अर्धसंभाव्यता वितरण: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:


{{Short description|Objects like probability distributions that violate σ-additivity; useful in computational physics}}
{{Short description|Objects like probability distributions that violate σ-additivity; useful in computational physics}}
'''अर्धसंभाव्यता वितरण''', संभाव्यता वितरण के समान गणितीय वस्तु है, किन्तु जो संभाव्यता सिद्धांत के कोलमोगोरोव के कुछ सिद्धांतों को शिथिल करता है। अर्धसंभावनाएं सामान्य संभावनाओं के साथ कई सामान्य विशेषताएं साझा करती हैं, जैसे, महत्वपूर्ण रूप से, वितरण के भार के संबंध में अपेक्षा मूल्य उत्पन्न करने की क्षमता। चूँकि, वे ''σ'' -एडिटिविटी सिद्धांत का उल्लंघन कर सकते हैं उन पर एकीकरण करने से परस्पर अनन्य स्थिति की संभावनाएं उत्पन्न नहीं होती हैं। वास्तव में, अर्धसंभाव्यता वितरण में नकारात्मक संभाव्यता घनत्व के क्षेत्र भी होते हैं, जो कि पहले सिद्धांत का खंडन करते हैं। अर्धसंभाव्यता वितरण [[क्वांटम यांत्रिकी]] के अध्ययन में उत्पन्न होते हैं जब इसे चरण स्थान सूत्रण में विचार किया जाता है, जो [[ क्वांटम प्रकाशिकी |क्वांटम प्रकाशिकी]], [[समय-आवृत्ति विश्लेषण]] और अन्य जगहों में सामान्यत: प्रयुक्त होता है।<ref>L. Cohen (1995), ''Time-frequency analysis: theory and applications'', Prentice-Hall,  Upper Saddle River, NJ,    {{isbn|0-13-594532-1}} </ref>
'''अर्धसंभाव्यता वितरण''', संभाव्यता वितरण के समान गणितीय वस्तु है, किन्तु जो संभाव्यता सिद्धांत के कोलमोगोरोव के कुछ सिद्धांतों को अशक्त करता है। अर्धसंभावनाएं सामान्य संभावनाओं के साथ विभिन्न सामान्य विशेषताएं साझा करती हैं, जैसे, महत्वपूर्ण रूप से, वितरण के भार के संबंध में अपेक्षित मान उत्पन्न करने की क्षमता है। चूँकि, वह ''σ'' -एडिटिविटी सिद्धांत का उल्लंघन कर सकते हैं उन पर एकीकरण करने से परस्पर अनन्य स्थिति की संभावनाएं उत्पन्न नहीं होती हैं। वास्तव में, अर्धसंभाव्यता वितरण में ऋणात्मक संभाव्यता घनत्व के क्षेत्र भी होते हैं, जो कि पहले सिद्धांत का खंडन करते हैं। इस प्रकार अर्धसंभाव्यता वितरण [[क्वांटम यांत्रिकी]] के अध्ययन में उत्पन्न होते हैं जब इसे चरण समष्टि सूत्र में विचार किया जाता है, जो [[ क्वांटम प्रकाशिकी |क्वांटम प्रकाशिकी]], [[समय-आवृत्ति विश्लेषण]] और अन्य समष्टि में सामान्यत: प्रयुक्त होता है।<ref>L. Cohen (1995), ''Time-frequency analysis: theory and applications'', Prentice-Hall,  Upper Saddle River, NJ,    {{isbn|0-13-594532-1}} </ref>


== परिचय ==
== परिचय ==
{{main|ऑप्टिकल चरण स्थान}}
{{main|ऑप्टिकल चरण समष्टि}}


सबसे सामान्य रूप में, क्वांटम यांत्रिकी प्रणाली की गतिशीलता हिल्बर्ट स्थान में [[मास्टर समीकरण]] द्वारा निर्धारित की जाती है: प्रणाली के [[घनत्व ऑपरेटर|घनत्व]] प्रचालक के लिए गति का समीकरण (सामान्यत: <math>\widehat{\rho}</math> लिखा जाता है)। घनत्व प्रचालक को पूर्ण [[ऑर्थोनॉर्मल आधार]] के संबंध में परिभाषित किया गया है। यद्यपि इस समीकरण को बहुत छोटी प्रणालियों (यानी, कुछ कणों या स्वतंत्रता की डिग्री वाले सिस्टम) के लिए सीधे एकीकृत करना संभव है, यह बड़ी प्रणालियों के लिए जल्दी ही कठिन हो जाता है। चूँकि, यह सिद्ध करना संभव है<ref name="Sudarshan">{{cite journal | last=Sudarshan | first=E. C. G. | title=सांख्यिकीय प्रकाश किरणों के अर्धशास्त्रीय और क्वांटम यांत्रिक विवरणों की समतुल्यता| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=10 | issue=7 | date=1963-04-01 | issn=0031-9007 | doi=10.1103/physrevlett.10.277 | pages=277–279| bibcode=1963PhRvL..10..277S }}</ref> घनत्व प्रचालक को सदैव [[विकर्ण मैट्रिक्स|विकर्ण आव्युह]] रूप में लिखा जा सकता है, बशर्ते कि यह [[अतिपूर्णता]] के आधार पर हो। जब घनत्व प्रचालक को इस प्रकार के पूर्ण आधार पर दर्शाया जाता है, तो इसे सामान्य फलन के समान विधि से लिखा जा सकता है, इस मूल्य पर कि फलन में अर्धसंभाव्यता वितरण की विशेषताएं होती हैं। सिस्टम का विकास तब पूरी प्रकार से अर्धसंभाव्यता वितरण फलन के विकास से निर्धारित होता है।
सामान्यतः, क्वांटम यांत्रिकी प्रणाली की गतिशीलता हिल्बर्ट समष्टि में [[मास्टर समीकरण]] द्वारा निर्धारित की जाती है: प्रणाली के [[घनत्व ऑपरेटर|घनत्व]] संचालक के लिए गति का समीकरण (सामान्यत: <math>\widehat{\rho}</math> लिखा जाता है)। घनत्व संचालक को पूर्ण [[ऑर्थोनॉर्मल आधार]] के संबंध में परिभाषित किया गया है। यद्यपि इस समीकरण को बहुत छोटी प्रणालियों (अर्थात, कुछ कणों या स्वतंत्रता की डिग्री वाले प्रणाली) के लिए प्रत्यक्ष एकीकृत करना संभव है, यह बड़ी प्रणालियों के लिए शीघ्र ही कठिन हो जाता है। चूँकि, यह सिद्ध करना संभव है <ref name="Sudarshan">{{cite journal | last=Sudarshan | first=E. C. G. | title=सांख्यिकीय प्रकाश किरणों के अर्धशास्त्रीय और क्वांटम यांत्रिक विवरणों की समतुल्यता| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=10 | issue=7 | date=1963-04-01 | issn=0031-9007 | doi=10.1103/physrevlett.10.277 | pages=277–279| bibcode=1963PhRvL..10..277S }}</ref> घनत्व संचालक को सदैव [[विकर्ण मैट्रिक्स|विकर्ण आव्युह]] रूप में लिखा जा सकता है, परंतु कि यह [[अतिपूर्णता]] के आधार पर उपयोग किया जाता है। इस प्रकार जब घनत्व संचालक को इस प्रकार के पूर्ण आधार पर दर्शाया जाता है, इस प्रकार इसे सामान्य फलन के समान विधि से लिखा जा सकता है, इस मान पर कि फलन में अर्धसंभाव्यता वितरण की विशेषताएं होती हैं। प्रणाली का विकास तब पूर्ण रूप से अर्धसंभाव्यता वितरण फलन के विकास से निर्धारित होता है।


[[सुसंगत अवस्थाएँ|सुसंगत स्थितिएँ]], अर्थात् विनाश संचालिका की सही स्वदेशी स्थितिएँ <math>\widehat{a}</math> ऊपर वर्णित निर्माण में अपूर्ण आधार के रूप में कार्य करती हैं। परिभाषा के अनुसार, सुसंगत स्थिति में निम्नलिखित संपत्ति होती है,
[[सुसंगत अवस्थाएँ|सुसंगत स्थिति]], अर्थात् क्षय संचालिका की सही स्वदेशी स्थिति <math>\widehat{a}</math> ऊपर वर्णित निर्माण में अपूर्ण आधार के रूप में कार्य करती हैं। परिभाषा के अनुसार, सुसंगत स्थिति में निम्नलिखित प्रोपर्टी होती है,
:<math>\begin{align}\widehat{a}|\alpha\rangle&=\alpha|\alpha\rangle \\
:<math>\begin{align}\widehat{a}|\alpha\rangle&=\alpha|\alpha\rangle \\
\langle\alpha|\widehat{a}^{\dagger}&=\langle\alpha|\alpha^*. \end{align}</math>
\langle\alpha|\widehat{a}^{\dagger}&=\langle\alpha|\alpha^*. \end{align}</math>
उइनमें कुछ और रोचक गुण भी होते हैं। उदाहरण के लिए, कोई भी दो सहारित स्थितिएँ एक-दूसरे के लिए सममान नहीं हैं। वास्तव में, यदि |α〉और |β〉 सुसंगत स्थितिओं की जोड़ी हैं, तो
इनमें कुछ और रोचक गुण भी होते हैं। उदाहरण के लिए, कोई भी दो सुसंगत स्थिति एक-दूसरे के लिए सममान नहीं हैं। वास्तव में, यदि |α〉और |β〉 सुसंगत स्थितिओं का युग्म हैं, तो
:<math>\langle\beta\mid\alpha\rangle=e^{-{1\over2}(|\beta|^2+|\alpha|^2-2\beta^*\alpha)}\neq\delta(\alpha-\beta).</math>
:<math>\langle\beta\mid\alpha\rangle=e^{-{1\over2}(|\beta|^2+|\alpha|^2-2\beta^*\alpha)}\neq\delta(\alpha-\beta).</math>
ध्यान दें कि ये स्थितिएँ, चूंकि, α | के साथ सही ढंग से [[इकाई वेक्टर|इकाई सदिश]] हैं α〉 = 1। [[फॉक राज्य|फॉक]] स्थिति के आधार की पूर्णता के कारण, सुसंगत स्थिति के आधार का चुनाव अतिपूर्ण होना चाहिए।<ref>{{cite journal | last=Klauder | first=John R | title=सामान्य सी-नंबरों के संदर्भ में एक्शन विकल्प और स्पिनर फ़ील्ड का फेनमैन परिमाणीकरण| journal=Annals of Physics | publisher=Elsevier BV | volume=11 | issue=2 | year=1960 | issn=0003-4916 | doi=10.1016/0003-4916(60)90131-7 | pages=123–168| bibcode=1960AnPhy..11..123K }}</ref> अनौपचारिक प्रमाण दिखाने के लिए क्लिक करें।
ध्यान दें कि इन स्थिति को चूंकि 〈α |α〉 = 1 के साथ सही विधि से सामान्यीकृत किया गया है, फॉक स्थिति के आधार की पूर्णता के कारण सुसंगत स्थिति के आधार का विकल्प अधूरा होना चाहिए।<ref>{{cite journal | last=Klauder | first=John R | title=सामान्य सी-नंबरों के संदर्भ में एक्शन विकल्प और स्पिनर फ़ील्ड का फेनमैन परिमाणीकरण| journal=Annals of Physics | publisher=Elsevier BV | volume=11 | issue=2 | year=1960 | issn=0003-4916 | doi=10.1016/0003-4916(60)90131-7 | pages=123–168| bibcode=1960AnPhy..11..123K }}</ref> अनौपचारिक प्रमाण दिखाने के लिए क्लिक करें।
{| class="toccolours collapsible collapsed" width="100%" style="text-align:left"
===== सुसंगत स्थितिओं की अपूर्णता का प्रमाण =====
!सुसंगत स्थितिओं की अपूर्णता का प्रमाण
चूँकि, सुसंगत स्थिति के आधार पर, घनत्व संचालक को विकर्ण रूप में व्यक्त करना सदैव संभव है <ref name="Sudarshan" />
|-
|
Integration over the complex पीlane can be written in terms of पीolar coordinates with <math>d^2\alpha=r \, dr \, d\theta</math>। Where [[order of integration (calculus)|exchanging sum and integral]] is allowed, we arrive at a simple integral expression of the [[gamma function]]:
:<math>\begin{align}\int |\alpha\rangle\langle\alpha| \, d^2\alpha
&= \int \sum_{n=0}^\infty\sum_{k=0}^\infty e^{-{|\alpha|^2}} \cdot \frac{\alpha^n (\alpha^*)^k}{\sqrt{n!k!}} |n\rangle \langle k| \, d^2\alpha \\
&= \int_0^\infty \int_0^{2\pi} \sum_{n=0}^{\infty}\sum_{k=0}^\infty e^{-{r^2}} \cdot \frac{r^{n+k+1}e^{i(n-k)\theta}}{\sqrt{n!k!}} |n\rangle \langle k| \, d\theta \,dr \\
&= \sum_{n=0}^\infty \int_0^\infty \sum_{k=0}^\infty \int_0^{2\pi} e^{-{r^2}} \cdot \frac{r^{n+k+1}e^{i(n-k)\theta}}{\sqrt{n!k!}} |n\rangle \langle k| \, d\theta \,dr \\
&= 2\pi \sum_{n=0}^\infty \int_0^\infty \sum_{k=0}^\infty e^{-{r^2}} \cdot \frac{r^{n+k+1}\delta(n-k)}{\sqrt{n!k!}} |n\rangle \langle k| \, dr \\
&= 2\pi \sum_{n=0}^\infty \int e^{-{r^2}} \cdot \frac{r^{2n+1}}{n!} |n\rangle \langle n| \, dr \\
&= \pi \sum_{n=0}^\infty \int e^{-u} \cdot \frac{u^n}{n!} |n\rangle \langle n| \, du \\
&= \pi \sum_{n=0}^\infty |n\rangle \langle n| \\
&= \pi \widehat{I}.\end{align}</math>
 
Clearly, one can span the Hilbert space by writing a state as
:<math>|\psi\rangle = \frac{1}{\pi} \int |\alpha\rangle\langle\alpha|\psi\rangle \, d^2\alpha.</math>
 
On the other hand, despite correct normalization of the states, the factor of π > 1 पीroves that this basis is overcomplete।
|}
चूँकि , सुसंगत स्थिति के आधार पर, यह सदैव संभव है<ref name="Sudarshan" />घनत्व संकारक को विकर्ण रूप में व्यक्त करना
:<math>\widehat{\rho} = \int f(\alpha,\alpha^*) |\alpha\rangle \langle \alpha| \, d^2\alpha</math>
:<math>\widehat{\rho} = \int f(\alpha,\alpha^*) |\alpha\rangle \langle \alpha| \, d^2\alpha</math>
जहाँ f चरण स्थान वितरण का प्रतिनिधित्व है। इस फलन f को अर्धसंभाव्यता घनत्व माना जाता है क्योंकि इसमें निम्नलिखित गुण हैं:
जहाँ f चरण समष्टि वितरण का निरूपण है। इस फलन f को अर्धसंभाव्यता घनत्व माना जाता है क्योंकि इसमें निम्नलिखित गुण हैं:
:*<math>\int f(\alpha,\alpha^*) \, d^2\alpha = \operatorname{tr}(\widehat{\rho}) = 1 </math> (सामान्यीकरण)
:*<math>\int f(\alpha,\alpha^*) \, d^2\alpha = \operatorname{tr}(\widehat{\rho}) = 1 </math> (सामान्यीकरण)
:*यदि <math>g_\Omega (\widehat{a},\widehat{a}^\dagger)</math> प्रचालक है जिसे क्रमबद्ध Ω में सृजन और विनाश प्रचालकों की शक्ति श्रृंखला के रूप में व्यक्त किया जा सकता है, तो इसका अपेक्षित मूल्य है
:*यदि <math>g_\Omega (\widehat{a},\widehat{a}^\dagger)</math> संचालक है जिसे क्रमबद्ध Ω में निर्माण और क्षय संचालकों की शक्ति श्रृंखला के रूप में व्यक्त किया जा सकता है, तो इसका अपेक्षित मान है
:::<math>\langle g_{\Omega} (\widehat{a},\widehat{a}^\dagger) \rangle = \int f(\alpha,\alpha^*) g_\Omega(\alpha,\alpha^*) \, d\alpha \, d\alpha^*</math> ([[ऑप्टिकल तुल्यता प्रमेय]])।
:::<math>\langle g_{\Omega} (\widehat{a},\widehat{a}^\dagger) \rangle = \int f(\alpha,\alpha^*) g_\Omega(\alpha,\alpha^*) \, d\alpha \, d\alpha^*</math> ([[ऑप्टिकल तुल्यता प्रमेय]])।


फलन f अद्वितीय नहीं है। विभिन्न आदेशन Ω से जुड़ी परिवार की उपस्थित है, प्रत्येक अलग Ω क्रम से जुड़ा हुआ है। इनमें से सामान्य भौतिकी साहित्य में सबसे लोकप्रिय और ऐतिहासिक रूप से इनमें से पहला [[विग्नर क्वासिप्रोबेबिलिटी वितरण|विग्नर अर्धसंभाव्यता वितरण]],है<ref>{{cite journal | last=Wigner | first=E. | title=थर्मोडायनामिक संतुलन के लिए क्वांटम सुधार पर| journal=Physical Review | publisher=American Physical Society (APS) | volume=40 | issue=5 | date=1932-06-01 | issn=0031-899X | doi=10.1103/physrev.40.749 | pages=749–759| bibcode=1932PhRv...40..749W }}</ref> जो सममित प्रचालक आदेशन से संबंधित है। विशेष रूप से क्वांटम ऑप्टिक्स में, अधिकांशतः रुचि के प्रचालक, विशेष रूप से [[कण संख्या ऑपरेटर|कण संख्या प्रचालक]], स्वाभाविक रूप से [[सामान्य क्रम]] में व्यक्त किए जाते हैं। उस स्थिति में, चरण स्थान वितरण का संगत प्रतिनिधित्व ग्लौबर-सुदर्शन पी प्रतिनिधित्व है।<ref>{{cite journal | last=Glauber | first=Roy J. | title=विकिरण क्षेत्र की सुसंगत और असंगत अवस्थाएँ| journal=Physical Review | publisher=American Physical Society (APS) | volume=131 | issue=6 | date=1963-09-15 | issn=0031-899X | doi=10.1103/physrev.131.2766 | pages=2766–2788| bibcode=1963PhRv..131.2766G }}</ref> इन चरण स्थान वितरणों की अर्धसंभाव्य की स्वभाव से सर्वोत्तम समझ {{mvar|P}} प्रतिनिधित्व में होती है क्योंकि इसमें निम्नलिखित प्रमुख कथन है:<ref>{{Citation
इस प्रकार फलन f अद्वितीय नहीं है। विभिन्न निरूपण Ω से सम्बंधित वर्ग की उपस्थित है, प्रत्येक भिन्न Ω क्रम से जुड़ा हुआ है। इनमें से सामान्य भौतिकी साहित्य में सबसे लोकप्रिय और ऐतिहासिक रूप से इनमें से पहला [[विग्नर क्वासिप्रोबेबिलिटी वितरण|विग्नर अर्धसंभाव्यता वितरण]],है <ref>{{cite journal | last=Wigner | first=E. | title=थर्मोडायनामिक संतुलन के लिए क्वांटम सुधार पर| journal=Physical Review | publisher=American Physical Society (APS) | volume=40 | issue=5 | date=1932-06-01 | issn=0031-899X | doi=10.1103/physrev.40.749 | pages=749–759| bibcode=1932PhRv...40..749W }}</ref> जो सममित संचालक निरूपण से संबंधित है। विशेष रूप से क्वांटम ऑप्टिक्स में, अधिकांशतः इंटरेस्ट के संचालक, विशेष रूप से [[कण संख्या ऑपरेटर|कण संख्या संचालक]], स्वाभाविक रूप से [[सामान्य क्रम]] में व्यक्त किए जाते हैं। उस स्थिति में, चरण समष्टि वितरण का संगत निरूपण ग्लौबर-सुदर्शन P निरूपण है।<ref>{{cite journal | last=Glauber | first=Roy J. | title=विकिरण क्षेत्र की सुसंगत और असंगत अवस्थाएँ| journal=Physical Review | publisher=American Physical Society (APS) | volume=131 | issue=6 | date=1963-09-15 | issn=0031-899X | doi=10.1103/physrev.131.2766 | pages=2766–2788| bibcode=1963PhRv..131.2766G }}</ref> इन चरण समष्टि वितरणों की अर्धसंभाव्य प्रकृति को निम्नलिखित मुख्य कथन के कारण {{mvar|P}} प्रतिनिधित्व में सबसे स्पष्ट रूप से निरुपित किया जाता है<ref>{{Citation
   | last1 = Mandel
   | last1 = Mandel
   | first1 = L.
   | first1 = L.
Line 55: Line 36:
   }}</ref>
   }}</ref>


{{Quotation|यदि क्वांटम प्रणाली में शास्त्रीय एनालॉग है, उदा। एक सुसंगत अवस्था या [[थर्मल विकिरण]],तो ''P'' सामान्य संभाव्यता वितरण की तरह हर जगह गैर-नकारात्मक है। हालाँकि, यदि क्वांटम प्रणाली का कोई शास्त्रीय एनालॉग नहीं है, उदाहरण के लिए एक असंगत [[फॉक स्थिति]] या [[क्वांटम उलझाव|उलझा हुआ सिस्टम]], तो ''P'' कहीं न कहीं ऋणात्मक है या [[डिराक डेल्टा फ़ंक्शन|डेल्टा फ़ंक्शन]]  की तुलना में अधिक एकवचन है।}}
{{Quotation|यदि क्वांटम प्रणाली में मौलिक एनालॉग है, उदा। एक सुसंगत स्थिति या [[तापीय विकिरण]],तो ''P'' सामान्य संभाव्यता वितरण की तरह प्रत्येक स्थिति गैर-ऋणात्मक है। चूंकि, यदि क्वांटम प्रणाली का कोई मौलिक एनालॉग नहीं है, उदाहरण के लिए एक असंगत [[फॉक स्थिति]] या [[क्वांटम सम्मिश्रता|सम्मिश्र प्रणाली]], तो ''P'' कहीं न कहीं ऋणात्मक है या [[डिराक डेल्टा फलन|डेल्टा फलन]]  की तुलना में अधिक एकवचन है।}}


यह व्यापक कथन अन्य अभ्यावेदनों में निष्क्रिय है। उदाहरण के लिए, [[ईपीआर विरोधाभास]] स्थिति का विग्नर फलन सकारात्मक निश्चित है किन्तु इसका कोई शास्त्रीय रूपांतर नहीं है।<ref>{{cite journal | last=Cohen | first=O. | title=मूल आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता| journal=Physical Review A | publisher=American Physical Society (APS) | volume=56 | issue=5 | date=1997-11-01 | issn=1050-2947 | doi=10.1103/physreva.56.3484 | pages=3484–3492| bibcode=1997PhRvA..56.3484C }}</ref><ref>{{cite journal | last1=Banaszek | first1=Konrad | last2=Wódkiewicz | first2=Krzysztof | title=विग्नर प्रतिनिधित्व में आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता| journal=Physical Review A | volume=58 | issue=6 | date=1998-12-01 | issn=1050-2947 | doi=10.1103/physreva.58.4345 | pages=4345–4347| arxiv=quant-ph/9806069 | bibcode=1998PhRvA..58.4345B | s2cid=119341663 }}</ref>
यह व्यापक कथन अन्य निरूपण में निष्क्रिय है। उदाहरण के लिए, [[ईपीआर विरोधाभास|ईपीआर]] स्थिति का विग्नर फलन धनात्मक निश्चित है किन्तु इसका कोई मौलिक रूपांतर नहीं है।<ref>{{cite journal | last=Cohen | first=O. | title=मूल आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता| journal=Physical Review A | publisher=American Physical Society (APS) | volume=56 | issue=5 | date=1997-11-01 | issn=1050-2947 | doi=10.1103/physreva.56.3484 | pages=3484–3492| bibcode=1997PhRvA..56.3484C }}</ref><ref>{{cite journal | last1=Banaszek | first1=Konrad | last2=Wódkiewicz | first2=Krzysztof | title=विग्नर प्रतिनिधित्व में आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता| journal=Physical Review A | volume=58 | issue=6 | date=1998-12-01 | issn=1050-2947 | doi=10.1103/physreva.58.4345 | pages=4345–4347| arxiv=quant-ph/9806069 | bibcode=1998PhRvA..58.4345B | s2cid=119341663 }}</ref>


ऊपर परिभाषित अभ्यावेदन के अतिरिक्त, कई अन्य अर्धसंभाव्यता वितरण हैं जो चरण स्थान वितरण के वैकल्पिक अभ्यावेदन में उत्पन्न होते हैं। अन्य लोकप्रिय प्रतिनिधित्व [[हुसिमी क्यू प्रतिनिधित्व]] है,<ref>{{cite conference| last=Husimi | first=Kôdi | title=घनत्व मैट्रिक्स के कुछ औपचारिक गुण| conference=Proceedings of the Physico-Mathematical Society of Japan|publisher=The Mathematical Society of Japan | volume=22 | issue=4 | issn=0370-1239 | doi=10.11429/ppmsj1919.22.4_264 | pages=264–314|doi-access=free}}</ref> जो तब उपयोगी होता है जब प्रचालक सामान्य-विरोधी क्रम में हों। हाल ही में, सकारात्मक {{mvar|P}} प्रतिनिधित्व और सामान्यीकृत का व्यापक वर्ग {{mvar|P}} क्वांटम ऑप्टिक्स में जटिल समस्याओं को हल करने के लिए अभ्यावेदन का उपयोग किया गया है। ये सभी एक दूसरे के समान हैं और एक दूसरे में परिवर्तित हो सकते हैं, जैसा कि कोहेन का वर्ग वितरण फलन का है।
ऊपर परिभाषित निरूपण के अतिरिक्त, विभिन्न अन्य अर्धसंभाव्यता वितरण हैं जो चरण समष्टि वितरण के वैकल्पिक निरूपण में उत्पन्न होते हैं। अन्य लोकप्रिय निरूपण [[हुसिमी क्यू प्रतिनिधित्व|हुसिमी Q]] निरूपण है,<ref>{{cite conference| last=Husimi | first=Kôdi | title=घनत्व मैट्रिक्स के कुछ औपचारिक गुण| conference=Proceedings of the Physico-Mathematical Society of Japan|publisher=The Mathematical Society of Japan | volume=22 | issue=4 | issn=0370-1239 | doi=10.11429/ppmsj1919.22.4_264 | pages=264–314|doi-access=free}}</ref> जो तब उपयोगी होता है जब संचालक सामान्य-विरोधी क्रम में होंते है। वर्तमान में, धनात्मक {{mvar|P}} निरूपण और सामान्यीकृत {{mvar|P}} का व्यापक वर्ग क्वांटम ऑप्टिक्स में सम्मिश्र समस्याओं को हल करने के लिए निरूपण का उपयोग किया गया है। यह सभी एक दूसरे के समान हैं और एक दूसरे में परिवर्तित हो सकते हैं, जैसा कि कोहेन का वर्ग वितरण फलन का है।


==विशेषता कार्य==
==विशिष्ट फलन==
संभाव्यता सिद्धांत के अनुरूप, क्वांटम अर्धसंभाव्यता वितरण
संभाव्यता सिद्धांत के अनुरूप, क्वांटम अर्धसंभाव्यता वितरण को विशिष्ट समूहों के रूप में लिखा जा सकता है, इस प्रकार जिनसे सभी संचालक संभावित मानो को प्राप्त किया जा सकता है। एन मोड प्रणाली के विग्नर, ग्लॉबर P और Q प्रवृत्तियों के लिए विशिष्ट फलन इस प्रकार हैं:
विशेषता फलन (संभावना सिद्धांत) के संदर्भ में लिखा जा सकता है,
जिससे सभी प्रचालक अपेक्षा मान प्राप्त किए जा सकते हैं। विशिष्टता
एन मोड सिस्टम के विग्नर, ग्लौबर-सुदर्शन पी-प्रतिनिधित्व और क्यू वितरण के लिए कार्य
निम्नानुसार हैं:


* <math>\chi_W(\mathbf{z},\mathbf{z}^*)= \operatorname{tr}(\rho e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}+i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}})</math>
* <math>\chi_W(\mathbf{z},\mathbf{z}^*)= \operatorname{tr}(\rho e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}+i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}})</math>
* <math>\chi_P(\mathbf{z},\mathbf{z}^*)= \operatorname{tr}(\rho e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}}e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}})</math>
* <math>\chi_P(\mathbf{z},\mathbf{z}^*)= \operatorname{tr}(\rho e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}}e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}})</math>
* <math>\chi_Q(\mathbf{z},\mathbf{z}^*)=\operatorname{tr}(\rho e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}}e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}})</math>
* <math>\chi_Q(\mathbf{z},\mathbf{z}^*)=\operatorname{tr}(\rho e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}}e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}})</math>
यहाँ <math>\widehat{\mathbf{a}}</math> और <math>\widehat{\mathbf{a}}^{\dagger}</math> प्रत्येक मोड के लिए विनाश और निर्माण प्रचालक वाले सदिश हैं
यहाँ <math>\widehat{\mathbf{a}}</math> और <math>\widehat{\mathbf{a}}^{\dagger}</math> प्रत्येक मोड के लिए क्षय और निर्माण संचालक वाले सदिश हैं। इन विशिष्ट फलन का उपयोग संचालक समय के अपेक्षित मानो का प्रत्यक्ष मूल्यांकन करने के लिए किया जा सकता है। इस प्रकार इस समय में क्षय और निर्माण संचालकों का क्रम विशिष्ट फलन के लिए विशिष्ट होता है। उदाहरण के लिए, क्षय संचालकों से पूर्ववर्ती निर्माण संचालक) समय के मूल्यांकन <math>\chi_P\,</math>को इस प्रकार व्यक्त किया जा सकता है :
प्रणाली में। इन विशिष्ट कार्यों का उपयोग प्रचालक क्षणों के अपेक्षा मूल्यों का सीधे मूल्यांकन करने के लिए किया जा सकता है। इन क्षणों में संहार और सृजन संचालकों का क्रम विशिष्ट विशिष्ट कार्य के लिए विशिष्ट होता है। उदाहरण के लिए, सामान्य क्रम (विनाश संचालकों से पहले सृजन संचालक) क्षणों का मूल्यांकन निम्नलिखित विधि से किया जा सकता है <math>\chi_P\,</math>:


: <math>\langle\widehat{a}_j^{\dagger m}\widehat{a}_k^n\rangle = \frac{\partial^{m+n}}{\partial(iz_j^*)^m\partial(iz_k)^n}\chi_P(\mathbf{z},\mathbf{z}^*)\Big|_{\mathbf{z}=\mathbf{z}^*=0}</math>
: <math>\langle\widehat{a}_j^{\dagger m}\widehat{a}_k^n\rangle = \frac{\partial^{m+n}}{\partial(iz_j^*)^m\partial(iz_k)^n}\chi_P(\mathbf{z},\mathbf{z}^*)\Big|_{\mathbf{z}=\mathbf{z}^*=0}</math>
उसी तरह, विनाश और निर्माण प्रचालकों के सामान्य रूप से आदेशित और सममित रूप से आदेशित संयोजनों की अपेक्षा मूल्यों का मूल्यांकन क्रमशः क्यू और विग्नर वितरण के लिए विशेषता कार्यों से किया जा सकता है। अर्धसंभाव्यता कार्यों को स्वयं उपरोक्त विशिष्ट कार्यों के फूरियर परिवर्तनों के रूप में परिभाषित किया गया है। वह है,
उसी प्रकार, क्षय और निर्माण संचालकों के सामान्य रूप से आदेशित और सममित रूप से आदेशित संयोजनों की अपेक्षित मानो का मूल्यांकन क्रमशः Q और विग्नर वितरण के लिए विशेषता फलन से किया जा सकता है। इस प्रकारअर्धसंभाव्यता फलन को स्वयं उपरोक्त विशिष्ट फलन के फूरियर परिवर्तनों के रूप में परिभाषित किया गया है। अर्थात,


: <math>\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)=\frac{1}{\pi^{2N}}\int \chi_{\{W\mid P\mid Q\}}(\mathbf{z},\mathbf{z}^*)e^{-i\mathbf{z}^*\cdot\mathbf{\alpha}^*}e^{-i\mathbf{z} \cdot \mathbf{\alpha}} \, d^{2N}\mathbf{z}.</math>
: <math>\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)=\frac{1}{\pi^{2N}}\int \chi_{\{W\mid P\mid Q\}}(\mathbf{z},\mathbf{z}^*)e^{-i\mathbf{z}^*\cdot\mathbf{\alpha}^*}e^{-i\mathbf{z} \cdot \mathbf{\alpha}} \, d^{2N}\mathbf{z}.</math>
यहाँ <math>\alpha_j\,</math> और <math>\alpha^*_k</math> ग्लॉबर पी और क्यू वितरण के मामले में सुसंगत स्थिति आयाम के रूप में पहचाना जा सकता है, किन्तु विग्नर फलन के लिए केवल [[सी-नंबर]]चूंकि सामान्य स्थान में विभेदन फूरियर स्थान में गुणन बन जाता है, इसलिए इन कार्यों से क्षणों की गणना निम्नलिखित विधि से की जा सकती है:
यहाँ <math>\alpha_j\,</math> और <math>\alpha^*_k</math> ग्लॉबर P और Q वितरण के स्थितियों में सुसंगत स्थिति आयाम के रूप में पहचाना जा सकता है, किन्तु विग्नर फलन के लिए केवल [[सी-नंबर|C-संख्याएँ]] होती हैं। चूंकि सामान्य समष्टि में विभेदन फूरियर समष्टि में गुणन बन जाता है, इसलिए इन फलन से समय की गणना निम्नलिखित विधि से की जा सकती है:
* <math>\langle\widehat{\mathbf{a}}_j^{\dagger m}\widehat{\mathbf{a}}_k^n\rangle=\int P(\mathbf{\alpha},\mathbf{\alpha}^*)\alpha_j^n\alpha_k^{*m} \, d^{2N}\mathbf{\alpha}</math>
* <math>\langle\widehat{\mathbf{a}}_j^{\dagger m}\widehat{\mathbf{a}}_k^n\rangle=\int P(\mathbf{\alpha},\mathbf{\alpha}^*)\alpha_j^n\alpha_k^{*m} \, d^{2N}\mathbf{\alpha}</math>
* <math>\langle\widehat{\mathbf{a}}_j^m\widehat{\mathbf{a}}_k^{\dagger n}\rangle=\int Q(\mathbf{\alpha},\mathbf{\alpha}^*)\alpha_j^m\alpha_k^{*n} \, d^{2N}\mathbf{\alpha}</math>
* <math>\langle\widehat{\mathbf{a}}_j^m\widehat{\mathbf{a}}_k^{\dagger n}\rangle=\int Q(\mathbf{\alpha},\mathbf{\alpha}^*)\alpha_j^m\alpha_k^{*n} \, d^{2N}\mathbf{\alpha}</math>
Line 84: Line 60:
यहाँ <math>(\cdots)_S</math> सममित क्रम को दर्शाता है।
यहाँ <math>(\cdots)_S</math> सममित क्रम को दर्शाता है।


ये सभी अभ्यावेदन [[गॉसियन फ़ंक्शन]], [[वीयरस्ट्रैस परिवर्तन]], द्वारा [[कनवल्शन]] के माध्यम से परस्पर जुड़े हुए हैं।
यह सभी निरूपण [[गॉसियन फ़ंक्शन|गॉसियन फलन]] , [[वीयरस्ट्रैस परिवर्तन]], द्वारा [[कनवल्शन]] के माध्यम से परस्पर जुड़े हुए हैं।
*<math>W(\alpha,\alpha^*)= \frac{2}{\pi} \int P(\beta,\beta^*) e^{-2|\alpha-\beta|^2} \, d^2\beta</math>
*<math>W(\alpha,\alpha^*)= \frac{2}{\pi} \int P(\beta,\beta^*) e^{-2|\alpha-\beta|^2} \, d^2\beta</math>
*<math>Q(\alpha,\alpha^*)= \frac{2}{\pi} \int W(\beta,\beta^*) e^{-2|\alpha-\beta|^2} \, d^2\beta</math>
*<math>Q(\alpha,\alpha^*)= \frac{2}{\pi} \int W(\beta,\beta^*) e^{-2|\alpha-\beta|^2} \, d^2\beta</math>
या, उस संपत्ति का उपयोग करते हुए जो कनवल्शन साहचर्य है,
या, उस प्रोपर्टी का उपयोग करते हुए जो कनवल्शन संबद्ध है,
*<math>Q(\alpha,\alpha^*)= \frac{1}{\pi} \int P(\beta,\beta^*) e^{-|\alpha-\beta|^2} \, d^2\beta ~.</math>
*<math>Q(\alpha,\alpha^*)= \frac{1}{\pi} \int P(\beta,\beta^*) e^{-|\alpha-\beta|^2} \, d^2\beta ~.</math>
यह इस प्रकार है कि
यह इस प्रकार है कि
*<math>P(\alpha,\alpha^*)= \frac{1}{\pi^2} \int Q(\beta,\beta^*) e^{|\lambda|^2+\lambda^* ( \alpha-\beta) -\lambda  ( \alpha-\beta) ^*} \, d^2\beta ~d^2\lambda,</math>
*<math>P(\alpha,\alpha^*)= \frac{1}{\pi^2} \int Q(\beta,\beta^*) e^{|\lambda|^2+\lambda^* ( \alpha-\beta) -\lambda  ( \alpha-\beta) ^*} \, d^2\beta ~d^2\lambda,</math>
अधिकांशतः भिन्न अभिन्न अंग, जो इंगित करता है कि पी अधिकांशतः वितरण है। समान घनत्व आव्युह के लिए क्यू सदैव पी से अधिक चौड़ा होता है। <ref>Wolfgang Schleich, ''Quantum Optics in Phase Space'',  (Wiley-VCH,  2001) {{isbn|978-3527294350}}</ref>
अधिकांशतः अपसारी इंटीग्रल संकेत करता है कि P अधिकांशतः वितरण है। समान घनत्व आव्युह के लिए Q सदैव P से अधिक विस्तृत है। <ref>Wolfgang Schleich, ''Quantum Optics in Phase Space'',  (Wiley-VCH,  2001) {{isbn|978-3527294350}}</ref>
 
उदाहरण के लिए, तापीय स्थिति के लिए,
उदाहरण के लिए, तापीय स्थिति के लिए,
:<math>\hat \rho= \frac{1}{\bar n +1}\sum_{n=0}^\infty \left (\frac{\bar n}{1+\bar n }\right)^n |n\rangle \langle n|~~, </math>
:<math>\hat \rho= \frac{1}{\bar n +1}\sum_{n=0}^\infty \left (\frac{\bar n}{1+\bar n }\right)^n |n\rangle \langle n|~~, </math>
किसी के पास
किसी के निकट
:<math>P(\alpha)= \frac{1}{\pi \bar n } e^{-\frac{|\alpha|^2}{\bar n}},  \qquad
:<math>P(\alpha)= \frac{1}{\pi \bar n } e^{-\frac{|\alpha|^2}{\bar n}},  \qquad
  Q(\alpha)= \frac{1}{\pi (1+ \bar n) } e^{-\frac{|\alpha|^2}{1+\bar n}}~~~.</math>
  Q(\alpha)= \frac{1}{\pi (1+ \bar n) } e^{-\frac{|\alpha|^2}{1+\bar n}}~~~.</math>
==समय विकास और प्रचालक पत्राचार==
==समय विकास और संचालक अनुरूपता==
उपरोक्त प्रत्येक रूपांतरण के बाद से {{mvar|ρ}} से वितरण फलन के लिए स्थानीय हैं, प्रत्येक वितरण के लिए गति का समीकरण समान परिवर्तन करके प्राप्त किया जा सकता है  जैसा कि <math>\dot{\rho}</math>इसके अतिरिक्त, चूंकि कोई भी मास्टर समीकरण जिसे लिंडब्लैड समीकरण में व्यक्त किया जा सकता है, वह पूरी प्रकार से घनत्व प्रचालक पर निर्माण और विनाश प्रचालकों के संयोजन की कार्रवाई द्वारा वर्णित है, इस प्रकार के संचालन के प्रत्येक अर्धसंभाव्यता कार्यों पर पड़ने वाले प्रभाव पर विचार करना उपयोगी है।<ref>H. J. Carmichael, ''Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations'', Springer-Verlag (2002).</ref><ref>C. W. Gardiner, ''Quantum Noise'', Springer-Verlag (1991).</ref>
चूँकि {{mvar|ρ}} से वितरण फलन तक उपरोक्त प्रत्येक परिवर्तन रैखिक है, प्रत्येक वितरण के लिए गति का समीकरण <math>\dot{\rho}</math> में समान परिवर्तन करके प्राप्त किया जा सकता है। इसके अतिरिक्त, चूंकि कोई भी मास्टर समीकरण जिसे लिंडब्लैड फॉर्म में व्यक्त किया जा सकता है, उसे घनत्व संचालक पर क्षय और निर्माण संचालको के संयोजन के फलन द्वारा पूर्ण रूप से वर्णित किया गया है, ऐसे संचालन के प्रत्येक अर्धसंभाव्यता फलन पर होने वाले प्रभाव पर विचार करना उपयोगी है।<ref>H. J. Carmichael, ''Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations'', Springer-Verlag (2002).</ref><ref>C. W. Gardiner, ''Quantum Noise'', Springer-Verlag (1991).</ref>


उदाहरण के लिए, विनाश संचालिका पर विचार करें <math>\widehat{a}_j\,</math> जो  {{mvar|ρ}} पर प्रभाव कर रहा है। पी वितरण के लिए चरित्रिक फलन के लिए हमें यह है
उदाहरण के लिए, {{mvar|ρ}} पर कार्य करने वाले क्षय संचालिका <math>\widehat{a}_j\,</math> पर विचार करें। P वितरण के विशिष्ट फलन के लिए हमारे निकट है
: <math>\operatorname{tr}(\widehat{a}_j\rho e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}} e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}}) = \frac{\partial}{\partial(iz_j)}\chi_P(\mathbf{z},\mathbf{z}^*).</math>
: <math>\operatorname{tr}(\widehat{a}_j\rho e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}} e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}}) = \frac{\partial}{\partial(iz_j)}\chi_P(\mathbf{z},\mathbf{z}^*).</math>
फूरियर परिवर्तन के संबंध में लेना <math>\mathbf{z}\,</math> खोजने के लिए ग्लौबर पी फलन पर संबंधित क्रिया प्राप्त करने के लिए हमें मिलता है
इस प्रकार ग्लॉबर P फलन पर संबंधित क्रिया को खोजने के लिए <math>\mathbf{z}\,</math> के संबंध में फूरियर रूपांतरण को लेते हुए हम पाते हैं
:<math>\widehat{a}_j\rho \rightarrow \alpha_j P(\mathbf{\alpha},\mathbf{\alpha}^*).</math>
:<math>\widehat{a}_j\rho \rightarrow \alpha_j P(\mathbf{\alpha},\mathbf{\alpha}^*).</math>
इस प्रक्रिया का पालन करके ऊपर दिए गए प्रत्येक वितरण के लिए, निम्नलिखित प्रचालक संबंधितताएँ पहचानी जा सकती हैं:
इस प्रक्रिया का उपयोग करके ऊपर दिए गए प्रत्येक वितरण के लिए, निम्नलिखित संचालक सम्बन्ध की पहचान की जा सकती हैं:
* <math>\widehat{a}_j\rho \rightarrow \left(\alpha_j + \kappa\frac{\partial}{\partial\alpha_j^*}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\widehat{a}_j\rho \rightarrow \left(\alpha_j + \kappa\frac{\partial}{\partial\alpha_j^*}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\rho\widehat{a}^\dagger_j \rightarrow \left(\alpha_j^* + \kappa\frac{\partial}{\partial\alpha_j}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\rho\widehat{a}^\dagger_j \rightarrow \left(\alpha_j^* + \kappa\frac{\partial}{\partial\alpha_j}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\widehat{a}^\dagger_j\rho \rightarrow \left(\alpha_j^* - (1-\kappa)\frac{\partial}{\partial\alpha_j}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\widehat{a}^\dagger_j\rho \rightarrow \left(\alpha_j^* - (1-\kappa)\frac{\partial}{\partial\alpha_j}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\rho\widehat{a}_j \rightarrow \left(\alpha_j - (1-\kappa)\frac{\partial}{\partial\alpha_j^*}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\rho\widehat{a}_j \rightarrow \left(\alpha_j - (1-\kappa)\frac{\partial}{\partial\alpha_j^*}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
यहाँ {{math|κ {{=}} 0, 1/2}} या क्रमशः पी, विग्नर और क्यू वितरणों के लिए 1 है। इस प्रकार, मास्टर समीकरणों को समीकरणों के रूप में व्यक्त किया जा सकता है`।
इस प्रकार यहाँ {{math|κ {{=}} 0, 1/2}} या क्रमशः P, विग्नर और Q वितरणों के लिए 1 है। इस प्रकार, मास्टर समीकरणों को समीकरणों के रूप में व्यक्त किया जा सकता है`।


==उदाहरण==
==उदाहरण==


===सुसंगत स्थिति===
===सुसंगत स्थिति===
निर्माण के अनुसार, सुसंगत स्थिति <math>|\alpha_0\rangle</math> के लिए पी डेल्टा समीकरण है:
इस प्रकार निर्माण के अनुसार, सुसंगत स्थिति <math>|\alpha_0\rangle</math> के लिए P डेल्टा समीकरण है:
:<math>P(\alpha,\alpha^*)=\delta^2(\alpha-\alpha_0).</math>
:<math>P(\alpha,\alpha^*)=\delta^2(\alpha-\alpha_0).</math>
विग्नर और क्यू प्रतिष्ठान उपरोक्त गॉसियन संलयन सूत्रों से सीधे रूप से आते हैं,
विग्नर और Q निरूपण उपरोक्त गॉसियन संलयन सूत्रों से प्रत्यक्ष रूप से आते हैं,
 
विग्नर प्रतिष्ठान:
:<math>W(\alpha,\alpha^*)=\frac{2}{\pi} \int \delta^2(\beta-\alpha_0) e^{-2|\alpha-\beta|^2} \, d^2\beta=\frac{2}{\pi}e^{-2|\alpha-\alpha_0|^2}</math>
:<math>W(\alpha,\alpha^*)=\frac{2}{\pi} \int \delta^2(\beta-\alpha_0) e^{-2|\alpha-\beta|^2} \, d^2\beta=\frac{2}{\pi}e^{-2|\alpha-\alpha_0|^2}</math>
:क्यू प्रतिष्ठान:
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi} \int \delta^2(\beta-\alpha_0) e^{-|\alpha-\beta|^2} \, d^2\beta=\frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}.</math>
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi} \int \delta^2(\beta-\alpha_0) e^{-|\alpha-\beta|^2} \, d^2\beta=\frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}.</math>
हुसिमी प्रतिनिधित्व को दो सुसंगत स्थितियों के आंतरिक उत्पाद के लिए उपरोक्त सूत्र का उपयोग करके भी पाया जा सकता है,
हुसिमी निरूपण को दो सुसंगत स्थितियों के आंतरिक उत्पाद के लिए उपरोक्त सूत्र का उपयोग करके भी पाया जा सकता है,
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle \alpha_0|\alpha\rangle|^2 = \frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}</math>
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle \alpha_0|\alpha\rangle|^2 = \frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}</math>
===फॉक स्थिति===
===फॉक स्थिति===
फॉक स्थिति <math>|n\rangle</math> का पी प्रतिष्ठान है
फॉक स्थिति <math>|n\rangle</math> का P निरूपण है
:<math>P(\alpha,\alpha^*)=\frac{e^{|\alpha|^2}}{n!} \frac{\partial^{2n}}{\partial\alpha^{*n}\,\partial\alpha^n} \delta^2(\alpha).</math>
:<math>P(\alpha,\alpha^*)=\frac{e^{|\alpha|^2}}{n!} \frac{\partial^{2n}}{\partial\alpha^{*n}\,\partial\alpha^n} \delta^2(\alpha).</math>
चूँकि n>0 के लिए यह डेल्टा समीकरण से अधिक असमीकरण है, फ़ॉक स्थिति का कोई शास्त्रीय सहमति नहीं है। गॉसियन संकल्पों के साथ आगे बढ़ने पर गैर-शास्त्रीयता कम पारदर्शी होती है। यदि L<sub>n</sub> [[लैगुएरे बहुपद]] है, तो W इसका है
चूँकि n>0 के लिए यह डेल्टा समीकरण से अधिक असमीकरण है, फ़ॉक स्थिति का कोई मौलिक स्वीकृति नहीं है। गॉसियन संकल्पों के साथ आगे बढ़ने पर गैर-मौलिकता कम पारदर्शी होती है। यदि L<sub>n</sub> [[लैगुएरे बहुपद]] W है, तो  
:<math>W(\alpha,\alpha^*) = (-1)^n\frac{2}{\pi} e^{-2|\alpha|^2} L_n\left(4|\alpha|^2\right)  ~,</math>
:<math>W(\alpha,\alpha^*) = (-1)^n\frac{2}{\pi} e^{-2|\alpha|^2} L_n\left(4|\alpha|^2\right)  ~,</math>
जो नकारात्मक हो सकता है किन्तु सीमित है।
जो ऋणात्मक हो सकता है किन्तु सीमित है।


उपभिन्नता से, क्यू सदैव सकारात्मक और सीमित रहता है
इसके विपरीत Q सदैव धनात्मक और सीमित रहता है
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle n|\alpha\rangle|^2 =\frac{1}{\pi n!}|\langle 0|\widehat{a}^n|\alpha\rangle|^2 = \frac{|\alpha|^{2n}}{\pi n!} |\langle 0|\alpha\rangle|^2 ~.</math>
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle n|\alpha\rangle|^2 =\frac{1}{\pi n!}|\langle 0|\widehat{a}^n|\alpha\rangle|^2 = \frac{|\alpha|^{2n}}{\pi n!} |\langle 0|\alpha\rangle|^2 ~.</math>
===डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर===
===डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर===


निम्नलिखित मास्टर समीकरण के साथ नम क्वांटम हार्मोनिक ऑसिलेटर पर विचार करें,
निम्नलिखित मास्टर समीकरण के साथ डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर पर विचार करें,
: <math>\frac{d\widehat{\rho}}{dt} = i\omega_0 [\widehat{\rho},\widehat{a}^\dagger\widehat{a}] + \frac{\gamma}{2} (2\widehat{a}\widehat{\rho}\widehat{a}^\dagger - \widehat{a}^\dagger\widehat{a} \widehat{\rho} - \rho\widehat{a}^\dagger \widehat{a}) + \gamma \langle n \rangle (\widehat{a} \widehat{\rho} \widehat{a}^\dagger + \widehat{a}^\dagger\widehat{\rho}\widehat{a} - \widehat{a}^\dagger\widehat{a}\widehat{\rho}-\widehat{\rho} \widehat{a} \widehat{a}^\dagger).</math>
: <math>\frac{d\widehat{\rho}}{dt} = i\omega_0 [\widehat{\rho},\widehat{a}^\dagger\widehat{a}] + \frac{\gamma}{2} (2\widehat{a}\widehat{\rho}\widehat{a}^\dagger - \widehat{a}^\dagger\widehat{a} \widehat{\rho} - \rho\widehat{a}^\dagger \widehat{a}) + \gamma \langle n \rangle (\widehat{a} \widehat{\rho} \widehat{a}^\dagger + \widehat{a}^\dagger\widehat{\rho}\widehat{a} - \widehat{a}^\dagger\widehat{a}\widehat{\rho}-\widehat{\rho} \widehat{a} \widehat{a}^\dagger).</math>
इसका परिणाम फोककर-प्लैंक समीकरण में होता है,
इसका परिणाम फोककर-प्लैंक समीकरण में होता है,
:<math>\frac{\partial}{\partial t} \{W\mid P\mid Q\}(\alpha,\alpha^*,t) = \left[(\gamma+i\omega_0)\frac{\partial}{\partial \alpha}\alpha + (\gamma-i\omega_0)\frac{\partial}{\partial \alpha^*}\alpha^* + \frac{\gamma}{2}(\langle n \rangle + \kappa)\frac{\partial^2}{\partial\alpha\,\partial\alpha^*}\right]\{W\mid P\mid Q\}(\alpha,\alpha^*,t), </math>
:<math>\frac{\partial}{\partial t} \{W\mid P\mid Q\}(\alpha,\alpha^*,t) = \left[(\gamma+i\omega_0)\frac{\partial}{\partial \alpha}\alpha + (\gamma-i\omega_0)\frac{\partial}{\partial \alpha^*}\alpha^* + \frac{\gamma}{2}(\langle n \rangle + \kappa)\frac{\partial^2}{\partial\alpha\,\partial\alpha^*}\right]\{W\mid P\mid Q\}(\alpha,\alpha^*,t), </math>
जहां क्रमशः पी, W, और क्यू प्रतिनिधित्व के लिए κ = 0, 1/2, 1 है।
जहां P, W, और Q निरूपण के लिए क्रमशः κ = 0, 1/2, 1 है।


यदि सिस्टम प्रारंभ में सुसंगत स्थिति में है <math>|\alpha_0\rangle</math>, तो इस समीकरण का हल है
यदि प्रणाली प्रारंभ में सुसंगत स्थिति <math>|\alpha_0\rangle</math> में है तो इस समीकरण का हल है
:<math>\{W\mid P\mid Q\}(\alpha,\alpha^*,t) = \frac{1}{\pi \left[\kappa + \langle n \rangle\left(1-e^{-2\gamma t}\right)\right]} \exp{\left(-\frac{\left|\alpha-\alpha_0 e^{-(\gamma +i\omega_0) t}\right|^2}{\kappa + \langle n \rangle\left(1-e^{-2\gamma t}\right)}\right)}~~.</math>
:<math>\{W\mid P\mid Q\}(\alpha,\alpha^*,t) = \frac{1}{\pi \left[\kappa + \langle n \rangle\left(1-e^{-2\gamma t}\right)\right]} \exp{\left(-\frac{\left|\alpha-\alpha_0 e^{-(\gamma +i\omega_0) t}\right|^2}{\kappa + \langle n \rangle\left(1-e^{-2\gamma t}\right)}\right)}~~.</math>
==संदर्भ==
==संदर्भ==
Line 151: Line 125:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 09:05, 13 December 2023

अर्धसंभाव्यता वितरण, संभाव्यता वितरण के समान गणितीय वस्तु है, किन्तु जो संभाव्यता सिद्धांत के कोलमोगोरोव के कुछ सिद्धांतों को अशक्त करता है। अर्धसंभावनाएं सामान्य संभावनाओं के साथ विभिन्न सामान्य विशेषताएं साझा करती हैं, जैसे, महत्वपूर्ण रूप से, वितरण के भार के संबंध में अपेक्षित मान उत्पन्न करने की क्षमता है। चूँकि, वह σ -एडिटिविटी सिद्धांत का उल्लंघन कर सकते हैं उन पर एकीकरण करने से परस्पर अनन्य स्थिति की संभावनाएं उत्पन्न नहीं होती हैं। वास्तव में, अर्धसंभाव्यता वितरण में ऋणात्मक संभाव्यता घनत्व के क्षेत्र भी होते हैं, जो कि पहले सिद्धांत का खंडन करते हैं। इस प्रकार अर्धसंभाव्यता वितरण क्वांटम यांत्रिकी के अध्ययन में उत्पन्न होते हैं जब इसे चरण समष्टि सूत्र में विचार किया जाता है, जो क्वांटम प्रकाशिकी, समय-आवृत्ति विश्लेषण और अन्य समष्टि में सामान्यत: प्रयुक्त होता है।[1]

परिचय

सामान्यतः, क्वांटम यांत्रिकी प्रणाली की गतिशीलता हिल्बर्ट समष्टि में मास्टर समीकरण द्वारा निर्धारित की जाती है: प्रणाली के घनत्व संचालक के लिए गति का समीकरण (सामान्यत: लिखा जाता है)। घनत्व संचालक को पूर्ण ऑर्थोनॉर्मल आधार के संबंध में परिभाषित किया गया है। यद्यपि इस समीकरण को बहुत छोटी प्रणालियों (अर्थात, कुछ कणों या स्वतंत्रता की डिग्री वाले प्रणाली) के लिए प्रत्यक्ष एकीकृत करना संभव है, यह बड़ी प्रणालियों के लिए शीघ्र ही कठिन हो जाता है। चूँकि, यह सिद्ध करना संभव है [2] घनत्व संचालक को सदैव विकर्ण आव्युह रूप में लिखा जा सकता है, परंतु कि यह अतिपूर्णता के आधार पर उपयोग किया जाता है। इस प्रकार जब घनत्व संचालक को इस प्रकार के पूर्ण आधार पर दर्शाया जाता है, इस प्रकार इसे सामान्य फलन के समान विधि से लिखा जा सकता है, इस मान पर कि फलन में अर्धसंभाव्यता वितरण की विशेषताएं होती हैं। प्रणाली का विकास तब पूर्ण रूप से अर्धसंभाव्यता वितरण फलन के विकास से निर्धारित होता है।

सुसंगत स्थिति, अर्थात् क्षय संचालिका की सही स्वदेशी स्थिति ऊपर वर्णित निर्माण में अपूर्ण आधार के रूप में कार्य करती हैं। परिभाषा के अनुसार, सुसंगत स्थिति में निम्नलिखित प्रोपर्टी होती है,

इनमें कुछ और रोचक गुण भी होते हैं। उदाहरण के लिए, कोई भी दो सुसंगत स्थिति एक-दूसरे के लिए सममान नहीं हैं। वास्तव में, यदि |α〉और |β〉 सुसंगत स्थितिओं का युग्म हैं, तो

ध्यान दें कि इन स्थिति को चूंकि 〈α |α〉 = 1 के साथ सही विधि से सामान्यीकृत किया गया है, फॉक स्थिति के आधार की पूर्णता के कारण सुसंगत स्थिति के आधार का विकल्प अधूरा होना चाहिए।[3] अनौपचारिक प्रमाण दिखाने के लिए क्लिक करें।

सुसंगत स्थितिओं की अपूर्णता का प्रमाण

चूँकि, सुसंगत स्थिति के आधार पर, घनत्व संचालक को विकर्ण रूप में व्यक्त करना सदैव संभव है [2]

जहाँ f चरण समष्टि वितरण का निरूपण है। इस फलन f को अर्धसंभाव्यता घनत्व माना जाता है क्योंकि इसमें निम्नलिखित गुण हैं:

  • (सामान्यीकरण)
  • यदि संचालक है जिसे क्रमबद्ध Ω में निर्माण और क्षय संचालकों की शक्ति श्रृंखला के रूप में व्यक्त किया जा सकता है, तो इसका अपेक्षित मान है
(ऑप्टिकल तुल्यता प्रमेय)।

इस प्रकार फलन f अद्वितीय नहीं है। विभिन्न निरूपण Ω से सम्बंधित वर्ग की उपस्थित है, प्रत्येक भिन्न Ω क्रम से जुड़ा हुआ है। इनमें से सामान्य भौतिकी साहित्य में सबसे लोकप्रिय और ऐतिहासिक रूप से इनमें से पहला विग्नर अर्धसंभाव्यता वितरण,है [4] जो सममित संचालक निरूपण से संबंधित है। विशेष रूप से क्वांटम ऑप्टिक्स में, अधिकांशतः इंटरेस्ट के संचालक, विशेष रूप से कण संख्या संचालक, स्वाभाविक रूप से सामान्य क्रम में व्यक्त किए जाते हैं। उस स्थिति में, चरण समष्टि वितरण का संगत निरूपण ग्लौबर-सुदर्शन P निरूपण है।[5] इन चरण समष्टि वितरणों की अर्धसंभाव्य प्रकृति को निम्नलिखित मुख्य कथन के कारण P प्रतिनिधित्व में सबसे स्पष्ट रूप से निरुपित किया जाता है[6]

यदि क्वांटम प्रणाली में मौलिक एनालॉग है, उदा। एक सुसंगत स्थिति या तापीय विकिरण,तो P सामान्य संभाव्यता वितरण की तरह प्रत्येक स्थिति गैर-ऋणात्मक है। चूंकि, यदि क्वांटम प्रणाली का कोई मौलिक एनालॉग नहीं है, उदाहरण के लिए एक असंगत फॉक स्थिति या सम्मिश्र प्रणाली, तो P कहीं न कहीं ऋणात्मक है या डेल्टा फलन की तुलना में अधिक एकवचन है।

यह व्यापक कथन अन्य निरूपण में निष्क्रिय है। उदाहरण के लिए, ईपीआर स्थिति का विग्नर फलन धनात्मक निश्चित है किन्तु इसका कोई मौलिक रूपांतर नहीं है।[7][8]

ऊपर परिभाषित निरूपण के अतिरिक्त, विभिन्न अन्य अर्धसंभाव्यता वितरण हैं जो चरण समष्टि वितरण के वैकल्पिक निरूपण में उत्पन्न होते हैं। अन्य लोकप्रिय निरूपण हुसिमी Q निरूपण है,[9] जो तब उपयोगी होता है जब संचालक सामान्य-विरोधी क्रम में होंते है। वर्तमान में, धनात्मक P निरूपण और सामान्यीकृत P का व्यापक वर्ग क्वांटम ऑप्टिक्स में सम्मिश्र समस्याओं को हल करने के लिए निरूपण का उपयोग किया गया है। यह सभी एक दूसरे के समान हैं और एक दूसरे में परिवर्तित हो सकते हैं, जैसा कि कोहेन का वर्ग वितरण फलन का है।

विशिष्ट फलन

संभाव्यता सिद्धांत के अनुरूप, क्वांटम अर्धसंभाव्यता वितरण को विशिष्ट समूहों के रूप में लिखा जा सकता है, इस प्रकार जिनसे सभी संचालक संभावित मानो को प्राप्त किया जा सकता है। एन मोड प्रणाली के विग्नर, ग्लॉबर P और Q प्रवृत्तियों के लिए विशिष्ट फलन इस प्रकार हैं:

यहाँ और प्रत्येक मोड के लिए क्षय और निर्माण संचालक वाले सदिश हैं। इन विशिष्ट फलन का उपयोग संचालक समय के अपेक्षित मानो का प्रत्यक्ष मूल्यांकन करने के लिए किया जा सकता है। इस प्रकार इस समय में क्षय और निर्माण संचालकों का क्रम विशिष्ट फलन के लिए विशिष्ट होता है। उदाहरण के लिए, क्षय संचालकों से पूर्ववर्ती निर्माण संचालक) समय के मूल्यांकन को इस प्रकार व्यक्त किया जा सकता है :

उसी प्रकार, क्षय और निर्माण संचालकों के सामान्य रूप से आदेशित और सममित रूप से आदेशित संयोजनों की अपेक्षित मानो का मूल्यांकन क्रमशः Q और विग्नर वितरण के लिए विशेषता फलन से किया जा सकता है। इस प्रकारअर्धसंभाव्यता फलन को स्वयं उपरोक्त विशिष्ट फलन के फूरियर परिवर्तनों के रूप में परिभाषित किया गया है। अर्थात,

यहाँ और ग्लॉबर P और Q वितरण के स्थितियों में सुसंगत स्थिति आयाम के रूप में पहचाना जा सकता है, किन्तु विग्नर फलन के लिए केवल C-संख्याएँ होती हैं। चूंकि सामान्य समष्टि में विभेदन फूरियर समष्टि में गुणन बन जाता है, इसलिए इन फलन से समय की गणना निम्नलिखित विधि से की जा सकती है:

यहाँ सममित क्रम को दर्शाता है।

यह सभी निरूपण गॉसियन फलन , वीयरस्ट्रैस परिवर्तन, द्वारा कनवल्शन के माध्यम से परस्पर जुड़े हुए हैं।

या, उस प्रोपर्टी का उपयोग करते हुए जो कनवल्शन संबद्ध है,

यह इस प्रकार है कि

अधिकांशतः अपसारी इंटीग्रल संकेत करता है कि P अधिकांशतः वितरण है। समान घनत्व आव्युह के लिए Q सदैव P से अधिक विस्तृत है। [10]

उदाहरण के लिए, तापीय स्थिति के लिए,

किसी के निकट

समय विकास और संचालक अनुरूपता

चूँकि ρ से वितरण फलन तक उपरोक्त प्रत्येक परिवर्तन रैखिक है, प्रत्येक वितरण के लिए गति का समीकरण में समान परिवर्तन करके प्राप्त किया जा सकता है। इसके अतिरिक्त, चूंकि कोई भी मास्टर समीकरण जिसे लिंडब्लैड फॉर्म में व्यक्त किया जा सकता है, उसे घनत्व संचालक पर क्षय और निर्माण संचालको के संयोजन के फलन द्वारा पूर्ण रूप से वर्णित किया गया है, ऐसे संचालन के प्रत्येक अर्धसंभाव्यता फलन पर होने वाले प्रभाव पर विचार करना उपयोगी है।[11][12]

उदाहरण के लिए, ρ पर कार्य करने वाले क्षय संचालिका पर विचार करें। P वितरण के विशिष्ट फलन के लिए हमारे निकट है

इस प्रकार ग्लॉबर P फलन पर संबंधित क्रिया को खोजने के लिए के संबंध में फूरियर रूपांतरण को लेते हुए हम पाते हैं

इस प्रक्रिया का उपयोग करके ऊपर दिए गए प्रत्येक वितरण के लिए, निम्नलिखित संचालक सम्बन्ध की पहचान की जा सकती हैं:

इस प्रकार यहाँ κ = 0, 1/2 या क्रमशः P, विग्नर और Q वितरणों के लिए 1 है। इस प्रकार, मास्टर समीकरणों को समीकरणों के रूप में व्यक्त किया जा सकता है`।

उदाहरण

सुसंगत स्थिति

इस प्रकार निर्माण के अनुसार, सुसंगत स्थिति के लिए P डेल्टा समीकरण है:

विग्नर और Q निरूपण उपरोक्त गॉसियन संलयन सूत्रों से प्रत्यक्ष रूप से आते हैं,

हुसिमी निरूपण को दो सुसंगत स्थितियों के आंतरिक उत्पाद के लिए उपरोक्त सूत्र का उपयोग करके भी पाया जा सकता है,

फॉक स्थिति

फॉक स्थिति का P निरूपण है

चूँकि n>0 के लिए यह डेल्टा समीकरण से अधिक असमीकरण है, फ़ॉक स्थिति का कोई मौलिक स्वीकृति नहीं है। गॉसियन संकल्पों के साथ आगे बढ़ने पर गैर-मौलिकता कम पारदर्शी होती है। यदि Ln लैगुएरे बहुपद W है, तो

जो ऋणात्मक हो सकता है किन्तु सीमित है।

इसके विपरीत Q सदैव धनात्मक और सीमित रहता है

डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर

निम्नलिखित मास्टर समीकरण के साथ डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर पर विचार करें,

इसका परिणाम फोककर-प्लैंक समीकरण में होता है,

जहां P, W, और Q निरूपण के लिए क्रमशः κ = 0, 1/2, 1 है।

यदि प्रणाली प्रारंभ में सुसंगत स्थिति में है तो इस समीकरण का हल है

संदर्भ

  1. L. Cohen (1995), Time-frequency analysis: theory and applications, Prentice-Hall, Upper Saddle River, NJ, ISBN 0-13-594532-1
  2. 2.0 2.1 Sudarshan, E. C. G. (1963-04-01). "सांख्यिकीय प्रकाश किरणों के अर्धशास्त्रीय और क्वांटम यांत्रिक विवरणों की समतुल्यता". Physical Review Letters. American Physical Society (APS). 10 (7): 277–279. Bibcode:1963PhRvL..10..277S. doi:10.1103/physrevlett.10.277. ISSN 0031-9007.
  3. Klauder, John R (1960). "सामान्य सी-नंबरों के संदर्भ में एक्शन विकल्प और स्पिनर फ़ील्ड का फेनमैन परिमाणीकरण". Annals of Physics. Elsevier BV. 11 (2): 123–168. Bibcode:1960AnPhy..11..123K. doi:10.1016/0003-4916(60)90131-7. ISSN 0003-4916.
  4. Wigner, E. (1932-06-01). "थर्मोडायनामिक संतुलन के लिए क्वांटम सुधार पर". Physical Review. American Physical Society (APS). 40 (5): 749–759. Bibcode:1932PhRv...40..749W. doi:10.1103/physrev.40.749. ISSN 0031-899X.
  5. Glauber, Roy J. (1963-09-15). "विकिरण क्षेत्र की सुसंगत और असंगत अवस्थाएँ". Physical Review. American Physical Society (APS). 131 (6): 2766–2788. Bibcode:1963PhRv..131.2766G. doi:10.1103/physrev.131.2766. ISSN 0031-899X.
  6. Mandel, L.; Wolf, E. (1995), Optical Coherence and Quantum Optics, Cambridge UK: Cambridge University Press, ISBN 0-521-41711-2
  7. Cohen, O. (1997-11-01). "मूल आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता". Physical Review A. American Physical Society (APS). 56 (5): 3484–3492. Bibcode:1997PhRvA..56.3484C. doi:10.1103/physreva.56.3484. ISSN 1050-2947.
  8. Banaszek, Konrad; Wódkiewicz, Krzysztof (1998-12-01). "विग्नर प्रतिनिधित्व में आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता". Physical Review A. 58 (6): 4345–4347. arXiv:quant-ph/9806069. Bibcode:1998PhRvA..58.4345B. doi:10.1103/physreva.58.4345. ISSN 1050-2947. S2CID 119341663.
  9. Husimi, Kôdi. घनत्व मैट्रिक्स के कुछ औपचारिक गुण. Proceedings of the Physico-Mathematical Society of Japan. Vol. 22. The Mathematical Society of Japan. pp. 264–314. doi:10.11429/ppmsj1919.22.4_264. ISSN 0370-1239.
  10. Wolfgang Schleich, Quantum Optics in Phase Space, (Wiley-VCH, 2001) ISBN 978-3527294350
  11. H. J. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations, Springer-Verlag (2002).
  12. C. W. Gardiner, Quantum Noise, Springer-Verlag (1991).