर्ट स्थान का कुशल खंडन प्रदान करता है।


=== प्रारंभिक बिंदु ===
=== प्रारंभिक बिंदु ===
चार स्थलों से प्रारंभ करके अनंत श्रृंखला का अनुकरण करना है। पहली ब्लॉक स्थल है, आखिरी यूनिवर्स-ब्लॉक स्थल है और बाकी जोड़ी गई स्थलें हैं, दाईं ओर वाली स्थल यूनिवर्स-ब्लॉक स्थल और दूसरी ब्लॉक स्थल में जोड़ी गई है।
चार स्थलों से प्रारंभ करके अनंत श्रृंखला का अनुकरण करना है। पहली ब्लॉक स्थल है, आखिरी यूनिवर्स-ब्लॉक स्थल है और बाकी जोड़ी गई स्थलें हैं, दाईं ओर वाली स्थल यूनिवर्स-ब्लॉक स्थल और दूसरी ब्लॉक स्थल में जोड़ी गई है।


एकल स्थल के लिए हिल्बर्ट स्थान आधार <math>\{|S,S_z\rangle\}\equiv\{|1,1\rangle,|1,0\rangle,|1,-1\rangle\}</math> के साथ <math>\mathfrak{H}</math> है. इस आधार के साथ चक्रण (भौतिकी) संचालक <math>S_x</math>, <math>S_y</math> और <math>S_z</math> हैं एकल स्थल के लिए. प्रत्येक ब्लॉक, दो ब्लॉक और दो स्थलों के लिए, अपना स्वयं का हिल्बर्ट स्थान <math>\mathfrak{H}_b</math> है , इसका आधार <math>\{|w_i\rangle\}</math> और इसके अपने संचालक (<math>i:1\dots \dim(\mathfrak{H}_b)</math>) हैं।<math display="block">O_b:\mathfrak{H}_b\rightarrow\mathfrak{H}_b</math>जहाँ
एकल स्थल के लिए हिल्बर्ट स्थान आधार <math>\{|S,S_z\rangle\}\equiv\{|1,1\rangle,|1,0\rangle,|1,-1\rangle\}</math> के साथ <math>\mathfrak{H}</math> है. इस आधार के साथ चक्रण (भौतिकी) संचालक <math>S_x</math>, <math>S_y</math> और <math>S_z</math> हैं एकल स्थल के लिए. प्रत्येक ब्लॉक, दो ब्लॉक और दो स्थलों के लिए, अपना स्वयं का हिल्बर्ट स्थान <math>\mathfrak{H}_b</math> है , इसका आधार <math>\{|w_i\rangle\}</math> और इसके अपने संचालक (<math>i:1\dots \dim(\mathfrak{H}_b)</math>) हैं।<math display="block">O_b:\mathfrak{H}_b\rightarrow\mathfrak{H}_b</math>जहाँ
 
* अवरोध उत्पन्न करना: <math>\mathfrak{H}_B</math>, <math>\{|u_i\rangle\}</math>, <math>H_B</math>, <math>S_{x_B}</math>, <math>S_{y_B}</math>, <math>S_{z_B}</math>
* अवरोध उत्पन्न करना: <math>\mathfrak{H}_B</math>, <math>\{|u_i\rangle\}</math>, <math>H_B</math>, <math>S_{x_B}</math>, <math>S_{y_B}</math>, <math>S_{z_B}</math>
* बाईं स्थल: <math>\mathfrak{H}_l</math>, <math>\{|t_i\rangle\}</math>, <math>S_{x_l}</math>, <math>S_{y_l}</math>, <math>S_{z_l}</math>
* बाईं स्थल: <math>\mathfrak{H}_l</math>, <math>\{|t_i\rangle\}</math>, <math>S_{x_l}</math>, <math>S_{y_l}</math>, <math>S_{z_l}</math>
* दाई-स्थल: <math>\mathfrak{H}_r</math>, <math>\{|s_i\rangle\}</math>, <math>S_{x_r}</math>, <math>S_{y_r}</math>, <math>S_{z_r}</math>
* दाई-स्थल: <math>\mathfrak{H}_r</math>, <math>\{|s_i\rangle\}</math>, <math>S_{x_r}</math>, <math>S_{y_r}</math>, <math>S_{z_r}</math>
* ब्रह्मांड: <math>\mathfrak{H}_U</math>, <math>\{|r_i\rangle\}</math>, <math>H_U</math>, <math>S_{x_U}</math>, <math>S_{y_U}</math>, <math>S_{z_U}</math>
* ब्रह्मांड: <math>\mathfrak{H}_U</math>, <math>\{|r_i\rangle\}</math>, <math>H_U</math>, <math>S_{x_U}</math>, <math>S_{y_U}</math>, <math>S_{z_U}</math>
आरंभिक बिंदु पर सभी चार हिल्बर्ट स्थान <math>\mathfrak{H}</math> समतुल्य हैं, सभी चक्रण संचालक <math>S_x</math>, <math>S_y</math> और <math>S_z</math> और <math>H_B=H_U=0</math> समतुल्य हैं. निम्नलिखित पुनरावृत्तियों में, यह केवल बाएँ और दाएँ स्थलों के लिए सत्य है।
आरंभिक बिंदु पर सभी चार हिल्बर्ट स्थान <math>\mathfrak{H}</math> समतुल्य हैं, सभी चक्रण संचालक <math>S_x</math>, <math>S_y</math> और <math>S_z</math> और <math>H_B=H_U=0</math> समतुल्य हैं. निम्नलिखित पुनरावृत्तियों में, यह केवल बाएँ और दाएँ स्थलों के लिए सत्य है।


=== चरण 1: सुपरब्लॉक के लिए हैमिल्टनियन आव्यूह बनाएं ===
=== चरण 1: सुपरब्लॉक के लिए हैमिल्टनियन आव्यूह बनाएं ===
अवयव चार ब्लॉक संचालक और चार ब्रह्मांड-ब्लॉक संचालक हैं, जो पहले पुनरावृत्ति में <math>3\times3</math> [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] हैं, तीन बाएं-स्थल चक्रण संचालक और तीन दाई-स्थल चक्रण संचालक, जो सदैव <math>3\times3</math> [[मैट्रिक्स (गणित)|आव्यूह]] होते हैं. सुपरब्लॉक (श्रृंखला) का [[हैमिल्टनियन प्रणाली|हैमिल्टनियन आव्यूह प्रणाली]] , जिसमें पहले पुनरावृत्ति में केवल चार स्थलें हैं, इन संचालकों द्वारा बनाई गई हैं। हाइजेनबर्ग प्रति-लौहचुंबकीय S = 1 मॉडल में हैमिल्टनियन है:
अवयव चार ब्लॉक संचालक और चार ब्रह्मांड-ब्लॉक संचालक हैं, जो पहले पुनरावृत्ति में <math>3\times3</math> [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] हैं, तीन बाएं-स्थल चक्रण संचालक और तीन दाई-स्थल चक्रण संचालक, जो सदैव <math>3\times3</math> [[मैट्रिक्स (गणित)|आव्यूह]] होते हैं. सुपरब्लॉक (श्रृंखला) का [[हैमिल्टनियन प्रणाली|हैमिल्टनियन आव्यूह प्रणाली]] , जिसमें पहले पुनरावृत्ति में केवल चार स्थलें हैं, इन संचालकों द्वारा बनाई गई हैं। हाइजेनबर्ग प्रति-लौहचुंबकीय S = 1 श्रृंखला में हैमिल्टनियन है:


<math>
<math>
Line 71: Line 70:
</math>
</math>


संचालक आव्यूह, <math>(d*3*3*d)\times(d*3*3*d)</math> हैं, उदाहरण के लिए: <math>d=\dim(\mathfrak{H}_B)\equiv\dim(\mathfrak{H}_U)</math> है,  
संचालक आव्यूह, <math>(d*3*3*d)\times(d*3*3*d)</math> हैं, उदाहरण के लिए: <math>d=\dim(\mathfrak{H}_B)\equiv\dim(\mathfrak{H}_U)</math> है,  


<math>
<math>
Line 81: Line 80:
</math>
</math>
=== चरण 2: सुपरब्लॉक हैमिल्टनियन को विकर्णित करें ===
=== चरण 2: सुपरब्लॉक हैमिल्टनियन को विकर्णित करें ===
इस बिंदु पर आपको हैमिल्टनियन के आइजेनवैल्यू, आइजेनसदिश और आइजेनस्थान को चुनना होगा जिसके लिए कुछ [[नमूदार]] की गणना की जाती है, यह लक्ष्य स्थिति है। प्रारंभिक में आप स्थिर स्थिति चुन सकते हैं और इसे खोजने के लिए कुछ उन्नत एल्गोरिदम का उपयोग कर सकते हैं, इनमें से का वर्णन इस प्रकार है:
इस बिंदु पर आपको हैमिल्टनियन के आइजेनवैल्यू, आइजेनसदिश और आइजेनस्थान को चुनना होगा जिसके लिए कुछ [[नमूदार|अवलोकनों]] की गणना की जाती है, यह लक्ष्य स्थिति है। प्रारंभिक में आप स्थिर स्थिति चुन सकते हैं और इसे खोजने के लिए कुछ उन्नत एल्गोरिदम का उपयोग कर सकते हैं, इनमें से का वर्णन इस प्रकार है:


* बड़े वास्तविक-[[सममित मैट्रिक्स|सममित आव्यूह]] के कुछ सबसे कम आइजेनवैल्यू और संबंधित आइजेनवैल्यू, आइजेनसदिश और आइजेनस्थान की पुनरावृत्तीय गणना, अर्नेस्ट आर. डेविडसन; अभिकलनात्मक भौतिकी जर्नल 17, 87-94 (1975)
* बड़े वास्तविक-[[सममित मैट्रिक्स|सममित आव्यूह]] के कुछ सबसे कम आइजेनवैल्यू और संबंधित आइजेनवैल्यू, आइजेनसदिश और आइजेनस्थान की पुनरावृत्तीय गणना, अर्नेस्ट आर. डेविडसन; अभिकलनात्मक भौतिकी जर्नल 17, 87-94 (1975)
Line 87: Line 86:
यह चरण एल्गोरिथम का सबसे अधिक समय लेने वाला भाग है।
यह चरण एल्गोरिथम का सबसे अधिक समय लेने वाला भाग है।


यदि <math>|\Psi\rangle=\sum\Psi_{i,j,k,w}|u_i,t_j,s_k,r_w\rangle</math> लक्ष्य स्थिति है, इस बिंदु पर <math>|\Psi\rangle</math> विभिन्न संचालकों के [[अपेक्षित मूल्य]] का उपयोग करके मापा जा सकता है .
यदि <math>|\Psi\rangle=\sum\Psi_{i,j,k,w}|u_i,t_j,s_k,r_w\rangle</math> लक्ष्य स्थिति है, इस बिंदु पर <math>|\Psi\rangle</math> विभिन्न संचालकों के [[अपेक्षित मूल्य|अपेक्षित मान]] का उपयोग करके मापा जा सकता है .


=== चरण 3: घनत्व आव्यूह कम करें ===
=== चरण 3: घनत्व आव्यूह कम करें ===
Line 114: Line 113:
S_{x_{r-U}}=S_{x_r}\otimes\mathbb{I}
S_{x_{r-U}}=S_{x_r}\otimes\mathbb{I}
</math>
</math>
अब, फॉर्म बनाएं नए ब्लॉक और ब्रह्मांड-ब्लॉक संचालकों के <math>m\times m</math> आव्यूह प्रतिनिधित्व, परिवर्तन <math>T</math> के साथ आधार परिवर्तित करके नया ब्लॉक बनाते हैं , उदाहरण के लिए:<math display="block">\begin{matrix}
अब, फॉर्म बनाएं नए ब्लॉक और ब्रह्मांड-ब्लॉक संचालकों के <math>m\times m</math> आव्यूह प्रतिनिधित्व, परिवर्तन <math>T</math> के साथ आधार परिवर्तित करके नया ब्लॉक बनाते हैं , उदाहरण के लिए:<math display="block">\begin{matrix}
&H_B=TH_{B-l}T^\dagger
&H_B=TH_{B-l}T^\dagger


Line 132: Line 131:
क्वांटम रसायन विज्ञान अनुप्रयोग में, <math> s_i </math> इस प्रकार दो इलेक्ट्रॉनों की चक्रण क्वांटम संख्या के प्रक्षेपण की चार संभावनाएं हैं जो एकल कक्षक पर अधिकृत कर सकती हैं <math> s_i = | 00\rangle, |10\rangle, |01\rangle, |11\rangle </math>, जहां इन केट्स की पहली (दूसरी) प्रविष्टि चक्रण-अप (डाउन) इलेक्ट्रॉन से मेल खाती है। क्वांटम रसायन विज्ञान में, <math> A^{s_1} </math> (किसी प्रदत्त के लिए <math> s_i </math>) और <math> A^{s_N} </math> (किसी प्रदत्त के लिए <math> s_N </math>) को परंपरागत रूप से क्रमशः पंक्ति और स्तंभ आव्यूह के रूप में चुना जाता है। इस प्रकार, का परिणाम <math> A^{s_1} \ldots A^{s_N} </math> अदिश मान है और ट्रेस ऑपरेशन अनावश्यक है। <math> N </math> सिमुलेशन में उपयोग की जाने वाली स्थलों (मूल रूप से ऑर्बिटल्स) की संख्या है।
क्वांटम रसायन विज्ञान अनुप्रयोग में, <math> s_i </math> इस प्रकार दो इलेक्ट्रॉनों की चक्रण क्वांटम संख्या के प्रक्षेपण की चार संभावनाएं हैं जो एकल कक्षक पर अधिकृत कर सकती हैं <math> s_i = | 00\rangle, |10\rangle, |01\rangle, |11\rangle </math>, जहां इन केट्स की पहली (दूसरी) प्रविष्टि चक्रण-अप (डाउन) इलेक्ट्रॉन से मेल खाती है। क्वांटम रसायन विज्ञान में, <math> A^{s_1} </math> (किसी प्रदत्त के लिए <math> s_i </math>) और <math> A^{s_N} </math> (किसी प्रदत्त के लिए <math> s_N </math>) को परंपरागत रूप से क्रमशः पंक्ति और स्तंभ आव्यूह के रूप में चुना जाता है। इस प्रकार, का परिणाम <math> A^{s_1} \ldots A^{s_N} </math> अदिश मान है और ट्रेस ऑपरेशन अनावश्यक है। <math> N </math> सिमुलेशन में उपयोग की जाने वाली स्थलों (मूल रूप से ऑर्बिटल्स) की संख्या है।


एमपीएस अंसत्ज़ में आव्यूह अद्वितीय नहीं हैं, उदाहरण के लिए, कोई <math>A^{s_i}A^{s_{i+1}}</math> के बीच में <math> B^{-1} B </math> सम्मिलित कर सकता है, फिर <math>\tilde{A}^{s_i} = A^{s_i}B^{-1}</math> और <math>\tilde{A}^{s_{i+1}} = BA^{s_{i+1}}</math>, परिभाषित करें और अवस्था अपरिवर्तित रहेगा. इस तरह की गेज स्वतंत्रता का उपयोग आव्यूह को विहित रूप में परिवर्तित करने के लिए किया जाता है। तीन प्रकार के विहित रूप उपस्तिथ हैं: (1) वाम-सामान्यीकृत रूप, जब
एमपीएस अंसत्ज़ में आव्यूह अद्वितीय नहीं हैं, उदाहरण के लिए, कोई <math>A^{s_i}A^{s_{i+1}}</math> के बीच में <math> B^{-1} B </math> सम्मिलित कर सकता है, फिर <math>\tilde{A}^{s_i} = A^{s_i}B^{-1}</math> और <math>\tilde{A}^{s_{i+1}} = BA^{s_{i+1}}</math>, परिभाषित करें और अवस्था अपरिवर्तित रहेगा. इस तरह की गेज स्वतंत्रता का उपयोग आव्यूह को विहित रूप में परिवर्तित करने के लिए किया जाता है। तीन प्रकार के विहित रूप उपस्तिथ हैं: (1) वाम-सामान्यीकृत रूप, जब


:<math>\sum_{s_i} \left(\tilde{A}^{s_i}\right)^\dagger \tilde{A}^{s_i} = I</math>
:<math>\sum_{s_i} \left(\tilde{A}^{s_i}\right)^\dagger \tilde{A}^{s_i} = I</math>
सभी के लिए <math>i</math>, (2) सही-सामान्यीकृत रूप, कब
सभी के लिए <math>i</math>, (2) सही-सामान्यीकृत रूप, कब
:<math>\sum_{s_i} \tilde{A}^{s_i} \left(\tilde{A}^{s_i}\right)^\dagger  = I </math>
:<math>\sum_{s_i} \tilde{A}^{s_i} \left(\tilde{A}^{s_i}\right)^\dagger  = I </math>
सभी के लिए <math>i</math>, और (3) मिश्रित-विहित रूप जब उपरोक्त एमपीएस अंसत्ज़ में <math>N</math> आव्यूह दोनों बाएँ और दाएँ-सामान्यीकृत आव्यूह उपस्तिथ होते हैं।
सभी के लिए <math>i</math>, और (3) मिश्रित-विहित रूप जब उपरोक्त एमपीएस अंसत्ज़ में <math>N</math> आव्यूह दोनों बाएँ और दाएँ-सामान्यीकृत आव्यूह उपस्तिथ होते हैं।


डीएमआरजी गणना का लक्ष्य <math> A^{s_i} </math> में प्रत्येक के अवयवो को हल करना है . इस उद्देश्य के लिए तथाकथित एकल-स्थल और दो-स्थल एल्गोरिदम तैयार किए गए हैं। एकल-स्थल एल्गोरिथ्म में, केवल आव्यूह (एक स्थल) जिसके अवयवो को समय में हल किया जाता है। दो-स्थल का सीधा सा अर्थ है कि दो आव्यूह को पहले ही आव्यूह में अनुबंधित (गुणा) किया जाता है, और फिर उसके अवयवो को हल किया जाता है। और दो-स्थल एल्गोरिदम प्रस्तावित है क्योंकि एकल-स्थल एल्गोरिदम में स्थानीय न्यूनतम पर फंसने की संभावना अधिक होती है। उपरोक्त विहित रूपों में से किसी में एमपीएस होने से गणना को अधिक अनुकूल बनाने का लाभ होता है - यह सामान्य स्वदेशी समस्या की ओर ले जाता है। विहितीकरण के बिना, कोई सामान्यीकृत आइगेनवैल्यू समस्या से निपटेगा।
डीएमआरजी गणना का लक्ष्य <math> A^{s_i} </math> में प्रत्येक के अवयवो को हल करना है . इस उद्देश्य के लिए तथाकथित एकल-स्थल और दो-स्थल एल्गोरिदम तैयार किए गए हैं। एकल-स्थल एल्गोरिथ्म में, केवल आव्यूह (एक स्थल) जिसके अवयवो को समय में हल किया जाता है। दो-स्थल का सीधा सा अर्थ है कि दो आव्यूह को पहले ही आव्यूह में अनुबंधित (गुणा) किया जाता है, और फिर उसके अवयवो को हल किया जाता है। और दो-स्थल एल्गोरिदम प्रस्तावित है क्योंकि एकल-स्थल एल्गोरिदम में स्थानीय न्यूनतम पर फंसने की संभावना अधिक होती है। उपरोक्त विहित रूपों में से किसी में एमपीएस होने से गणना को अधिक अनुकूल बनाने का लाभ होता है - यह सामान्य स्वदेशी समस्या की ओर ले जाता है। विहितीकरण के बिना, कोई सामान्यीकृत आइगेनवैल्यू समस्या से निपटेगा।
Line 143: Line 142:
==विस्तार==
==विस्तार==


2004 में आव्यूह उत्पाद अवस्थाओ के वास्तविक समय विकास को प्रयुक्त करने के लिए समय-विकसित ब्लॉक डिकिमेशन विधि विकसित की गई थी। यह विचार [[ एक कंप्यूटर जितना |कंप्यूटर]] के मौलिक अनुकरण पर आधारित है। इसके बाद, डीएमआरजी औपचारिकता के अन्दर वास्तविक समय के विकास की गणना करने के लिए नवीन विधि तैयार की गई - ए. फीगुइन और एस.आर. का पेपर देखें। सफ़ेद [https://arxiv.org/abs/cond-mat/0502475]।
2004 में आव्यूह उत्पाद अवस्थाओ के वास्तविक समय विकास को प्रयुक्त करने के लिए समय-विकसित ब्लॉक डिकिमेशन विधि विकसित की गई थी। यह विचार [[ एक कंप्यूटर जितना |कंप्यूटर]] के मौलिक अनुकरण पर आधारित है। इसके बाद, डीएमआरजी औपचारिकता के अन्दर वास्तविक समय के विकास की गणना करने के लिए नवीन विधि तैयार की गई - ए. फीगुइन और एस.आर. का पेपर देखें। सफ़ेद [https://arxiv.org/abs/cond-mat/0502475]।


वर्तमान के वर्षों में, आव्यूह उत्पाद अवस्थाओ की परिभाषा का विस्तार करते हुए विधि को 2D और 3D तक विस्तारित करने के कुछ प्रस्ताव सामने रखे गए हैं। फ़्रैंक वेरस्ट्रेट एफ और आई वेरस्ट्रेट और जुआन इग्नासिओ सिराक सस्टुरैन सिरैक, का यह पेपर देखें। [https://arxiv.org/abs/cond-mat/0407066]।
वर्तमान के वर्षों में, आव्यूह उत्पाद अवस्थाओ की परिभाषा का विस्तार करते हुए विधि को 2D और 3D तक विस्तारित करने के कुछ प्रस्ताव सामने रखे गए हैं। फ़्रैंक वेरस्ट्रेट एफ और आई वेरस्ट्रेट और जुआन इग्नासिओ सिराक सस्टुरैन सिरैक, का यह पेपर देखें। [https://arxiv.org/abs/cond-mat/0407066]।


==अग्रिम पठन==
==अग्रिम पठन==
Line 172: Line 171:
* स्नेक डीएमआरजी प्रोग्राम: ओपन सोर्स डीएमआरजी, tडीएमआरजी और परिमित तापमान डीएमआरजी प्रोग्राम C++ में लिखा गया है [https://github.com/entron/snake-dmrg]
* स्नेक डीएमआरजी प्रोग्राम: ओपन सोर्स डीएमआरजी, tडीएमआरजी और परिमित तापमान डीएमआरजी प्रोग्राम C++ में लिखा गया है [https://github.com/entron/snake-dmrg]
* [https://github.com/SebWouters/CheMPS2 CheMPS2]: C++ में लिखे गए एबी इनिटियो क्वांटम रसायन विज्ञान विधियों के लिए ओपन सोर्स (GPL) चक्रण-अनुकूलित डीएमआरजी कोड [https://dx.doi.org/10.1016/j। सीपीसी.2014.01.019]
* [https://github.com/SebWouters/CheMPS2 CheMPS2]: C++ में लिखे गए एबी इनिटियो क्वांटम रसायन विज्ञान विधियों के लिए ओपन सोर्स (GPL) चक्रण-अनुकूलित डीएमआरजी कोड [https://dx.doi.org/10.1016/j। सीपीसी.2014.01.019]
* [https://github.com/sanshar/Block Block]: क्वांटम रसायन विज्ञान और मॉडल हैमिल्टनियन के लिए खुला स्रोत डीएमआरजी ढांचा। एसयू(2) और सामान्य गैर-एबेलियन समरूपता का समर्थन करता है। C++ में लिखा गया है.
* [https://github.com/sanshar/Block Block]: क्वांटम रसायन विज्ञान और श्रृंखला हैमिल्टनियन के लिए खुला स्रोत डीएमआरजी ढांचा। एसयू(2) और सामान्य गैर-एबेलियन समरूपता का समर्थन करता है। C++ में लिखा गया है.
* [https://pypi.org/project/block2/ Block2]: क्वांटम रसायन विज्ञान और मॉडलों के लिए डीएमआरजी, डायनेमिक डीएमआरजी, tdडीएमआरजी और परिमित तापमान डीएमआरजी का कुशल [[समानांतर एल्गोरिदम]] कार्यान्वयन। [[पायथन (प्रोग्रामिंग भाषा)]]/C++ में लिखा गया है।
* [https://pypi.org/project/block2/ Block2]: क्वांटम रसायन विज्ञान और श्रृंखलाों के लिए डीएमआरजी, डायनेमिक डीएमआरजी, tdडीएमआरजी और परिमित तापमान डीएमआरजी का कुशल [[समानांतर एल्गोरिदम]] कार्यान्वयन। [[पायथन (प्रोग्रामिंग भाषा)]]/C++ में लिखा गया है।


==यह भी देखें==
==यह भी देखें==
Line 188: Line 187:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 27/11/2023]]
[[Category:Created On 27/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:51, 11 December 2023

घनत्व आव्यूह पुनर्सामान्यीकरण समूह (डीएमआरजी) संख्यात्मक भिन्नता विधि (क्वांटम यांत्रिकी) तकनीक है जो स्थूल माप के साथ क्वांटम कई-निकाय प्रणालियों की कम-ऊर्जा भौतिकी प्राप्त करने के लिए तैयार की गई है। परिवर्तनशील विधि (क्वांटम यांत्रिकी) के रूप में, डीएमआरजी कुशल एल्गोरिदम है जो हैमिल्टन के सबसे कम ऊर्जा आव्यूह उत्पाद अवस्था तरंग फलन को खोजने का प्रयास करता है। इसका आविष्कार 1992 में स्टीवन आर. व्हाइट द्वारा किया गया था और यह वर्तमान में 1-आयामी प्रणालियों के लिए सबसे कुशल विधि है।[1]

इतिहास

डीएमआरजी का पहला अनुप्रयोग, स्टीवन आर. व्हाइट और रेइनहार्ड नॉक द्वारा, टॉय श्रृंखला था: 1डी बॉक्स में चक्रण (भौतिकी) 0 कण के स्पेक्ट्रम को खोजने के लिए।[when?] यह श्रृंखला केनेथ जी. विल्सन द्वारा किसी भी नए पुनर्सामान्यीकरण समूह विधि के परीक्षण के रूप में प्रस्तावित किया गया था, क्योंकि वे सभी इस सरल समस्या से विफल हो गए थे।[when?] डीएमआरजी ने प्रत्येक चरण में ब्लॉक में केवल स्थल जोड़ने के अतिरिक्त बीच में दो स्थलों के साथ दो ब्लॉकों को जोड़कर और साथ ही सबसे महत्वपूर्ण अवस्थाओ की पहचान करने के लिए घनत्व आव्यूह का उपयोग करके पिछले पुनर्सामान्यीकरण समूह विधियों की समस्याओं पर अधिकृत पा लिया था। प्रत्येक चरण के अंत में रखा जाए। टॉय श्रृंखला में सफल होने के बाद, डीएमआरजी पद्धति को हाइजेनबर्ग श्रृंखला (क्वांटम) पर सफलतापूर्वक परीक्षा ली गई।

सिद्धांत

क्वांटम अनेक-निकाय भौतिकी की मुख्य समस्या यह तथ्य है कि हिल्बर्ट स्थान आकार के साथ तेजी से बढ़ता है। दूसरे शब्दों में यदि कोई जालक पर विचार करता है, जिसमें आयाम के कुछ हिल्बर्ट स्थान होते हैं जालक के प्रत्येक स्थल पर, कुल हिल्बर्ट स्थान का आयाम होगा , जहाँ जालक पर स्थलों की संख्या है. उदाहरण के लिए, लंबाई L की एक चक्रण-1/2 श्रृंखला में स्वतंत्रता की 2L डिग्री होती है। डीएमआरजी एक पुनरावृत्तीय, परिवर्तनशील विधि है जो लक्ष्य अवस्था के लिए सबसे महत्वपूर्ण स्वतंत्रता की प्रभावी डिग्री को कम कर देती है। जिस अवस्था में सबसे अधिक रुचि होती है वह निम्नतम अवस्था है।

वार्मअप चक्र के बाद, विधि प्रणाली को दो उपप्रणालियों या ब्लॉकों में विभाजित करती है, जिनके समान आकार की आवश्यकता नहीं होती है, और बीच में दो स्थलें होती हैं। वार्मअप के समय ब्लॉक के लिए प्रतिनिधि अवस्थाओ का समुच्चय चुना गया है। बाएँ ब्लॉक + दो स्थल + दाएँ ब्लॉक के इस समुच्चय को 'सुपरब्लॉक' के रूप में जाना जाता है। अब सुपरब्लॉक की निम्नतम स्थिति के लिए प्रत्याशी, जो कि पूर्ण प्रणाली का छोटा संस्करण है, मिल सकता है। इसमें थोड़ी स्पष्टतः हो सकती है, किन्तु यह विधि पुनरावृत्तीय है और नीचे दिए गए चरणों के साथ इसमें सुधार होता है।

डीएमआरजी के अनुसार, प्रणाली को बाएँ और दाएँ ब्लॉक में विघटित करना।

जो प्रत्याशी निम्नतम स्थिति पाई गई है, उसे घनत्व आव्यूह का उपयोग करके प्रत्येक ब्लॉक के लिए रैखिक उप-स्थान में प्रक्षेपित किया जाता है, इसलिए यह नाम दिया गया है। इस प्रकार, प्रत्येक ब्लॉक के लिए प्रासंगिक स्थिति अद्यतन की जाती है।

अब ब्लॉक दूसरे की व्यय पर बढ़ता है और प्रक्रिया दोहराई जाती है। जब बढ़ता हुआ ब्लॉक अधिकतम आकार तक पहुँच जाता है, तो उसके स्थान पर दूसरा बढ़ना प्रारंभ हो जाता है। प्रत्येक बार जब हम मूल (समान आकार) स्थिति में लौटते हैं, तो हम कहते हैं कि स्वीप पूरा हो गया है। सामान्यतः, 1D जालक के लिए 1010 में भाग की स्पष्टतः प्राप्त करने के लिए कुछ स्वीप पर्याप्त होते हैं।

डीएमआरजी स्वीप।

कार्यान्वयन मार्गदर्शिका

डीएमआरजी एल्गोरिदम का व्यावहारिक कार्यान्वयन दीर्घ काम है[opinion]. कुछ मुख्य अभिकलनात्मक युक्तियाँ ये हैं:

  • चूंकि पुनर्सामान्यीकृत हैमिल्टनियन का आकार सामान्यतः कुछ या दसियों हजार के क्रम में होता है, जबकि मांगी गई ईजेनस्टेट सिर्फ निम्नतम स्थिति है, सुपरब्लॉक के लिए निम्नतम स्थिति आव्यूह विकर्णीकरण के लैंज़ोस एल्गोरिदम जैसे पुनरावृत्त एल्गोरिदम के माध्यम से प्राप्त की जाती है। अन्य विकल्प अर्नोल्डी पुनरावृत्ति है, विशेषकर जब गैर-हर्मिटियन आव्यूह से निपटना हो।
  • लैंज़ोस एल्गोरिदम सामान्यतः समाधान के सर्वोत्तम अनुमान से प्रारंभ होता है। यदि कोई अनुमान उपलब्ध नहीं है तो यादृच्छिक सदिश चुना जाता है। डीएमआरजी में, निश्चित डीएमआरजी चरण में प्राप्त निम्नतम स्थिति, उपयुक्त रूप से रूपांतरित, उचित अनुमान है और इस प्रकार अगले डीएमआरजी चरण में यादृच्छिक प्रारंभिक सदिश की तुलना में अधिक उत्तम काम करती है।
  • समरूपता वाले प्रणाली में, हमने क्वांटम संख्याओं को संरक्षित किया हो सकता है, जैसे हाइजेनबर्ग श्रृंखला में कुल चक्रण आदि। हिल्बर्ट क्षेत्र को जिन क्षेत्रों में विभाजित किया गया है, उनमें से प्रत्येक के अन्दर निम्नतम स्थिति का पता लगाना सुविधाजनक है।

अनुप्रयोग

डीएमआरजी को चक्रण श्रृंखलाओं के कम ऊर्जा गुणों को प्राप्त करने के लिए सफलतापूर्वक प्रयुक्त किया गया है: अनुप्रस्थ क्षेत्र में आइसिंग श्रृंखला, हाइजेनबर्ग श्रृंखला (क्वांटम), आदि, फर्मियोनिक प्रणाली, जैसे हबर्ड श्रृंखला, कोंडो प्रभाव जैसी अशुद्धियों के साथ समस्याएं, बोसॉन प्रणाली, और क्वांटम डॉट्स की भौतिकी क्वांटम वायर से जुड़ गई। इसे ट्री ग्राफ पर काम करने के लिए भी विस्तारित किया गया है, और डेनड्रीमर के अध्ययन में इसका अनुप्रयोग पाया गया है। 2D प्रणाली के लिए जिसका आयाम दूसरे से अधिक बड़ा है, डीएमआरजी भी स्पष्ट है, और सीढ़ी के अध्ययन में उपयोगी प्रमाणित हुआ है।

इस पद्धति का विस्तार 2D में संतुलन सांख्यिकीय भौतिकी का अध्ययन करने और 1D में गैर-संतुलन घटना का विश्लेषण करने के लिए किया गया है।

दृढ़ता से सहसंबद्ध प्रणालियों का अध्ययन करने के लिए डीएमआरजी को क्वांटम रसायन विज्ञान के क्षेत्र में भी प्रयुक्त किया गया है।

उदाहरण: क्वांटम हाइजेनबर्ग श्रृंखला

आइए इसके लिए प्रति-लौहचुंबकीय क्वांटम हाइजेनबर्ग श्रृंखला अनंत डीएमआरजी एल्गोरिदम पर विचार करें। यह व्यंजन विधि प्रत्येक अनुवादात्मक रूप से अपरिवर्तनीय एक-आयामी जालक (समूह) के लिए प्रयुक्त किया जा सकता है।

डीएमआरजी पुनर्सामान्यीकरण समूह तकनीक है| क्योंकि यह एक-आयामी क्वांटम प्रणाली के हिल्बर्ट स्थान का कुशल खंडन प्रदान करता है।

प्रारंभिक बिंदु

चार स्थलों से प्रारंभ करके अनंत श्रृंखला का अनुकरण करना है। पहली ब्लॉक स्थल है, आखिरी यूनिवर्स-ब्लॉक स्थल है और बाकी जोड़ी गई स्थलें हैं, दाईं ओर वाली स्थल यूनिवर्स-ब्लॉक स्थल और दूसरी ब्लॉक स्थल में जोड़ी गई है।

एकल स्थल के लिए हिल्बर्ट स्थान आधार के साथ है. इस आधार के साथ चक्रण (भौतिकी) संचालक , और हैं एकल स्थल के लिए. प्रत्येक ब्लॉक, दो ब्लॉक और दो स्थलों के लिए, अपना स्वयं का हिल्बर्ट स्थान है , इसका आधार और इसके अपने संचालक () हैं।

जहाँ

  • अवरोध उत्पन्न करना: , , , , ,
  • बाईं स्थल: , , , ,
  • दाई-स्थल: , , , ,
  • ब्रह्मांड: , , , , ,

आरंभिक बिंदु पर सभी चार हिल्बर्ट स्थान समतुल्य हैं, सभी चक्रण संचालक , और और समतुल्य हैं. निम्नलिखित पुनरावृत्तियों में, यह केवल बाएँ और दाएँ स्थलों के लिए सत्य है।

चरण 1: सुपरब्लॉक के लिए हैमिल्टनियन आव्यूह बनाएं

अवयव चार ब्लॉक संचालक और चार ब्रह्मांड-ब्लॉक संचालक हैं, जो पहले पुनरावृत्ति में आव्यूह (गणित) हैं, तीन बाएं-स्थल चक्रण संचालक और तीन दाई-स्थल चक्रण संचालक, जो सदैव आव्यूह होते हैं. सुपरब्लॉक (श्रृंखला) का हैमिल्टनियन आव्यूह प्रणाली , जिसमें पहले पुनरावृत्ति में केवल चार स्थलें हैं, इन संचालकों द्वारा बनाई गई हैं। हाइजेनबर्ग प्रति-लौहचुंबकीय S = 1 श्रृंखला में हैमिल्टनियन है:

ये संचालक सुपरब्लॉक स्टेट स्थान , में रहते हैं: आधार है. उदाहरण के लिए: (सम्मेलन):

डीएमआरजी फॉर्म में हैमिल्टनियन है (हमने समुच्चय किया है)।):

संचालक आव्यूह, हैं, उदाहरण के लिए: है,

चरण 2: सुपरब्लॉक हैमिल्टनियन को विकर्णित करें

इस बिंदु पर आपको हैमिल्टनियन के आइजेनवैल्यू, आइजेनसदिश और आइजेनस्थान को चुनना होगा जिसके लिए कुछ अवलोकनों की गणना की जाती है, यह लक्ष्य स्थिति है। प्रारंभिक में आप स्थिर स्थिति चुन सकते हैं और इसे खोजने के लिए कुछ उन्नत एल्गोरिदम का उपयोग कर सकते हैं, इनमें से का वर्णन इस प्रकार है:

  • बड़े वास्तविक-सममित आव्यूह के कुछ सबसे कम आइजेनवैल्यू और संबंधित आइजेनवैल्यू, आइजेनसदिश और आइजेनस्थान की पुनरावृत्तीय गणना, अर्नेस्ट आर. डेविडसन; अभिकलनात्मक भौतिकी जर्नल 17, 87-94 (1975)

यह चरण एल्गोरिथम का सबसे अधिक समय लेने वाला भाग है।

यदि लक्ष्य स्थिति है, इस बिंदु पर विभिन्न संचालकों के अपेक्षित मान का उपयोग करके मापा जा सकता है .

चरण 3: घनत्व आव्यूह कम करें

पहले दो ब्लॉक प्रणाली, ब्लॉक और बाएं-स्थल के लिए कम घनत्व आव्यूह बनाएं। परिभाषा के अनुसार यह आव्यूह है:

इस प्रकार से को आव्यूह विकर्णीकरण करें और आव्यूह बनाएं जिनकी पंक्तियाँ में से सबसे बड़े आइजेनवैल्यू से जुड़े आइजेनसदिश हैं इसलिए कम घनत्व आव्यूह के सबसे महत्वपूर्ण आइजेनस्थान द्वारा बनता है। आप पैरामीटर : . को देखते हुए चुनें

चरण 4: नया ब्लॉक और यूनिवर्स-ब्लॉक संचालक

इससे उदाहरण के लिए, ब्लॉक और बाएं-स्थल के प्रणाली मिश्रित और दाई-स्थल और यूनिवर्स-ब्लॉक के प्रणाली मिश्रित के लिए संचालकों का आव्यूह प्रतिनिधित्व:

अब, फॉर्म बनाएं नए ब्लॉक और ब्रह्मांड-ब्लॉक संचालकों के आव्यूह प्रतिनिधित्व, परिवर्तन के साथ आधार परिवर्तित करके नया ब्लॉक बनाते हैं , उदाहरण के लिए:

इस बिंदु पर पुनरावृत्ति समाप्त हो जाती है और एल्गोरिदम चरण 1 पर वापस चला जाता है। जब अवलोकन योग्य वस्तु किसी मान पर एकत्रित हो जाती है तो एल्गोरिदम सफलतापूर्वक बंद हो जाता है।

आव्यूह उत्पाद अंसत्ज़

1D प्रणाली के लिए डीएमआरजी की सफलता इस तथ्य से संबंधित है कि यह आव्यूह उत्पाद अवस्थाओ (एमपीएस) के क्षेत्र में परिवर्तनशील विधि है। ये स्वरूप की अवस्थाएँ हैं

जहाँ उदाहरण के लिए मान हैं चक्रण श्रृंखला में चक्रण का z-घटक, और Asi इच्छानुसार आयाम m के आव्यूह हैं। जैसे ही m → ∞, निरूपण स्पष्ट हो जाता है। इस सिद्धांत को एस. रोमर और एस. ओस्टलुंड ने [1] में उजागर किया था।

क्वांटम रसायन विज्ञान अनुप्रयोग में, इस प्रकार दो इलेक्ट्रॉनों की चक्रण क्वांटम संख्या के प्रक्षेपण की चार संभावनाएं हैं जो एकल कक्षक पर अधिकृत कर सकती हैं , जहां इन केट्स की पहली (दूसरी) प्रविष्टि चक्रण-अप (डाउन) इलेक्ट्रॉन से मेल खाती है। क्वांटम रसायन विज्ञान में, (किसी प्रदत्त के लिए ) और (किसी प्रदत्त के लिए ) को परंपरागत रूप से क्रमशः पंक्ति और स्तंभ आव्यूह के रूप में चुना जाता है। इस प्रकार, का परिणाम अदिश मान है और ट्रेस ऑपरेशन अनावश्यक है। सिमुलेशन में उपयोग की जाने वाली स्थलों (मूल रूप से ऑर्बिटल्स) की संख्या है।

एमपीएस अंसत्ज़ में आव्यूह अद्वितीय नहीं हैं, उदाहरण के लिए, कोई के बीच में सम्मिलित कर सकता है, फिर और , परिभाषित करें और अवस्था अपरिवर्तित रहेगा. इस तरह की गेज स्वतंत्रता का उपयोग आव्यूह को विहित रूप में परिवर्तित करने के लिए किया जाता है। तीन प्रकार के विहित रूप उपस्तिथ हैं: (1) वाम-सामान्यीकृत रूप, जब

सभी के लिए , (2) सही-सामान्यीकृत रूप, कब

सभी के लिए , और (3) मिश्रित-विहित रूप जब उपरोक्त एमपीएस अंसत्ज़ में आव्यूह दोनों बाएँ और दाएँ-सामान्यीकृत आव्यूह उपस्तिथ होते हैं।

डीएमआरजी गणना का लक्ष्य में प्रत्येक के अवयवो को हल करना है . इस उद्देश्य के लिए तथाकथित एकल-स्थल और दो-स्थल एल्गोरिदम तैयार किए गए हैं। एकल-स्थल एल्गोरिथ्म में, केवल आव्यूह (एक स्थल) जिसके अवयवो को समय में हल किया जाता है। दो-स्थल का सीधा सा अर्थ है कि दो आव्यूह को पहले ही आव्यूह में अनुबंधित (गुणा) किया जाता है, और फिर उसके अवयवो को हल किया जाता है। और दो-स्थल एल्गोरिदम प्रस्तावित है क्योंकि एकल-स्थल एल्गोरिदम में स्थानीय न्यूनतम पर फंसने की संभावना अधिक होती है। उपरोक्त विहित रूपों में से किसी में एमपीएस होने से गणना को अधिक अनुकूल बनाने का लाभ होता है - यह सामान्य स्वदेशी समस्या की ओर ले जाता है। विहितीकरण के बिना, कोई सामान्यीकृत आइगेनवैल्यू समस्या से निपटेगा।

विस्तार

2004 में आव्यूह उत्पाद अवस्थाओ के वास्तविक समय विकास को प्रयुक्त करने के लिए समय-विकसित ब्लॉक डिकिमेशन विधि विकसित की गई थी। यह विचार कंप्यूटर के मौलिक अनुकरण पर आधारित है। इसके बाद, डीएमआरजी औपचारिकता के अन्दर वास्तविक समय के विकास की गणना करने के लिए नवीन विधि तैयार की गई - ए. फीगुइन और एस.आर. का पेपर देखें। सफ़ेद [2]

वर्तमान के वर्षों में, आव्यूह उत्पाद अवस्थाओ की परिभाषा का विस्तार करते हुए विधि को 2D और 3D तक विस्तारित करने के कुछ प्रस्ताव सामने रखे गए हैं। फ़्रैंक वेरस्ट्रेट एफ और आई वेरस्ट्रेट और जुआन इग्नासिओ सिराक सस्टुरैन सिरैक, का यह पेपर देखें। [3]

अग्रिम पठन

  • White, Steven R.; Huse, David A. (1993-08-01). "Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain". Physical Review B. American Physical Society (APS). 48 (6): 3844–3852. Bibcode:1993PhRvB..48.3844W. doi:10.1103/physrevb.48.3844. ISSN 0163-1829. PMID 10008834.


संबंधित सॉफ़्टवेयर

  • आव्यूह उत्पाद टूलकिट: C++ में लिखे गए परिमित और अनंत आव्यूह उत्पाद अवस्थाओ में हेरफेर करने के लिए टूल का निःशुल्क GPL समुच्चय [https:/ /people.smp.uq.edu.au/IanMcCulloch/mptoolkit/index.php]
  • Uni10: C++ में कई टेंसर नेटवर्क एल्गोरिदम (डीएमआरजी, TEBD, MERA, PEPS ...) को प्रयुक्त करने वाली लाइब्रेरी
  • पावर के साथ पाउडर: फोरट्रान में लिखे गए समय-निर्भर डीएमआरजी कोड का मुफ्त वितरण [14] Archived 2017-12-04 at the Wayback Machine
  • ALPS परियोजना: C++ में लिखे गए समय-स्वतंत्र डीएमआरजी कोड और क्वांटम मोंटे कार्लो कोड का निःशुल्क वितरण [15]
  • डीएमआरजी++: C++ में लिखित डीएमआरजी का निःशुल्क कार्यान्वयन [16]
  • ITensor (इंटेलिजेंट टेंसर) लाइब्रेरी: C++ में लिखी गई टेंसर और आव्यूह-प्रोडक्ट स्थिति आधारित डीएमआरजी गणना करने के लिए निःशुल्क लाइब्रेरी [17]
  • OpenMPS: पायथन/फोरट्रान2003 में लिखे गए आव्यूह उत्पाद अवस्थाओ पर आधारित खुला स्रोत डीएमआरजी कार्यान्वयन। [18]
  • स्नेक डीएमआरजी प्रोग्राम: ओपन सोर्स डीएमआरजी, tडीएमआरजी और परिमित तापमान डीएमआरजी प्रोग्राम C++ में लिखा गया है [19]
  • CheMPS2: C++ में लिखे गए एबी इनिटियो क्वांटम रसायन विज्ञान विधियों के लिए ओपन सोर्स (GPL) चक्रण-अनुकूलित डीएमआरजी कोड सीपीसी.2014.01.019
  • Block: क्वांटम रसायन विज्ञान और श्रृंखला हैमिल्टनियन के लिए खुला स्रोत डीएमआरजी ढांचा। एसयू(2) और सामान्य गैर-एबेलियन समरूपता का समर्थन करता है। C++ में लिखा गया है.
  • Block2: क्वांटम रसायन विज्ञान और श्रृंखलाों के लिए डीएमआरजी, डायनेमिक डीएमआरजी, tdडीएमआरजी और परिमित तापमान डीएमआरजी का कुशल समानांतर एल्गोरिदम कार्यान्वयन। पायथन (प्रोग्रामिंग भाषा)/C++ में लिखा गया है।

यह भी देखें

संदर्भ

  1. Nakatani, Naoki (2018), "Matrix Product States and Density Matrix Renormalization Group Algorithm", Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, doi:10.1016/b978-0-12-409547-2.11473-8, ISBN 978-0-12-409547-2, retrieved 2021-04-21