एक्स्पोनेंशियल स्मूदिंग: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Generates a forecast of future values of a time series}}
{{Short description|Generates a forecast of future values of a time series}}
'''चरघातांकी समकारी''' या '''चरघातांकी गतिमान औसत (ईएमए)''' चरघातांकी [[विंडो फ़ंक्शन|विंडो फलन]] का उपयोग करके [[समय श्रृंखला]] डेटा को समकारी अंगूठे की तकनीक का नियम है। जबकि [[सरल चलती औसत|सरल गतिमान औसत]] में पूर्व अवलोकनों को समान रूप से भारित किया जाता है, समय के साथ तीव्रता से घटते भार को निर्दिष्ट करने के लिए घातीय फलनों का उपयोग किया जाता है। यह उपयोगकर्ता की पूर्व धारणाओं, जैसे कि ऋतु संबंधी, एक के आधार पर कुछ निर्धारण करने के लिए सरलता से सीखी जाने वाली और सरलता से लागू की जाने वाली प्रक्रिया है। घातांकीय समकारी का उपयोग प्रायः समय-श्रृंखला डेटा के विश्लेषण के लिए किया जाता है।
'''एक्स्पोनेंशियल स्मूदिंग (चरघातांकी समकारी''' या '''चरघातांकी गतिमान औसत (ईएमए)''' एक्स्पोनेंशियल [[विंडो फ़ंक्शन|विंडो फलन]] का उपयोग करके [[समय श्रृंखला]] डेटा को स्मूदिंग रूल ऑफ़ थंब की तकनीक है। जबकि [[सरल चलती औसत|सरलतम गतिमान औसत]] में पूर्व अवलोकनों को समान रूप से भारित किया जाता है, समय के साथ तीव्रता से घटते भार को निर्दिष्ट करने के लिए घातीय फलनों का उपयोग किया जाता है। यह उपयोगकर्ता की पूर्व धारणाओं, जैसे कि ऋतु संबंधी, एक के आधार पर कुछ निर्धारण करने के लिए सरलता से सीखी जाने वाली और सरलता से लागू की जाने वाली प्रक्रिया है। घातांकीय स्मूदिंग का उपयोग प्रायः समय-श्रृंखला डेटा के विश्लेषण के लिए किया जाता है।


चरघातांकी समकारी कई विंडो फलन में से है जो सामान्यतः [[ संकेत आगे बढ़ाना |संकेत प्रक्रिया]] में समकारी डेटा के लिए लागू होता है, जो उच्च-आवृत्ति [[शोर|रव]] को हटाने के लिए [[लो पास फिल्टर|निम्न पास निस्यंदक]] के रूप में फलन करता है। यह विधि 19वीं शताब्दी के संवलन में शिमोन डेनिस पॉइसन द्वारा पुनरावर्ती घातीय विंडो फलन के उपयोग के साथ-साथ कोलमोगोरोव और ज़ुर्बेंको द्वारा 1940 के दशक में अशांति के अपने अध्ययन से पुनरावर्ती गतिमान औसत के उपयोग से पहले की है।
इस प्रकार से एक्स्पोनेंशियल स्मूदिंग कई विंडो फलन में से है जो सामान्यतः [[ संकेत आगे बढ़ाना |संकेत प्रक्रिया]] में स्मूदिंग डेटा के लिए लागू होता है, जो उच्च-आवृत्ति [[शोर|रव]] को हटाने के लिए [[लो पास फिल्टर|निम्न पास निस्यंदक]] के रूप में फलन करता है। यह विधि 19वीं शताब्दी के संवलन में शिमोन डेनिस पॉइसन द्वारा पुनरावर्ती घातीय विंडो फलन के उपयोग के साथ-साथ कोलमोगोरोव और ज़ुर्बेंको द्वारा 1940 के दशक में अशांति के अपने अध्ययन से पुनरावर्ती गतिमान औसत के उपयोग से पहले की है।


मूल डेटा अनुक्रम को प्रायः <math>\{x_t\}</math> समय से प्रारंभ होने वाले <math>t = 0</math>, द्वारा दर्शाया जाता है, और घातांकीय समकारी एल्गोरिदम का आउटपुट सामान्यतः <math>\{s_t\}</math> के रूप में लिखा जाता है, जिसे <math>x</math> का अगला मान क्या होगा इसका सबसे स्पष्ट अनुमान माना जा सकता है। जब अवलोकनों का क्रम समय <math>t = 0</math> पर प्रारंभ होता है, तो घातांकीय समकारी का सबसे सरल रूप सूत्रों द्वारा दिया जाता है:<ref name=NIST />
अतः मूल डेटा अनुक्रम को प्रायः <math>\{x_t\}</math> समय से प्रारंभ होने वाले <math>t = 0</math>, द्वारा दर्शाया जाता है, और घातांकीय स्मूदिंग एल्गोरिदम का आउटपुट सामान्यतः <math>\{s_t\}</math> के रूप में लिखा जाता है, जिसे <math>x</math> का अगला मान क्या होगा इसका सबसे स्पष्ट अनुमान माना जा सकता है। इस प्रकार से जब अवलोकनों का क्रम समय <math>t = 0</math> पर प्रारंभ होता है, तो घातांकीय स्मूदिंग का सबसे सरलतम रूप निम्नलिखित सूत्रों द्वारा दिया जाता है:<ref name=NIST />


:<math>
:<math>
Line 12: Line 12:
\end{align}
\end{align}
</math>
</math>
जहां <math>\alpha</math> समकारी कारक है, और <math>0 < \alpha < 1</math>।
जहां <math>\alpha</math> स्मूदिंग कारक है, और <math>0 < \alpha < 1</math>।


==मूलभूत (सरल) घातांकीय समकारी==
==मूलभूत (सरल) एक्स्पोनेंशियल स्मूदिंग==
एक्सपोनेंशियल विंडो फलन के उपयोग का श्रेय सबसे पहले 17वीं शताब्दी की संख्यात्मक विश्लेषण तकनीक के विस्तार के रूप में पॉइसन को दिया गया, और बाद में 1940 के दशक में संकेत प्रोसेसिंग समुदाय द्वारा अपनाया गया।<ref name="Oppenheim, Alan V. 1975 5">{{cite book |title=अंकीय संकेत प्रक्रिया|year=1975 |publisher=[[Prentice Hall]] |isbn=0-13-214635-5 |author=Oppenheim, Alan V. |author2=Schafer, Ronald W.  |page= 5}}</ref> यहां, चरघातांकी समकारी चरघातांकी, या पॉइसन, विंडो फलन का अनुप्रयोग है। घातांकीय समकारी का सुझाव पहली बार 1956 में [[रॉबर्ट गुडेल ब्राउन]] के पूर्व कार्य के उद्धरण के बिना सांख्यिकीय साहित्य में दिया गया था,<ref>{{cite book|last=Brown|first=Robert G.|title=मांग की भविष्यवाणी के लिए घातीय स्मूथिंग|year=1956|publisher=Arthur D. Little Inc.|location=Cambridge, Massachusetts|pages=15|url=http://legacy.library.ucsf.edu/tid/dae94e00;jsessionid=104A0CEFFA31ADC2FA5E0558F69B3E1D.tobacco03}}</ref> और फिर 1957 में चार्ल्स सी. होल्ट द्वारा इसका विस्तार किया गया।<ref>{{cite journal|title=घातीय रूप से भारित औसत द्वारा रुझान और मौसमी का पूर्वानुमान लगाना|first=Charles C.|last=Holt|author-link=Charles C. Holt|journal=Office of Naval Research Memorandum|volume=52|year=1957}} reprinted in {{cite journal|title=घातीय रूप से भारित औसत द्वारा रुझान और मौसमी का पूर्वानुमान लगाना|first=Charles C.|last=Holt|author-link=Charles C. Holt|journal=[[International Journal of Forecasting]] |volume=20 |issue=1 |date=January–March 2004|pages=5–10|doi=10.1016/j.ijforecast.2003.09.015}}</ref> नीचे दिया गया सूत्रीकरण, जो सामान्यतः उपयोग किया जाता है, ब्राउन के लिए उत्तरदायी है और इसे ब्राउन की सरल घातांकीय समकारी के रूप में जाना जाता है।<ref>{{cite book|title=असतत समय श्रृंखला का सुचारू पूर्वानुमान और पूर्वानुमान|last=Brown |first=Robert Goodell |year=1963 |publisher=Prentice-Hall|location=Englewood Cliffs, NJ |url = http://babel.hathitrust.org/cgi/pt?id=mdp.39015004514728;view=1up;seq=1}}</ref> होल्ट, विंटर्स और ब्राउन की सभी विधियों को पुनरावर्ती निस्यंदन के एक सरल अनुप्रयोग के रूप में देखा जा सकता है, जो पहली बार 1940 के दशक में<ref name="Oppenheim, Alan V. 1975 5"/> [[परिमित आवेग प्रतिक्रिया]] (एफआईआर) निस्यंदक को [[अनंत आवेग प्रतिक्रिया]] में परिवर्तित करने के लिए पाया गया था।
एक्सपोनेंशियल विंडो फलन के उपयोग का श्रेय सबसे पहले 17वीं शताब्दी की संख्यात्मक विश्लेषण तकनीक के विस्तार के रूप में पॉइसन को दिया गया, और बाद में 1940 के दशक में संकेत प्रोसेसिंग समुदाय द्वारा अपनाया गया।<ref name="Oppenheim, Alan V. 1975 5">{{cite book |title=अंकीय संकेत प्रक्रिया|year=1975 |publisher=[[Prentice Hall]] |isbn=0-13-214635-5 |author=Oppenheim, Alan V. |author2=Schafer, Ronald W.  |page= 5}}</ref> यहां, एक्स्पोनेंशियल स्मूदिंग एक्स्पोनेंशियल, या पॉइसन, विंडो फलन का अनुप्रयोग है। घातांकीय स्मूदिंग का सुझाव पहली बार 1956 में [[रॉबर्ट गुडेल ब्राउन]] के पूर्व कार्य के उद्धरण के बिना सांख्यिकीय साहित्य में दिया गया था,<ref>{{cite book|last=Brown|first=Robert G.|title=मांग की भविष्यवाणी के लिए घातीय स्मूथिंग|year=1956|publisher=Arthur D. Little Inc.|location=Cambridge, Massachusetts|pages=15|url=http://legacy.library.ucsf.edu/tid/dae94e00;jsessionid=104A0CEFFA31ADC2FA5E0558F69B3E1D.tobacco03}}</ref> और फिर 1957 में चार्ल्स सी. होल्ट द्वारा इसका विस्तार किया गया।<ref>{{cite journal|title=घातीय रूप से भारित औसत द्वारा रुझान और मौसमी का पूर्वानुमान लगाना|first=Charles C.|last=Holt|author-link=Charles C. Holt|journal=Office of Naval Research Memorandum|volume=52|year=1957}} reprinted in {{cite journal|title=घातीय रूप से भारित औसत द्वारा रुझान और मौसमी का पूर्वानुमान लगाना|first=Charles C.|last=Holt|author-link=Charles C. Holt|journal=[[International Journal of Forecasting]] |volume=20 |issue=1 |date=January–March 2004|pages=5–10|doi=10.1016/j.ijforecast.2003.09.015}}</ref> नीचे दिया गया सूत्रीकरण, जो सामान्यतः उपयोग किया जाता है, ब्राउन के लिए उत्तरदायी है और इसे ब्राउन की सरलतम घातांकीय स्मूदिंग के रूप में जाना जाता है।<ref>{{cite book|title=असतत समय श्रृंखला का सुचारू पूर्वानुमान और पूर्वानुमान|last=Brown |first=Robert Goodell |year=1963 |publisher=Prentice-Hall|location=Englewood Cliffs, NJ |url = http://babel.hathitrust.org/cgi/pt?id=mdp.39015004514728;view=1up;seq=1}}</ref> अतः होल्ट, विंटर्स और ब्राउन की सभी विधियों को पुनरावर्ती निस्यंदन के एक सरलतम अनुप्रयोग के रूप में देखा जा सकता है, जो पहली बार 1940 के दशक में<ref name="Oppenheim, Alan V. 1975 5"/> [[परिमित आवेग प्रतिक्रिया]] (एफआईआर) निस्यंदक को [[अनंत आवेग प्रतिक्रिया]] में परिवर्तित करने के लिए पाया गया था।


घातांकीय समकारी का सबसे सरल रूप सूत्र द्वारा दिया गया है:
इस प्रकार से घातांकीय स्मूदिंग का सबसे सरलतम रूप निम्नलिखित सूत्र द्वारा दिया गया है:


:<math>s_t = \alpha x_t + (1-\alpha) s_{t-1} = s_{t-1} + \alpha (x_t - s_{t-1}).</math>
:<math>s_t = \alpha x_t + (1-\alpha) s_{t-1} = s_{t-1} + \alpha (x_t - s_{t-1}).</math>
जहां <math>\alpha</math> समकारी कारक है, और <math>0 \le \alpha \le 1</math>। दूसरे शब्दों में, सुचारु आँकड़ा <math>s_t</math> वर्तमान अवलोकन <math>x_t</math> और पूर्व स्मूथ आँकड़ा <math>s_{t-1}</math> का एक सरल भारित औसत है। सरल घातांकीय समकारी सरलता से लागू की जाती है, और जैसे ही दो अवलोकन उपलब्ध होते हैं, यह समकारी आँकड़ा तैयार करता है। समकारी कारक शब्द किस पर लागू होता है? यहाँ <math>\alpha</math> पर लागू किया गया समकारी कारक शब्द एक मिथ्या नाम है, क्योंकि <math>\alpha</math> के बड़े मान वास्तव में समकारी के स्तर को कम करते हैं, और <math>\alpha</math> = 1 के साथ सीमित स्थिति में आउटपुट श्रृंखला मात्र वर्तमान अवलोकन है। एक के निकट <math>\alpha</math> के मानों का समकारी प्रभाव कम होता है और डेटा में वर्तमान बदलावों को अधिक महत्व मिलता है, जबकि शून्य के निकट <math>\alpha</math> के मानों का समकारी प्रभाव अधिक होता है और वर्तमान परिवर्तनों के प्रति कम प्रतिक्रिया होती है।
जहां <math>\alpha</math> स्मूदिंग कारक है, और <math>0 \le \alpha \le 1</math>। दूसरे शब्दों में, सुचारु आँकड़ा <math>s_t</math> वर्तमान अवलोकन <math>x_t</math> और पूर्व स्मूथ आँकड़ा <math>s_{t-1}</math> का एक सरलतम भारित औसत है। सरलतम घातांकीय स्मूदिंग सरलता से लागू की जाती है, और जैसे ही दो अवलोकन उपलब्ध होते हैं, यह स्मूदिंग आँकड़ा तैयार करता है। स्मूदिंग कारक शब्द किस पर लागू होता है? यहाँ <math>\alpha</math> पर लागू किया गया स्मूदिंग कारक शब्द एक मिथ्या नाम है, क्योंकि <math>\alpha</math> के बड़े मान वास्तव में स्मूदिंग के स्तर को कम करते हैं, और <math>\alpha</math> = 1 के साथ सीमित स्थिति में आउटपुट श्रृंखला मात्र वर्तमान अवलोकन है। एक के निकट <math>\alpha</math> के मानों का स्मूदिंग प्रभाव कम होता है और डेटा में वर्तमान बदलावों को अधिक महत्व मिलता है, जबकि शून्य के निकट <math>\alpha</math> के मानों का स्मूदिंग प्रभाव अधिक होता है और वर्तमान परिवर्तनों के प्रति निम्न प्रतिक्रिया होती है।


<math>\alpha</math> चुनने की कोई औपचारिक रूप से सही प्रक्रिया नहीं है। कभी-कभी सांख्यिकीविद् के निर्णय का उपयोग उचित कारक चुनने के लिए किया जाता है। वैकल्पिक रूप से, <math>\alpha</math> के मान को अनुकूलित करने के लिए सांख्यिकीय तकनीक का उपयोग किया जा सकता है । उदाहरण के लिए, <math>\alpha</math> का मान निर्धारित करने के लिए न्यूनतम वर्गों का उपयोग किया जा सकता है, <math>(s_t - x_{t+1})^2</math> के लिए मात्राओं का योग न्यूनतम किया गया है। <ref name=NIST6431>{{cite web|url=http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm|title=NIST/SEMATECH e-Handbook of Statistical Methods, 6.4.3.1. Single Exponential Smoothing|access-date=2017-07-05|publisher=NIST}}</ref>
<math>\alpha</math> चुनने की कोई औपचारिक रूप से सही प्रक्रिया नहीं है। कभी-कभी सांख्यिकीविद् के निर्णय का उपयोग उचित कारक चुनने के लिए किया जाता है। वैकल्पिक रूप से, <math>\alpha</math> के मान को अनुकूलित करने के लिए सांख्यिकीय तकनीक का उपयोग किया जा सकता है। इस प्रकार से उदाहरण के लिए, <math>\alpha</math> का मान निर्धारित करने के लिए न्यूनतम वर्गों का उपयोग किया जा सकता है, <math>(s_t - x_{t+1})^2</math> के लिए मात्राओं का योग न्यूनतम किया गया है। <ref name=NIST6431>{{cite web|url=http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm|title=NIST/SEMATECH e-Handbook of Statistical Methods, 6.4.3.1. Single Exponential Smoothing|access-date=2017-07-05|publisher=NIST}}</ref>


कुछ अन्य समकारी विधियों, जैसे कि सरल गतिमान औसत, के विपरीत, इस तकनीक को परिणाम देने से पहले किसी न्यूनतम संख्या में अवलोकन की आवश्यकता नहीं होती है। यद्यपि, व्यवहार में, स्पष्ट औसत तब तक प्राप्त नहीं किया जाएगा जब तक कि कई प्रतिदर्शों का साथ औसत नहीं निकाला जाता; उदाहरण के लिए, एक स्थिर संकेत को वास्तविक मान के 95% तक पहुंचने में लगभग <math>3 / \alpha</math> चरण लगेंगे। सूचना हानि के बिना मूल संकेत को यथार्थ रूप से पुनर्निर्माण करने के लिए, घातीय गतिमान औसत के सभी चरण भी उपलब्ध होने चाहिए, क्योंकि पुराने प्रतिदर्शों का भार तीव्रता से घटता है। यह साधारण गतिमान औसत के विपरीत है, जिसमें औसत के भीतर प्रतिदर्शों के निरंतर भार के कारण कुछ प्रतिदर्शों को सूचना के अधिक हानि के बिना छोड़ा जा सकता है। यदि प्रतिदर्शों की ज्ञात संख्या छूट जाएगी, तो नवीन प्रतिदर्श और छोड़े जाने वाले सभी प्रतिदर्शों को समान महत्व देकर, इसके लिए भारित औसत को भी समायोजित किया जा सकता है।
कुछ अन्य स्मूदिंग विधियों, जैसे कि सरलतम गतिमान औसत, के विपरीत, इस तकनीक को परिणाम देने से पहले किसी न्यूनतम संख्या में अवलोकन की आवश्यकता नहीं होती है। यद्यपि, व्यवहार में, स्पष्ट औसत तब तक प्राप्त नहीं किया जाएगा जब तक कि कई प्रतिदर्शों का साथ औसत नहीं निकाला जाता; इस प्रकार से उदाहरण के लिए, एक स्थिर संकेत को वास्तविक मान के 95% तक पहुंचने में लगभग <math>3 / \alpha</math> चरण लगेंगे। सूचना हानि के बिना मूल संकेत को यथार्थ रूप से पुनर्निर्माण करने के लिए, घातीय गतिमान औसत के सभी चरण भी उपलब्ध होने चाहिए, क्योंकि पुराने प्रतिदर्शों का भार तीव्रता से घटता है। अतः यह साधारण गतिमान औसत के विपरीत है, जिसमें औसत के भीतर प्रतिदर्शों के निरंतर भार के कारण कुछ प्रतिदर्शों को सूचना के अधिक हानि के बिना छोड़ा जा सकता है। यदि प्रतिदर्शों की ज्ञात संख्या छूट जाएगी, तो नवीन प्रतिदर्श और छोड़े जाने वाले सभी प्रतिदर्शों को समान महत्व देकर, इसके लिए भारित औसत को भी पूर्ण रूप से समायोजित किया जा सकता है।


चरघातांकी समकारी के इस सरल रूप को गतिमान औसत चरघातांकी गतिमान औसत (ईडब्ल्यूएमए) के रूप में भी जाना जाता है। तकनीकी रूप से इसे बिना किसी स्थिर अवधि वाले [[ऑटोरेग्रेसिव इंटीग्रेटेड मूविंग एवरेज|ऑटोरेग्रेसिव इंटीग्रेटेड गतिमान औसत]] (ARIMA) (0,1,1) मॉडल के रूप में भी वर्गीकृत किया जा सकता है।<ref>{{cite web |url=http://www.duke.edu/~rnau/411avg.htm |title=औसत और घातीय स्मूथिंग मॉडल|first=Robert |last=Nau |access-date=26 July 2010}}</ref>
इस प्रकार से एक्स्पोनेंशियल स्मूदिंग के इस सरलतम रूप को गतिमान औसत एक्स्पोनेंशियल गतिमान औसत (ईडब्ल्यूएमए) के रूप में भी जाना जाता है। तकनीकी रूप से इसे बिना किसी स्थिर अवधि वाले [[ऑटोरेग्रेसिव इंटीग्रेटेड मूविंग एवरेज|ऑटोरेग्रेसिव इंटीग्रेटेड गतिमान औसत]] (ARIMA) (0,1,1) मॉडल के रूप में भी वर्गीकृत किया जा सकता है।<ref>{{cite web |url=http://www.duke.edu/~rnau/411avg.htm |title=औसत और घातीय स्मूथिंग मॉडल|first=Robert |last=Nau |access-date=26 July 2010}}</ref>
===समय स्थिरांक===
===समय स्थिरांक===
एक घातीय गतिमान औसत का समय स्थिरांक मूल संकेत के <math>1-1/e \approx 63.2\,\%</math> तक पहुंचने के लिए एक इकाई चरण फलन की सुचारू प्रतिक्रिया के लिए समय की मात्रा है। इस समय स्थिरांक <math> \tau </math> और समकारी कारक, <math> \alpha </math> के बीच संबंध सूत्र द्वारा दिया गया है:
एक घातीय गतिमान औसत का समय स्थिरांक मूल संकेत के <math>1-1/e \approx 63.2\,\%</math> तक पहुंचने के लिए एक इकाई चरण फलन की सुचारू प्रतिक्रिया के लिए समय की मात्रा है। इस प्रकार से इस समय स्थिरांक <math> \tau </math> और स्मूदिंग कारक, <math> \alpha </math> के बीच निम्न लिखित संबंध सूत्र द्वारा दिया गया है:


:<math>\alpha = 1 - e^{-\Delta T/\tau}</math>, इस प्रकार <math>\tau = - \frac{\Delta T}{\ln(1 - \alpha)}</math>
:<math>\alpha = 1 - e^{-\Delta T/\tau}</math>, इस प्रकार <math>\tau = - \frac{\Delta T}{\ln(1 - \alpha)}</math>
Line 35: Line 35:
:<math>\alpha \approx \frac{\Delta T} \tau </math>
:<math>\alpha \approx \frac{\Delta T} \tau </math>
===प्रारंभिक सुचारू मान चुनना===
===प्रारंभिक सुचारू मान चुनना===
ध्यान दें कि उपरोक्त परिभाषा में, <math>s_0</math> को <math>x_0</math>से प्रारंभ किया जा रहा है। क्योंकि घातांकीय समकारी के लिए आवश्यक है कि प्रत्येक चरण में हमारे निकट पिछला पूर्वानुमान हो, यह स्पष्ट नहीं है कि विधि कैसे प्रारंभ की जाए। हम मान सकते हैं कि प्रारंभिक पूर्वानुमान मांग के प्रारंभिक मान के बराबर है; यद्यपि, इस दृष्टिकोण में गंभीर कमी है। घातीय समकारी पूर्व अवलोकनों पर पर्याप्त भार डालती है, इसलिए मांग के प्रारंभिक मान का प्रारंभिक पूर्वानुमानों पर अनुचित रूप से बड़ा प्रभाव पड़ेगा। प्रक्रिया को उचित संख्या में अवधि (10 या अधिक) के लिए विकसित करने की अनुमति देकर और प्रारंभिक पूर्वानुमान के रूप में उन अवधि के समय मांग के औसत का उपयोग करके इस समस्या को दूर किया जा सकता है। इस प्रारंभिक मान को समूहित करने की कई अन्य विधियाँ हैं, परंतु यह ध्यान रखना महत्वपूर्ण है कि मान <math>\alpha</math> जितना छोटा होगा , इस आरंभिक सहज मान <math>s_0</math> के चयन पर आपका पूर्वानुमान उतना ही अधिक संवेदनशील होगा।<ref>"Production and Operations Analysis" Nahmias. 2009.</ref><ref>Čisar, P., & Čisar, S. M. (2011). "Optimization methods of EWMA statistics." ''Acta Polytechnica Hungarica'', 8(5), 73–87. Page 78.</ref>
ध्यान दें कि उपरोक्त परिभाषा में, <math>s_0</math> को <math>x_0</math>से प्रारंभ किया जा रहा है। क्योंकि घातांकीय स्मूदिंग के लिए आवश्यक है कि प्रत्येक चरण में हमारे निकट पिछला पूर्वानुमान हो, यह स्पष्ट नहीं है कि विधि कैसे प्रारंभ की जाए। हम मान सकते हैं कि प्रारंभिक पूर्वानुमान मांग के प्रारंभिक मान के बराबर है; यद्यपि, इस दृष्टिकोण में गंभीर कमी है। अतः घातीय स्मूदिंग पूर्व अवलोकनों पर पर्याप्त भार डालती है, इसलिए मांग के प्रारंभिक मान का प्रारंभिक पूर्वानुमानों पर अनुचित रूप से बड़ा प्रभाव पड़ेगा। प्रक्रिया को उचित संख्या में अवधि (10 या अधिक) के लिए विकसित करने की अनुमति देकर और प्रारंभिक पूर्वानुमान के रूप में उन अवधि के समय मांग के औसत का उपयोग करके इस समस्या को दूर किया जा सकता है। इस प्रारंभिक मान को समूहित करने की कई अन्य विधियाँ हैं, परंतु यह ध्यान रखना महत्वपूर्ण है कि मान <math>\alpha</math> जितना छोटा होगा, इस आरंभिक सहज मान <math>s_0</math> के चयन पर आपका पूर्वानुमान उतना ही अधिक संवेदनशील होगा।<ref>"Production and Operations Analysis" Nahmias. 2009.</ref><ref>Čisar, P., & Čisar, S. M. (2011). "Optimization methods of EWMA statistics." ''Acta Polytechnica Hungarica'', 8(5), 73–87. Page 78.</ref>
===अनुकूलन===
===अनुकूलन===
प्रत्येक घातीय समकारी विधि के लिए हमें समकारी पैरामीटर के लिए मान भी चुनना होगा। सरल घातीय समकारी के लिए, मात्र समकारी पैरामीटर (α) होता है, परंतु इसके बाद आने वाली विधियों के लिए सामान्यतः से अधिक समकारी पैरामीटर होते हैं।
प्रत्येक घातीय स्मूदिंग विधि के लिए हमें स्मूदिंग पैरामीटर के लिए मान भी चुनना होगा। सरलतम घातीय स्मूदिंग के लिए, मात्र स्मूदिंग पैरामीटर (α) होता है, परंतु इसके बाद आने वाली विधियों के लिए सामान्यतः से अधिक स्मूदिंग पैरामीटर होते हैं।


ऐसी स्थिति हैं जहां समकारी मापदंडों को व्यक्तिपरक विधियाँ से चुना जा सकता है - पूर्वानुमानकर्ता पूर्व अनुभव के आधार पर समकारी मापदंडों का मान निर्दिष्ट करता है। यद्यपि, किसी भी घातीय समकारी विधि में सम्मिलित अज्ञात मापदंडों के लिए मान प्राप्त करने का अधिक दृढ़ और उद्देश्यपूर्ण विधि देखे गए डेटा से उनका अनुमान लगाना है।
इस प्रकार से ऐसी स्थिति हैं जहां स्मूदिंग मापदंडों को व्यक्तिपरक विधियाँ से चुना जा सकता है - पूर्वानुमानकर्ता पूर्व अनुभव के आधार पर स्मूदिंग मापदंडों का मान पूर्ण रूप से निर्दिष्ट करता है। यद्यपि, किसी भी घातीय स्मूदिंग विधि में सम्मिलित अज्ञात मापदंडों के लिए मान प्राप्त करने का अधिक दृढ़ और उद्देश्यपूर्ण विधि देखे गए डेटा से उनका अनुमान लगाना है।


किसी भी घातांकीय समकारी विधि के लिए अज्ञात मापदंडों और प्रारंभिक मानों का अनुमान भविष्यवाणी (एसएसई) की वर्ग त्रुटियों के योग को कम करके लगाया जा सकता है। त्रुटियों को <math> t=1, \ldots,T</math> के लिए <math>e_t=y_t-\hat{y}_{t\mid t-1}</math> (प्रतिदर्श पूर्वानुमान त्रुटियों के भीतर एक चरण आगे) के रूप में निर्दिष्ट किया गया है। इसलिए हम अज्ञात मापदंडों के मान और प्रारंभिक मान पाते हैं जो
अतः किसी भी घातांकीय स्मूदिंग विधि के लिए अज्ञात मापदंडों और प्रारंभिक मानों का अनुमान भविष्यवाणी (एसएसई) की वर्ग त्रुटियों के योग को कम करके लगाया जा सकता है। त्रुटियों को <math> t=1, \ldots,T</math> के लिए <math>e_t=y_t-\hat{y}_{t\mid t-1}</math> (प्रतिदर्श पूर्वानुमान त्रुटियों के भीतर एक चरण आगे) के रूप में पूर्ण रूप से निर्दिष्ट किया गया है। इसलिए हम अज्ञात मापदंडों के मान और प्रारंभिक मान पाते हैं जो


: <math> \text{SSE} = \sum_{t=1}^T (y_t-\hat{y}_{t\mid t-1})^2=\sum_{t=1}^T e_t^2</math><ref name="otexts.org">{{Cite book | url=https://www.otexts.org/fpp/7/1 | title=7.1 Simple exponential smoothing &#124; Forecasting: Principles and Practice}}</ref>
: <math> \text{SSE} = \sum_{t=1}^T (y_t-\hat{y}_{t\mid t-1})^2=\sum_{t=1}^T e_t^2</math><ref name="otexts.org">{{Cite book | url=https://www.otexts.org/fpp/7/1 | title=7.1 Simple exponential smoothing &#124; Forecasting: Principles and Practice}}</ref>
को कम करते हैं। प्रतिगमन स्थिति के विपरीत (जहां हमारे निकट सीधे प्रतिगमन गुणांक की गणना करने के लिए सूत्र हैं जो एसएसई को कम करते हैं) इसमें गैर-रेखीय न्यूनतमकरण समस्या सम्मिलित है और हमें इसे निष्पादित करने के लिए [[गणितीय अनुकूलन]] उपकरण का उपयोग करने की आवश्यकता है।
को कम करते हैं। इस प्रकार से प्रतिगमन स्थिति के विपरीत (जहां हमारे निकट सीधे प्रतिगमन गुणांक की गणना करने के लिए सूत्र हैं जो एसएसई को कम करते हैं) इसमें गैर-रेखीय न्यूनतमकरण समस्या सम्मिलित है और हमें इसे निष्पादित करने के लिए [[गणितीय अनुकूलन]] उपकरण का उपयोग करने की पूर्ण रूप से आवश्यकता है।


===घातांकीय नामकरण===
===घातांकीय नामकरण===
संवलन के समय चरघातांकी विंडो फलन के उपयोग के कारण 'चरघातांकी समकारी' नाम दिया गया है। अब इसका श्रेय होल्ट, विंटर्स और ब्राउन को नहीं दिया जाता।
संवलन के समय एक्स्पोनेंशियल विंडो फलन के उपयोग के कारण 'एक्स्पोनेंशियल स्मूदिंग' नाम दिया गया है। अतः अब इसका श्रेय होल्ट, विंटर्स और ब्राउन को नहीं दिया जाता।


सरल घातांकीय स्मूथिंग के लिए परिभाषित समीकरण के प्रत्यक्ष प्रतिस्थापन द्वारा हम पाते हैं कि
इस प्रकार से सरलतम घातांकीय स्मूथिंग के लिए परिभाषित समीकरण के प्रत्यक्ष प्रतिस्थापन द्वारा हम पाते हैं कि


:<math>
:<math>
Line 59: Line 59:
\end{align}
\end{align}
</math>
</math>
दूसरे शब्दों में, जैसे-जैसे समय बीतता है, सुचारू आँकड़ा <math>s_t</math> पूर्व अवलोकनों <math>s_{t-1},\ldots, s_{t-}</math> की अधिक से अधिक संख्या का भारित औसत बन जाता है, और पूर्व अवलोकनों को दिए गए भार ज्यामितीय प्रगति
अतः दूसरे शब्दों में, जैसे-जैसे समय बीतता है, सुचारू आँकड़ा <math>s_t</math> पूर्व अवलोकनों <math>s_{t-1},\ldots, s_{t-}</math> की अधिक से अधिक संख्या का भारित औसत बन जाता है, और पूर्व अवलोकनों को दिए गए भार ज्यामितीय प्रगति


: <math>1, (1-\alpha), (1-\alpha)^2,\ldots, (1-\alpha)^n,\ldots</math>
: <math>1, (1-\alpha), (1-\alpha)^2,\ldots, (1-\alpha)^n,\ldots</math>
की प्रतिबंधों के समानुपाती होते हैं। एक ज्यामितीय प्रगति घातीय फलन का असतत संस्करण है, इसलिए सांख्यिकी विद्या के अनुसार इस समकारी विधि का नाम यहीं से उत्पन्न हुआ है।
की प्रतिबंधों के समानुपाती होते हैं। एक ज्यामितीय प्रगति घातीय फलन का असतत संस्करण है, इसलिए सांख्यिकी विद्या के अनुसार इस स्मूदिंग विधि का नाम यहीं से उत्पन्न हुआ है।


===गतिमान औसत के साथ तुलना===
===गतिमान औसत के साथ तुलना===
चरघातांकी समकारी और गतिमान औसत में इनपुट डेटा के सापेक्ष अंतराल प्रस्तुत करने के समान दोष हैं। यद्यपि इसे सममित कर्नेल, जैसे गतिमान औसत या गाऊसी के लिए परिणाम को विंडो की आधी लंबाई में स्थानांतरित करके ठीक किया जा सकता है, यह स्पष्ट नहीं है कि यह घातीय समकारी के लिए कितना उपयुक्त होगा। जब α = 2/(k + 1) होता है तो उन दोनों में पूर्वानुमान त्रुटि का वितरण लगभग समान होता है। वे इसमें भिन्न हैं कि घातीय समकारी सभी पूर्व डेटा को ध्यान में रखती है, जबकि गतिमान औसत मात्र k पूर्व डेटा बिंदुओं को ध्यान में रखती है। कम्प्यूटेशनल रूप से बोलते हुए, वे इस रूप में भी भिन्न हैं कि गतिमान औसत के लिए पूर्व k डेटा बिंदुओं, या लैग k + 1 पर डेटा बिंदु और सबसे वर्तमान पूर्वानुमान मान को बनाए रखने की आवश्यकता होती है, जबकि घातांकीय समकारी के लिए मात्र सबसे वर्तमान पूर्वानुमान मान की आवश्यकता होती है रखा।<ref>{{cite book|last=Nahmias|first=Steven|title=उत्पादन और संचालन विश्लेषण|edition=6th|isbn=978-0-07-337785-8|date=3 March 2008}}{{Page needed|date=September 2011}}</ref>
एक्स्पोनेंशियल स्मूदिंग और गतिमान औसत में इनपुट डेटा के सापेक्ष अंतराल प्रस्तुत करने के समान दोष हैं। यद्यपि इसे सममित कर्नेल, जैसे गतिमान औसत या गाऊसी के लिए परिणाम को विंडो की आधी लंबाई में स्थानांतरित करके पूर्ण रूप से ठीक किया जा सकता है, यह स्पष्ट नहीं है कि यह घातीय स्मूदिंग के लिए कितना उपयुक्त होगा। अतः जब α = 2/(k + 1) होता है तो उन दोनों में पूर्वानुमान त्रुटि का वितरण लगभग समान होता है। वे इसमें भिन्न हैं कि घातीय स्मूदिंग सभी पूर्व डेटा को ध्यान में रखती है, जबकि गतिमान औसत मात्र k पूर्व डेटा बिंदुओं को पूर्ण रूप से ध्यान में रखती है। कम्प्यूटेशनल रूप से बोलते हुए, वे इस रूप में भी भिन्न हैं कि गतिमान औसत के लिए पूर्व k डेटा बिंदुओं, या लैग k + 1 पर डेटा बिंदु और सबसे वर्तमान पूर्वानुमान मान को बनाए रखने की आवश्यकता होती है, जबकि घातांकीय स्मूदिंग के लिए मात्र सबसे वर्तमान पूर्वानुमान मान की आवश्यकता होती है।<ref>{{cite book|last=Nahmias|first=Steven|title=उत्पादन और संचालन विश्लेषण|edition=6th|isbn=978-0-07-337785-8|date=3 March 2008}}{{Page needed|date=September 2011}}</ref>


संकेत प्रोसेसिंग साहित्य में, गैर-कारण (सममित) निस्यंदक का उपयोग सामान्य है, और घातीय विंडो फलन का व्यापक रूप से इस क्रिया में उपयोग किया जाता है, परंतु अलग शब्दावली का उपयोग किया जाता है: घातीय समकारी पहले क्रम के अनंत-आवेग के बराबर है प्रतिक्रिया (आईआईआर) निस्यंदक और गतिमान औसत समान भार कारकों के साथ सीमित आवेग प्रतिक्रिया निस्यंदक के बराबर है।
इस प्रकार से संकेत प्रोसेसिंग साहित्य में, गैर-कारण (सममित) निस्यंदक का उपयोग सामान्य है, और घातीय विंडो फलन का व्यापक रूप से इस क्रिया में उपयोग किया जाता है, परंतु अलग शब्दावली का उपयोग किया जाता है: घातीय स्मूदिंग पहले क्रम के अनंत-आवेग के बराबर है प्रतिक्रिया (आईआईआर) निस्यंदक और गतिमान औसत समान भार कारकों के साथ सीमित आवेग प्रतिक्रिया निस्यंदक के बराबर है।


==द्वैत चरघातांकी समकारी (होल्ट रेखीय)==
==द्वैत एक्स्पोनेंशियल स्मूदिंग (होल्ट रेखीय)==
जब डेटा में रुझान का अनुमान होता है तो सरल घातीय समकारी स्पष्ट कार्य नहीं करती है। <ref name="NIST">{{cite web|url=http://www.itl.nist.gov/div898/handbook/|title=NIST/SEMATECH e-Handbook of Statistical Methods|access-date=2010-05-23|publisher=NIST}}</ref> ऐसी स्थितियों में, द्वैत चरघातांकी समकारी या सेकेंड-क्रम चरघातांकी समकारी नाम से कई विधियाँ तैयार किए गए, जो चरघातांकी निस्यंदक का दो बार पुनरावर्ती अनुप्रयोग है, इस प्रकार इसे द्वैत चरघातांकी समकारी कहा जाता है। यह नामकरण चौगुनी घातांकीय समकारी के समान है, जो इसकी पुनरावृत्ति गहराई का भी संदर्भ देता है।<ref>{{cite web |url=http://help.sap.com/saphelp_45b/helpdata/en/7d/c27a14454011d182b40000e829fbfe/content.htm |title=Model: Second-Order Exponential Smoothing |author=<!--Staff writer(s); no by-line.--> |publisher=[[SAP AG]] |access-date=23 January 2013}}</ref> द्वैत चरघातांकी समकारी के पश्च मूल विचार किसी प्रकार की प्रवृत्ति प्रदर्शित करने वाली श्रृंखला की संभावना को ध्यान में रखने के लिए शब्द प्रस्तुत करना है। यह प्रवणता घटक स्वयं चरघातांकी समकारी के माध्यम से अद्यतन किया जाता है।
अतः जब डेटा में रुझान का अनुमान होता है तो सरलतम घातीय स्मूदिंग स्पष्ट कार्य नहीं करती है। <ref name="NIST">{{cite web|url=http://www.itl.nist.gov/div898/handbook/|title=NIST/SEMATECH e-Handbook of Statistical Methods|access-date=2010-05-23|publisher=NIST}}</ref> ऐसी स्थितियों में, द्वैत एक्स्पोनेंशियल स्मूदिंग या सेकेंड-क्रम एक्स्पोनेंशियल स्मूदिंग नाम से कई विधियाँ तैयार किए गए, जो एक्स्पोनेंशियल निस्यंदक का दो बार पुनरावर्ती अनुप्रयोग है, इस प्रकार इसे द्वैत एक्स्पोनेंशियल स्मूदिंग कहा जाता है। यह नामकरण चौगुनी घातांकीय स्मूदिंग के समान है, जो इसकी पुनरावृत्ति गहनता का भी संदर्भ देता है।<ref>{{cite web |url=http://help.sap.com/saphelp_45b/helpdata/en/7d/c27a14454011d182b40000e829fbfe/content.htm |title=Model: Second-Order Exponential Smoothing |author=<!--Staff writer(s); no by-line.--> |publisher=[[SAP AG]] |access-date=23 January 2013}}</ref> द्वैत एक्स्पोनेंशियल स्मूदिंग के पश्च मूल विचार किसी प्रकार की प्रवृत्ति प्रदर्शित करने वाली श्रृंखला की संभावना को ध्यान में रखने के लिए शब्द प्रस्तुत करना है। यह प्रवणता घटक स्वयं एक्स्पोनेंशियल स्मूदिंग के माध्यम से अद्यतन किया जाता है।


एक विधि, इस प्रकार कार्य करती है:<ref>{{cite web |url= http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm |title=6.4.3.3. Double Exponential Smoothing |work=itl.nist.gov |access-date=25 September 2011}}</ref>
एक विधि, इस प्रकार निम्नलिखित कार्य करती है:<ref>{{cite web |url= http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm |title=6.4.3.3. Double Exponential Smoothing |work=itl.nist.gov |access-date=25 September 2011}}</ref>


फिर से, अवलोकनों का मूल डेटा अनुक्रम <math>x_t</math> द्वारा दर्शाया जाता है, जो समय <math>t=0</math> से प्रारंभ होता है। हम समय <math>t</math> के लिए सुचारु मान का प्रतिनिधित्व करने के लिए <math>s_t</math> का उपयोग करते हैं, और <math>b_t</math> समय <math>t</math> पर प्रवृत्ति का हमारा सबसे स्पष्ट अनुमान है। एल्गोरिथम का आउटपुट अब <math>F_{t+m}</math> के रूप में लिखा गया है, जो समय <math>t</math> तक के कच्चे डेटा के आधार पर समय <math>m > 0</math> पर <math>x_{t+m}</math> के मान का अनुमान है। द्वैत चरघातांकी समकारी सूत्र
फिर से, अवलोकनों का मूल डेटा अनुक्रम <math>x_t</math> द्वारा दर्शाया जाता है, जो समय <math>t=0</math> से प्रारंभ होता है। हम समय <math>t</math> के लिए सुचारु मान का प्रतिनिधित्व करने के लिए <math>s_t</math> का उपयोग करते हैं, और <math>b_t</math> समय <math>t</math> पर प्रवृत्ति का हमारा सबसे स्पष्ट अनुमान है। अतः एल्गोरिथम का आउटपुट अब <math>F_{t+m}</math> के रूप में लिखा गया है, जो समय <math>t</math> तक के मूल डेटा के आधार पर समय <math>m > 0</math> पर <math>x_{t+m}</math> के मान का अनुमान है। इस प्रकार से द्वैत एक्स्पोनेंशियल स्मूदिंग सूत्र


:<math>
:<math>
Line 90: Line 90:


</math>
</math>
के लिए जहां <math>\alpha</math> (<math>0 \le \alpha \le 1</math>) डेटा समकारी कारक है, और <math>\beta</math> (<math>0 \le \beta \le 1</math>) प्रवृत्ति को सुचारू करने वाला कारक है।
के लिए जहां <math>\alpha</math> (<math>0 \le \alpha \le 1</math>) डेटा स्मूदिंग कारक है, और <math>\beta</math> (<math>0 \le \beta \le 1</math>) प्रवृत्ति को सुचारू करने वाला कारक है।


<math>x_t</math> से आगे का पूर्वानुमान सन्निकटन द्वारा दिया जाता है:
अतः इस प्रकार से <math>x_t</math> से आगे का पूर्वानुमान निम्नलिखित सन्निकटन द्वारा दिया जाता है:


: <math>
: <math>
F_{t+m} = s_t + m \cdot b_t
F_{t+m} = s_t + m \cdot b_t
</math>
</math>
प्रारंभिक मान <math>b</math> निर्धारित करना प्राथमिकता का विषय है। ऊपर सूचीबद्ध विकल्प के अलावा एक विकल्प कुछ <math>n</math> के लिए <math display="inline">\frac{x_n-x_0} n</math> है।
अतः प्रारंभिक मान <math>b</math> निर्धारित करना प्राथमिकता का विषय है। ऊपर सूचीबद्ध विकल्प के अलावा एक विकल्प कुछ <math>n</math> के लिए <math display="inline">\frac{x_n-x_0} n</math> है।


ध्यान दें कि ''F''<sub>0</sub> अपरिभाषित है (समय 0 के लिए कोई अनुमान नहीं है), और परिभाषा ''F''<sub>1</sub>=''s''<sub>0</sub>+''b''<sub>0</sub> के अनुसार, जो ठीक रूप से परिभाषित है, इस प्रकार आगे के मानों का मूल्यांकन किया जा सकता है।
ध्यान दें कि ''F''<sub>0</sub> अपरिभाषित है (समय 0 के लिए कोई अनुमान नहीं है), और परिभाषा ''F''<sub>1</sub>=''s''<sub>0</sub>+''b''<sub>0</sub> के अनुसार, जो ठीक रूप से परिभाषित है, इस प्रकार आगे के मानों का मूल्यांकन किया जा सकता है।


एक दूसरी विधि, जिसे या तो ब्राउन की रेखीय चरघातांकी समकारी (एलईएस) या ब्राउन की द्वैत चरघातांकी समकारी कहा जाता है, निम्नानुसार कार्य करती है।<ref>{{cite web |url= http://www.duke.edu/~rnau/411avg.htm |title=औसत और घातीय स्मूथिंग मॉडल|work=duke.edu  |access-date=25 September 2011}}</ref>
एक दूसरी विधि, जिसे या तो ब्राउन की रेखीय एक्स्पोनेंशियल स्मूदिंग (एलईएस) या ब्राउन की द्वैत एक्स्पोनेंशियल स्मूदिंग कहा जाता है, निम्नानुसार कार्य करती है।<ref>{{cite web |url= http://www.duke.edu/~rnau/411avg.htm |title=औसत और घातीय स्मूथिंग मॉडल|work=duke.edu  |access-date=25 September 2011}}</ref>
:<math>
:<math>
\begin{align}
\begin{align}
Line 111: Line 111:
\end{align}
\end{align}
</math>
</math>
जहाँ a<sub>''t''</sub>, समय t और ''b<sub>t</sub>'' पर अनुमानित स्तर, समय t पर अनुमानित प्रवृत्ति हैं:
जहाँ a<sub>''t''</sub>, समय t और ''b<sub>t</sub>'' पर अनुमानित स्तर, समय t पर अनुमानित प्रवृत्ति निम्नलिखित हैं:


:<math>
:<math>
Line 119: Line 119:
\end{align}
\end{align}
</math>
</math>
==त्रिपक्षीय चरघातांकी समकारी (होल्ट विंटर्स)==
==त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग (होल्ट विंटर्स)==
त्रिपक्षीय चरघातांकी समकारी तीन बार चरघातांकी समकारी लागू करती है, जिसका उपयोग सामान्यतः तब किया जाता है जब अध्ययन के अंतर्गत समय श्रृंखला से तीन उच्च आवृत्ति संकेतों को हटाया जाना होता है। ऋतु संबंधी विभिन्न प्रकार की होती हैं: प्रकृति में 'गुणक' और 'योगात्मक', बहुत कुछ उसी प्रकार जैसे जोड़ और गुणा गणित में मूलभूत संक्रियाएँ हैं।
अतः त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग तीन बार एक्स्पोनेंशियल स्मूदिंग लागू करती है, जिसका उपयोग सामान्यतः तब किया जाता है जब अध्ययन के अंतर्गत समय श्रृंखला से तीन उच्च आवृत्ति संकेतों को हटाया जाना होता है। ऋतु संबंधी विभिन्न प्रकार की होती हैं: प्रकृति में 'गुणक' और 'योगात्मक', बहुत कुछ उसी प्रकार जैसे जोड़ और गुणा गणित में मूलभूत संक्रियाएँ हैं।


यदि दिसंबर के प्रत्येक महीने में हम नवंबर की तुलना में 10,000 अधिक अपार्टमेंट बेचते हैं, तो ऋतु संबंधी प्रकृति में योगात्मक है। यद्यपि, यदि हम शीत ऋतु के महीनों की तुलना में उष्ण ऋतु के महीनों में 10% अधिक अपार्टमेंट बेचते हैं, तो ऋतु संबंधी प्रकृति में गुणक है। गुणनात्मक ऋतु संबंधी को स्थिर कारक के रूप में दर्शाया जा सकता है, पूर्ण राशि के रूप में नहीं।<ref>{{cite web|last1=Kalehar|first1=Prajakta S.|title=Time series Forecasting using Holt–Winters Exponential Smoothing|url=http://www.it.iitb.ac.in/~praj/acads/seminar/04329008_ExponentialSmoothing.pdf|access-date=23 June 2014}}</ref>
यदि दिसंबर के प्रत्येक महीने में हम नवंबर की तुलना में 10,000 अधिक अपार्टमेंट बेचते हैं, तो ऋतु संबंधी प्रकृति में योगात्मक है। यद्यपि, यदि हम शीत ऋतु के महीनों की तुलना में उष्ण ऋतु के महीनों में 10% अधिक अपार्टमेंट बेचते हैं, तो ऋतु संबंधी प्रकृति में गुणक है। अतः गुणनात्मक ऋतु संबंधी को स्थिर कारक के रूप में दर्शाया जा सकता है, पूर्ण राशि के रूप में नहीं।<ref>{{cite web|last1=Kalehar|first1=Prajakta S.|title=Time series Forecasting using Holt–Winters Exponential Smoothing|url=http://www.it.iitb.ac.in/~praj/acads/seminar/04329008_ExponentialSmoothing.pdf|access-date=23 June 2014}}</ref>


त्रिपक्षीय चरघातांकी समकारी का सुझाव पहली बार होल्ट के छात्र, पीटर विंटर्स ने 1960 में चरघातांकी समकारी पर 1940 के दशक की संकेत प्रोसेसिंग पुस्तक को पढ़ने के बाद दिया था।<ref>{{cite journal|first=P. R.|last=Winters|title=घातीय रूप से भारित मूविंग औसत द्वारा बिक्री का पूर्वानुमान|journal=[[Management Science: A Journal of the Institute for Operations Research and the Management Sciences|Management Science]]|volume=6|issue=3|date=April 1960|pages=324–342|doi=10.1287/mnsc.6.3.324}}</ref> होल्ट का नवीन विचार 1 से अधिक और 5 से कम की विषम संख्या में निस्यंदक को दोहराना था, जो पूर्व युगों के विद्वानों के बीच लोकप्रिय था। <ref name="विंटर्स" 324-342="" /> जबकि पुनरावर्ती निस्यंदक का उपयोग किया गया था पहले, इसे हेडमार्ड अनुमान के साथ मेल खाने के लिए दो बार और चार बार लागू किया गया था, जबकि त्रिपक्षीय अनुप्रयोग के लिए एक पक्षीय संवलन के दोगुने से अधिक संचालन की आवश्यकता थी। त्रिपक्षीय अनुप्रयोग के उपयोग को सैद्धांतिक आधार पर आधारित तकनीक के अतिरिक्त सहज तकनीक का नियम माना जाता है और प्रायः चिकित्सकों द्वारा इस पर अत्यधिक बल दिया गया है। - मान लीजिए कि हमारे पास अवलोकनों का एक क्रम <math>x_t,</math> है, जो लंबाई '''L''' के ऋतु संबंधी परिवर्तन के चक्र के साथ समय <math>t=0</math> से प्रारंभ होता है।
इस प्रकार से त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग का सुझाव पहली बार होल्ट के छात्र, पीटर विंटर्स ने 1960 में एक्स्पोनेंशियल स्मूदिंग पर 1940 के दशक की संकेत प्रोसेसिंग पुस्तक को पढ़ने के बाद दिया था।<ref>{{cite journal|first=P. R.|last=Winters|title=घातीय रूप से भारित मूविंग औसत द्वारा बिक्री का पूर्वानुमान|journal=[[Management Science: A Journal of the Institute for Operations Research and the Management Sciences|Management Science]]|volume=6|issue=3|date=April 1960|pages=324–342|doi=10.1287/mnsc.6.3.324}}</ref> होल्ट का नवीन विचार 1 से अधिक और 5 से कम की विषम संख्या में निस्यंदक को दोहराना था, जो पूर्व युगों के विद्वानों के बीच लोकप्रिय था। <ref name="Winters 324–342">{{cite journal|first=P. R.|last=Winters|title=Forecasting Sales by Exponentially Weighted Moving Averages|journal=[[Management Science: A Journal of the Institute for Operations Research and the Management Sciences|Management Science]]|volume=6|issue=3|date=April 1960|pages=324–342|doi=10.1287/mnsc.6.3.324}}</ref> जबकि पुनरावर्ती निस्यंदक का उपयोग किया गया था पहले, इसे हेडमार्ड अनुमान के साथ मेल खाने के लिए दो बार और चार बार लागू किया गया था, जबकि त्रिपक्षीय अनुप्रयोग के लिए एक पक्षीय संवलन के दोगुने से अधिक संचालन की आवश्यकता थी। अतः त्रिपक्षीय अनुप्रयोग के उपयोग को सैद्धांतिक आधार पर आधारित तकनीक के अतिरिक्त सहज तकनीक का नियम माना जाता है और प्रायः चिकित्सकों द्वारा इस पर अत्यधिक बल दिया गया है। - मान लीजिए कि हमारे पास अवलोकनों का एक क्रम <math>x_t,</math> है, जो लंबाई '''L''' के ऋतु संबंधी परिवर्तन के चक्र के साथ समय <math>t=0</math> से प्रारंभ होता है।


यह विधि डेटा के साथ-साथ ऋतु संबंधी सूचकांकों के लिए एक ट्रेंड रेखा की गणना करती है जो ट्रेंड रेखा में मानों को इस आधार पर प्रतीक्षा करती है कि वह समय बिंदु लंबाई <math>L</math> के चक्र में कहां आता है।
यह विधि डेटा के साथ-साथ ऋतु संबंधी सूचकांकों के लिए एक ट्रेंड रेखा की गणना करती है जो ट्रेंड रेखा में मानों को इस आधार पर प्रतीक्षा करती है कि वह समय बिंदु लंबाई <math>L</math> के चक्र में कहां आता है।


मान लीजिए <math>t</math> समय पर <math>s_t</math> के लिए स्थिर भाग के सुचारू मान <math>b_t</math> का प्रतिनिधित्व करें , रैखिक प्रवृत्ति के सर्वोत्तम अनुमानों का क्रम है जो ऋतु संबंधी परिवर्तनों पर आरोपित होते हैं, और <math>c_t</math> ऋतु संबंधी सुधार कारकों का क्रम है। हम प्रेक्षणों के चक्र में प्रत्येक समय <math>t</math> मोड <math>L</math> पर <math>c_t</math> का अनुमान लगाना चाहते हैं। एक सामान्य नियम के रूप में, ऋतु संबंधी कारकों के एक समुच्चय को आरंभ करने के लिए ऐतिहासिक डेटा के न्यूनतम दो पूर्ण ऋतु (या <math>2L</math> अवधि) की आवश्यकता होती है।
अतः मान लीजिए <math>t</math> समय पर <math>s_t</math> के लिए स्थिर भाग के सुचारू मान <math>b_t</math> का प्रतिनिधित्व करें, रैखिक प्रवृत्ति के सर्वोत्तम अनुमानों का क्रम है जो ऋतु संबंधी परिवर्तनों पर आरोपित होते हैं, और <math>c_t</math> ऋतु संबंधी सुधार कारकों का क्रम है। हम प्रेक्षणों के चक्र में प्रत्येक समय <math>t</math> मोड <math>L</math> पर <math>c_t</math> का अनुमान लगाना चाहते हैं। अतः एक सामान्य नियम के रूप में, ऋतु संबंधी कारकों के एक समुच्चय को आरंभ करने के लिए ऐतिहासिक डेटा के न्यूनतम दो पूर्ण ऋतु (या <math>2L</math> अवधि) की आवश्यकता होती है।


एल्गोरिदम का आउटपुट फिर से <math>F_{t+m}</math>, के रूप में लिखा गया है, जो समय t तक के मूल डेटा के आधार पर समय <math>t+m>0</math> पर <math>x_{t+m}</math> के मान का अनुमान है। गुणक ऋतु संबंधी के साथ त्रिपक्षीय चरघातांकी समकारी सूत्रों<ref name="NIST" />
एल्गोरिदम का आउटपुट फिर से <math>F_{t+m}</math>, के रूप में लिखा गया है, जो समय t तक के मूल डेटा के आधार पर समय <math>t+m>0</math> पर <math>x_{t+m}</math> के मान का अनुमान है। इस प्रकार से गुणक ऋतु संबंधी के साथ त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग सूत्रों<ref name="NIST" />


:<math>
:<math>
Line 141: Line 141:
\end{align}
\end{align}
</math>
</math>
द्वारा दी गई है, जहां <math>\alpha</math> (<math>0 \le \alpha \le 1</math>) डेटा समकारी कारक है, <math>\beta</math> (<math>0 \le \beta \le 1</math>) प्रवृत्ति को सुचारू करने वाला कारक है, और <math>\gamma</math> (<math>0 \le \gamma \le 1</math>) ऋतु संबंधी परिवर्तन को सुचारू करने वाला कारक है।
द्वारा दी गई है, जहां <math>\alpha</math> (<math>0 \le \alpha \le 1</math>) डेटा स्मूदिंग कारक है, <math>\beta</math> (<math>0 \le \beta \le 1</math>) प्रवृत्ति को सुचारू करने वाला कारक है, और <math>\gamma</math> (<math>0 \le \gamma \le 1</math>) ऋतु संबंधी परिवर्तन को सुचारू करने वाला कारक है।


प्रारंभिक रुझान अनुमान के लिए सामान्य सूत्र <math>b</math> है:
इस प्रकार से प्रारंभिक रुझान अनुमान के लिए सामान्य सूत्र <math>b</math> निम्नलिखित है:


:<math>
:<math>
Line 150: Line 150:
\end{align}
\end{align}
</math>
</math>
<math>i = 1,2,\ldots,L</math> के लिए ऋतु संबंधी सूचकांकों <math>c_i</math> के लिए प्रारंभिक अनुमान निर्धारित करना थोड़ा अधिक सम्मिलित है। यदि <math>N</math> आपके डेटा में स्थित पूर्ण चक्रों की संख्या है, तो:
<math>i = 1,2,\ldots,L</math> के लिए ऋतु संबंधी सूचकांकों <math>c_i</math> के लिए प्रारंभिक अनुमान निर्धारित करना थोड़ा अधिक सम्मिलित है। इस प्रकार से यदि <math>N</math> आपके डेटा में स्थित पूर्ण चक्रों की संख्या है, तो:


:<math>
:<math>
Line 161: Line 161:
ध्यान दें कि <math>A_j</math> आपके डेटा के <math>j^\text{th}</math> चक्र में <math>x</math> का औसत मान है।
ध्यान दें कि <math>A_j</math> आपके डेटा के <math>j^\text{th}</math> चक्र में <math>x</math> का औसत मान है।


योगात्मक ऋतु संबंधीता के साथ त्रिपक्षीय चरघातांकी समकारी किसके द्वारा दी जाती है:
अतः इस प्रकार से योगात्मक ऋतु संबंधीता के साथ त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग किसके द्वारा दी जाती है:


: <math>
: <math>
Line 172: Line 172:
\end{align}
\end{align}
</math>
</math>
[[Category:Articles with invalid date parameter in template]]
[[Category:Collapse templates]]
[[Category:Created On 07/12/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
== सांख्यिकी पैकेज में कार्यान्वयन ==
== सांख्यिकी पैकेज में कार्यान्वयन ==
* [[आर (प्रोग्रामिंग भाषा)|R (प्रोग्रामिंग भाषा)]]: आर: सांख्यिकी पैकेज में होल्टविंटर्स फलन और पूर्वानुमान पैकेज में ईटीएस फलन (एक अधिक संपूर्ण कार्यान्वयन, जिसके परिणामस्वरूप सामान्यतः स्पष्ट प्रदर्शन होता है)।<ref>{{Cite web|url=https://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html|title=R: Holt–Winters Filtering|website=stat.ethz.ch|access-date=2016-06-05}}</ref><ref>{{Cite web|url=http://www.inside-r.org/packages/cran/forecast/docs/ets|title=ets {forecast} {{!}} inside-R {{!}} A Community Site for R|website=inside-r.org|access-date=2016-06-05|archive-url=https://web.archive.org/web/20160716153135/http://www.inside-r.org/packages/cran/forecast/docs/ets|archive-date=16 July 2016|url-status=dead}}</ref><ref>{{Cite web|url=http://robjhyndman.com/hyndsight/estimation2/|title=HoltWinters() और ets() की तुलना करना|date=2011-05-29|website=Hyndsight|language=en-US|access-date=2016-06-05}}</ref>
* [[आर (प्रोग्रामिंग भाषा)|R (प्रोग्रामिंग भाषा)]]: सांख्यिकी पैकेज में होल्टविंटर्स फलन और पूर्वानुमान पैकेज में ईटीएस फलन (एक अधिक संपूर्ण कार्यान्वयन, जिसके परिणामस्वरूप सामान्यतः स्पष्ट प्रदर्शन होता है)।<ref>{{Cite web|url=https://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html|title=R: Holt–Winters Filtering|website=stat.ethz.ch|access-date=2016-06-05}}</ref><ref>{{Cite web|url=http://www.inside-r.org/packages/cran/forecast/docs/ets|title=ets {forecast} {{!}} inside-R {{!}} A Community Site for R|website=inside-r.org|access-date=2016-06-05|archive-url=https://web.archive.org/web/20160716153135/http://www.inside-r.org/packages/cran/forecast/docs/ets|archive-date=16 July 2016|url-status=dead}}</ref><ref>{{Cite web|url=http://robjhyndman.com/hyndsight/estimation2/|title=HoltWinters() और ets() की तुलना करना|date=2011-05-29|website=Hyndsight|language=en-US|access-date=2016-06-05}}</ref>
* [[पायथन (प्रोग्रामिंग भाषा)]]: स्टैटमॉडल पैकेज का होल्टविंटर्स मॉड्यूल सरल, द्वैत और त्रिपक्षीय चरघातांकी समकारी की अनुमति देता है।
* [[पायथन (प्रोग्रामिंग भाषा)]]: स्टैटमॉडल पैकेज का होल्टविंटर्स मॉड्यूल सरल, द्वैत और त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग की अनुमति देता है।
* आईबीएम [[एसपीएसएस]] में इसके सांख्यिकी और मॉडलर सांख्यिकीय पैकेजों के भीतर समय-श्रेणी मॉडलिंग प्रक्रिया में सरल, सरल ऋतु संबंधी, होल्ट का रैखिक रुझान, ब्राउन का रैखिक रुझान, डंप्ड ट्रेंड, विंटर्स एडिटिव और विंटर्स मल्टीप्लिकेटिव सम्मिलित है। डिफ़ॉल्ट विशेषज्ञ मॉडलर सुविधा गैर-ऋतु संबंधी और ऋतु संबंधी पी, डी और क्यू मानों की श्रृंखला के साथ सभी सात घातीय समकारी मॉडल और एआरआईएमए मॉडल का मूल्यांकन करती है, और सबसे कम [[बायेसियन सूचना मानदंड]] आंकड़े वाले मॉडल का चयन करती है।
* आईबीएम [[एसपीएसएस]] में इसके सांख्यिकी और मॉडलर सांख्यिकीय पैकेजों के भीतर समय-श्रेणी मॉडलिंग प्रक्रिया में सरल, सरलतम ऋतु संबंधी, होल्ट का रैखिक रुझान, ब्राउन का रैखिक रुझान, डंप्ड ट्रेंड, विंटर्स एडिटिव और विंटर्स मल्टीप्लिकेटिव सम्मिलित है। अतः डिफ़ॉल्ट विशेषज्ञ मॉडलर सुविधा गैर-ऋतु संबंधी और ऋतु संबंधी पी, डी और क्यू मानों की श्रृंखला के साथ सभी सात घातीय स्मूदिंग मॉडल और एआरआईएमए मॉडल का मूल्यांकन करती है, और सबसे कम [[बायेसियन सूचना मानदंड]] आंकड़े वाले मॉडल का चयन करती है।
* [[ था |Stata]]: tssmooth कमांड<ref>[https://www.stata.com/help.cgi?tssmooth tssmooth] in Stata manual</ref>
* [[ था |Stata]]: tssmooth कमांड<ref>[https://www.stata.com/help.cgi?tssmooth tssmooth] in Stata manual</ref>
* [[लिब्रे ऑफिस]] 5.2<ref>{{Cite web | url=https://wiki.documentfoundation.org/ReleaseNotes/5.2#New_spreadsheet_functions | title=LibreOffice 5.2: Release Notes – the Document Foundation Wiki}}</ref>
* [[लिब्रे ऑफिस]] 5.2<ref>{{Cite web | url=https://wiki.documentfoundation.org/ReleaseNotes/5.2#New_spreadsheet_functions | title=LibreOffice 5.2: Release Notes – the Document Foundation Wiki}}</ref>
Line 200: Line 212:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/12/2023]]
[[Category:Created On 07/12/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 21:55, 18 December 2023

एक्स्पोनेंशियल स्मूदिंग (चरघातांकी समकारी या चरघातांकी गतिमान औसत (ईएमए) एक्स्पोनेंशियल विंडो फलन का उपयोग करके समय श्रृंखला डेटा को स्मूदिंग रूल ऑफ़ थंब की तकनीक है। जबकि सरलतम गतिमान औसत में पूर्व अवलोकनों को समान रूप से भारित किया जाता है, समय के साथ तीव्रता से घटते भार को निर्दिष्ट करने के लिए घातीय फलनों का उपयोग किया जाता है। यह उपयोगकर्ता की पूर्व धारणाओं, जैसे कि ऋतु संबंधी, एक के आधार पर कुछ निर्धारण करने के लिए सरलता से सीखी जाने वाली और सरलता से लागू की जाने वाली प्रक्रिया है। घातांकीय स्मूदिंग का उपयोग प्रायः समय-श्रृंखला डेटा के विश्लेषण के लिए किया जाता है।

इस प्रकार से एक्स्पोनेंशियल स्मूदिंग कई विंडो फलन में से है जो सामान्यतः संकेत प्रक्रिया में स्मूदिंग डेटा के लिए लागू होता है, जो उच्च-आवृत्ति रव को हटाने के लिए निम्न पास निस्यंदक के रूप में फलन करता है। यह विधि 19वीं शताब्दी के संवलन में शिमोन डेनिस पॉइसन द्वारा पुनरावर्ती घातीय विंडो फलन के उपयोग के साथ-साथ कोलमोगोरोव और ज़ुर्बेंको द्वारा 1940 के दशक में अशांति के अपने अध्ययन से पुनरावर्ती गतिमान औसत के उपयोग से पहले की है।

अतः मूल डेटा अनुक्रम को प्रायः समय से प्रारंभ होने वाले , द्वारा दर्शाया जाता है, और घातांकीय स्मूदिंग एल्गोरिदम का आउटपुट सामान्यतः के रूप में लिखा जाता है, जिसे का अगला मान क्या होगा इसका सबसे स्पष्ट अनुमान माना जा सकता है। इस प्रकार से जब अवलोकनों का क्रम समय पर प्रारंभ होता है, तो घातांकीय स्मूदिंग का सबसे सरलतम रूप निम्नलिखित सूत्रों द्वारा दिया जाता है:[1]

जहां स्मूदिंग कारक है, और

मूलभूत (सरल) एक्स्पोनेंशियल स्मूदिंग

एक्सपोनेंशियल विंडो फलन के उपयोग का श्रेय सबसे पहले 17वीं शताब्दी की संख्यात्मक विश्लेषण तकनीक के विस्तार के रूप में पॉइसन को दिया गया, और बाद में 1940 के दशक में संकेत प्रोसेसिंग समुदाय द्वारा अपनाया गया।[2] यहां, एक्स्पोनेंशियल स्मूदिंग एक्स्पोनेंशियल, या पॉइसन, विंडो फलन का अनुप्रयोग है। घातांकीय स्मूदिंग का सुझाव पहली बार 1956 में रॉबर्ट गुडेल ब्राउन के पूर्व कार्य के उद्धरण के बिना सांख्यिकीय साहित्य में दिया गया था,[3] और फिर 1957 में चार्ल्स सी. होल्ट द्वारा इसका विस्तार किया गया।[4] नीचे दिया गया सूत्रीकरण, जो सामान्यतः उपयोग किया जाता है, ब्राउन के लिए उत्तरदायी है और इसे ब्राउन की सरलतम घातांकीय स्मूदिंग के रूप में जाना जाता है।[5] अतः होल्ट, विंटर्स और ब्राउन की सभी विधियों को पुनरावर्ती निस्यंदन के एक सरलतम अनुप्रयोग के रूप में देखा जा सकता है, जो पहली बार 1940 के दशक में[2] परिमित आवेग प्रतिक्रिया (एफआईआर) निस्यंदक को अनंत आवेग प्रतिक्रिया में परिवर्तित करने के लिए पाया गया था।

इस प्रकार से घातांकीय स्मूदिंग का सबसे सरलतम रूप निम्नलिखित सूत्र द्वारा दिया गया है:

जहां स्मूदिंग कारक है, और । दूसरे शब्दों में, सुचारु आँकड़ा वर्तमान अवलोकन और पूर्व स्मूथ आँकड़ा का एक सरलतम भारित औसत है। सरलतम घातांकीय स्मूदिंग सरलता से लागू की जाती है, और जैसे ही दो अवलोकन उपलब्ध होते हैं, यह स्मूदिंग आँकड़ा तैयार करता है। स्मूदिंग कारक शब्द किस पर लागू होता है? यहाँ पर लागू किया गया स्मूदिंग कारक शब्द एक मिथ्या नाम है, क्योंकि के बड़े मान वास्तव में स्मूदिंग के स्तर को कम करते हैं, और = 1 के साथ सीमित स्थिति में आउटपुट श्रृंखला मात्र वर्तमान अवलोकन है। एक के निकट के मानों का स्मूदिंग प्रभाव कम होता है और डेटा में वर्तमान बदलावों को अधिक महत्व मिलता है, जबकि शून्य के निकट के मानों का स्मूदिंग प्रभाव अधिक होता है और वर्तमान परिवर्तनों के प्रति निम्न प्रतिक्रिया होती है।

चुनने की कोई औपचारिक रूप से सही प्रक्रिया नहीं है। कभी-कभी सांख्यिकीविद् के निर्णय का उपयोग उचित कारक चुनने के लिए किया जाता है। वैकल्पिक रूप से, के मान को अनुकूलित करने के लिए सांख्यिकीय तकनीक का उपयोग किया जा सकता है। इस प्रकार से उदाहरण के लिए, का मान निर्धारित करने के लिए न्यूनतम वर्गों का उपयोग किया जा सकता है, के लिए मात्राओं का योग न्यूनतम किया गया है। [6]

कुछ अन्य स्मूदिंग विधियों, जैसे कि सरलतम गतिमान औसत, के विपरीत, इस तकनीक को परिणाम देने से पहले किसी न्यूनतम संख्या में अवलोकन की आवश्यकता नहीं होती है। यद्यपि, व्यवहार में, स्पष्ट औसत तब तक प्राप्त नहीं किया जाएगा जब तक कि कई प्रतिदर्शों का साथ औसत नहीं निकाला जाता; इस प्रकार से उदाहरण के लिए, एक स्थिर संकेत को वास्तविक मान के 95% तक पहुंचने में लगभग चरण लगेंगे। सूचना हानि के बिना मूल संकेत को यथार्थ रूप से पुनर्निर्माण करने के लिए, घातीय गतिमान औसत के सभी चरण भी उपलब्ध होने चाहिए, क्योंकि पुराने प्रतिदर्शों का भार तीव्रता से घटता है। अतः यह साधारण गतिमान औसत के विपरीत है, जिसमें औसत के भीतर प्रतिदर्शों के निरंतर भार के कारण कुछ प्रतिदर्शों को सूचना के अधिक हानि के बिना छोड़ा जा सकता है। यदि प्रतिदर्शों की ज्ञात संख्या छूट जाएगी, तो नवीन प्रतिदर्श और छोड़े जाने वाले सभी प्रतिदर्शों को समान महत्व देकर, इसके लिए भारित औसत को भी पूर्ण रूप से समायोजित किया जा सकता है।

इस प्रकार से एक्स्पोनेंशियल स्मूदिंग के इस सरलतम रूप को गतिमान औसत एक्स्पोनेंशियल गतिमान औसत (ईडब्ल्यूएमए) के रूप में भी जाना जाता है। तकनीकी रूप से इसे बिना किसी स्थिर अवधि वाले ऑटोरेग्रेसिव इंटीग्रेटेड गतिमान औसत (ARIMA) (0,1,1) मॉडल के रूप में भी वर्गीकृत किया जा सकता है।[7]

समय स्थिरांक

एक घातीय गतिमान औसत का समय स्थिरांक मूल संकेत के तक पहुंचने के लिए एक इकाई चरण फलन की सुचारू प्रतिक्रिया के लिए समय की मात्रा है। इस प्रकार से इस समय स्थिरांक और स्मूदिंग कारक, के बीच निम्न लिखित संबंध सूत्र द्वारा दिया गया है:

, इस प्रकार

जहां असतत समय कार्यान्वयन का प्रतिदर्श समय अंतराल है। यदि प्रतिदर्श लेने का समय समय स्थिर () की तुलना में तीव्र है तो

प्रारंभिक सुचारू मान चुनना

ध्यान दें कि उपरोक्त परिभाषा में, को से प्रारंभ किया जा रहा है। क्योंकि घातांकीय स्मूदिंग के लिए आवश्यक है कि प्रत्येक चरण में हमारे निकट पिछला पूर्वानुमान हो, यह स्पष्ट नहीं है कि विधि कैसे प्रारंभ की जाए। हम मान सकते हैं कि प्रारंभिक पूर्वानुमान मांग के प्रारंभिक मान के बराबर है; यद्यपि, इस दृष्टिकोण में गंभीर कमी है। अतः घातीय स्मूदिंग पूर्व अवलोकनों पर पर्याप्त भार डालती है, इसलिए मांग के प्रारंभिक मान का प्रारंभिक पूर्वानुमानों पर अनुचित रूप से बड़ा प्रभाव पड़ेगा। प्रक्रिया को उचित संख्या में अवधि (10 या अधिक) के लिए विकसित करने की अनुमति देकर और प्रारंभिक पूर्वानुमान के रूप में उन अवधि के समय मांग के औसत का उपयोग करके इस समस्या को दूर किया जा सकता है। इस प्रारंभिक मान को समूहित करने की कई अन्य विधियाँ हैं, परंतु यह ध्यान रखना महत्वपूर्ण है कि मान जितना छोटा होगा, इस आरंभिक सहज मान के चयन पर आपका पूर्वानुमान उतना ही अधिक संवेदनशील होगा।[8][9]

अनुकूलन

प्रत्येक घातीय स्मूदिंग विधि के लिए हमें स्मूदिंग पैरामीटर के लिए मान भी चुनना होगा। सरलतम घातीय स्मूदिंग के लिए, मात्र स्मूदिंग पैरामीटर (α) होता है, परंतु इसके बाद आने वाली विधियों के लिए सामान्यतः से अधिक स्मूदिंग पैरामीटर होते हैं।

इस प्रकार से ऐसी स्थिति हैं जहां स्मूदिंग मापदंडों को व्यक्तिपरक विधियाँ से चुना जा सकता है - पूर्वानुमानकर्ता पूर्व अनुभव के आधार पर स्मूदिंग मापदंडों का मान पूर्ण रूप से निर्दिष्ट करता है। यद्यपि, किसी भी घातीय स्मूदिंग विधि में सम्मिलित अज्ञात मापदंडों के लिए मान प्राप्त करने का अधिक दृढ़ और उद्देश्यपूर्ण विधि देखे गए डेटा से उनका अनुमान लगाना है।

अतः किसी भी घातांकीय स्मूदिंग विधि के लिए अज्ञात मापदंडों और प्रारंभिक मानों का अनुमान भविष्यवाणी (एसएसई) की वर्ग त्रुटियों के योग को कम करके लगाया जा सकता है। त्रुटियों को के लिए (प्रतिदर्श पूर्वानुमान त्रुटियों के भीतर एक चरण आगे) के रूप में पूर्ण रूप से निर्दिष्ट किया गया है। इसलिए हम अज्ञात मापदंडों के मान और प्रारंभिक मान पाते हैं जो

[10]

को कम करते हैं। इस प्रकार से प्रतिगमन स्थिति के विपरीत (जहां हमारे निकट सीधे प्रतिगमन गुणांक की गणना करने के लिए सूत्र हैं जो एसएसई को कम करते हैं) इसमें गैर-रेखीय न्यूनतमकरण समस्या सम्मिलित है और हमें इसे निष्पादित करने के लिए गणितीय अनुकूलन उपकरण का उपयोग करने की पूर्ण रूप से आवश्यकता है।

घातांकीय नामकरण

संवलन के समय एक्स्पोनेंशियल विंडो फलन के उपयोग के कारण 'एक्स्पोनेंशियल स्मूदिंग' नाम दिया गया है। अतः अब इसका श्रेय होल्ट, विंटर्स और ब्राउन को नहीं दिया जाता।

इस प्रकार से सरलतम घातांकीय स्मूथिंग के लिए परिभाषित समीकरण के प्रत्यक्ष प्रतिस्थापन द्वारा हम पाते हैं कि

अतः दूसरे शब्दों में, जैसे-जैसे समय बीतता है, सुचारू आँकड़ा पूर्व अवलोकनों की अधिक से अधिक संख्या का भारित औसत बन जाता है, और पूर्व अवलोकनों को दिए गए भार ज्यामितीय प्रगति

की प्रतिबंधों के समानुपाती होते हैं। एक ज्यामितीय प्रगति घातीय फलन का असतत संस्करण है, इसलिए सांख्यिकी विद्या के अनुसार इस स्मूदिंग विधि का नाम यहीं से उत्पन्न हुआ है।

गतिमान औसत के साथ तुलना

एक्स्पोनेंशियल स्मूदिंग और गतिमान औसत में इनपुट डेटा के सापेक्ष अंतराल प्रस्तुत करने के समान दोष हैं। यद्यपि इसे सममित कर्नेल, जैसे गतिमान औसत या गाऊसी के लिए परिणाम को विंडो की आधी लंबाई में स्थानांतरित करके पूर्ण रूप से ठीक किया जा सकता है, यह स्पष्ट नहीं है कि यह घातीय स्मूदिंग के लिए कितना उपयुक्त होगा। अतः जब α = 2/(k + 1) होता है तो उन दोनों में पूर्वानुमान त्रुटि का वितरण लगभग समान होता है। वे इसमें भिन्न हैं कि घातीय स्मूदिंग सभी पूर्व डेटा को ध्यान में रखती है, जबकि गतिमान औसत मात्र k पूर्व डेटा बिंदुओं को पूर्ण रूप से ध्यान में रखती है। कम्प्यूटेशनल रूप से बोलते हुए, वे इस रूप में भी भिन्न हैं कि गतिमान औसत के लिए पूर्व k डेटा बिंदुओं, या लैग k + 1 पर डेटा बिंदु और सबसे वर्तमान पूर्वानुमान मान को बनाए रखने की आवश्यकता होती है, जबकि घातांकीय स्मूदिंग के लिए मात्र सबसे वर्तमान पूर्वानुमान मान की आवश्यकता होती है।[11]

इस प्रकार से संकेत प्रोसेसिंग साहित्य में, गैर-कारण (सममित) निस्यंदक का उपयोग सामान्य है, और घातीय विंडो फलन का व्यापक रूप से इस क्रिया में उपयोग किया जाता है, परंतु अलग शब्दावली का उपयोग किया जाता है: घातीय स्मूदिंग पहले क्रम के अनंत-आवेग के बराबर है प्रतिक्रिया (आईआईआर) निस्यंदक और गतिमान औसत समान भार कारकों के साथ सीमित आवेग प्रतिक्रिया निस्यंदक के बराबर है।

द्वैत एक्स्पोनेंशियल स्मूदिंग (होल्ट रेखीय)

अतः जब डेटा में रुझान का अनुमान होता है तो सरलतम घातीय स्मूदिंग स्पष्ट कार्य नहीं करती है। [1] ऐसी स्थितियों में, द्वैत एक्स्पोनेंशियल स्मूदिंग या सेकेंड-क्रम एक्स्पोनेंशियल स्मूदिंग नाम से कई विधियाँ तैयार किए गए, जो एक्स्पोनेंशियल निस्यंदक का दो बार पुनरावर्ती अनुप्रयोग है, इस प्रकार इसे द्वैत एक्स्पोनेंशियल स्मूदिंग कहा जाता है। यह नामकरण चौगुनी घातांकीय स्मूदिंग के समान है, जो इसकी पुनरावृत्ति गहनता का भी संदर्भ देता है।[12] द्वैत एक्स्पोनेंशियल स्मूदिंग के पश्च मूल विचार किसी प्रकार की प्रवृत्ति प्रदर्शित करने वाली श्रृंखला की संभावना को ध्यान में रखने के लिए शब्द प्रस्तुत करना है। यह प्रवणता घटक स्वयं एक्स्पोनेंशियल स्मूदिंग के माध्यम से अद्यतन किया जाता है।

एक विधि, इस प्रकार निम्नलिखित कार्य करती है:[13]

फिर से, अवलोकनों का मूल डेटा अनुक्रम द्वारा दर्शाया जाता है, जो समय से प्रारंभ होता है। हम समय के लिए सुचारु मान का प्रतिनिधित्व करने के लिए का उपयोग करते हैं, और समय पर प्रवृत्ति का हमारा सबसे स्पष्ट अनुमान है। अतः एल्गोरिथम का आउटपुट अब के रूप में लिखा गया है, जो समय तक के मूल डेटा के आधार पर समय पर के मान का अनुमान है। इस प्रकार से द्वैत एक्स्पोनेंशियल स्मूदिंग सूत्र

द्वारा दी गई है, और के द्वारा

के लिए जहां () डेटा स्मूदिंग कारक है, और () प्रवृत्ति को सुचारू करने वाला कारक है।

अतः इस प्रकार से से आगे का पूर्वानुमान निम्नलिखित सन्निकटन द्वारा दिया जाता है:

अतः प्रारंभिक मान निर्धारित करना प्राथमिकता का विषय है। ऊपर सूचीबद्ध विकल्प के अलावा एक विकल्प कुछ के लिए है।

ध्यान दें कि F0 अपरिभाषित है (समय 0 के लिए कोई अनुमान नहीं है), और परिभाषा F1=s0+b0 के अनुसार, जो ठीक रूप से परिभाषित है, इस प्रकार आगे के मानों का मूल्यांकन किया जा सकता है।

एक दूसरी विधि, जिसे या तो ब्राउन की रेखीय एक्स्पोनेंशियल स्मूदिंग (एलईएस) या ब्राउन की द्वैत एक्स्पोनेंशियल स्मूदिंग कहा जाता है, निम्नानुसार कार्य करती है।[14]

जहाँ at, समय t और bt पर अनुमानित स्तर, समय t पर अनुमानित प्रवृत्ति निम्नलिखित हैं:

त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग (होल्ट विंटर्स)

अतः त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग तीन बार एक्स्पोनेंशियल स्मूदिंग लागू करती है, जिसका उपयोग सामान्यतः तब किया जाता है जब अध्ययन के अंतर्गत समय श्रृंखला से तीन उच्च आवृत्ति संकेतों को हटाया जाना होता है। ऋतु संबंधी विभिन्न प्रकार की होती हैं: प्रकृति में 'गुणक' और 'योगात्मक', बहुत कुछ उसी प्रकार जैसे जोड़ और गुणा गणित में मूलभूत संक्रियाएँ हैं।

यदि दिसंबर के प्रत्येक महीने में हम नवंबर की तुलना में 10,000 अधिक अपार्टमेंट बेचते हैं, तो ऋतु संबंधी प्रकृति में योगात्मक है। यद्यपि, यदि हम शीत ऋतु के महीनों की तुलना में उष्ण ऋतु के महीनों में 10% अधिक अपार्टमेंट बेचते हैं, तो ऋतु संबंधी प्रकृति में गुणक है। अतः गुणनात्मक ऋतु संबंधी को स्थिर कारक के रूप में दर्शाया जा सकता है, पूर्ण राशि के रूप में नहीं।[15]

इस प्रकार से त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग का सुझाव पहली बार होल्ट के छात्र, पीटर विंटर्स ने 1960 में एक्स्पोनेंशियल स्मूदिंग पर 1940 के दशक की संकेत प्रोसेसिंग पुस्तक को पढ़ने के बाद दिया था।[16] होल्ट का नवीन विचार 1 से अधिक और 5 से कम की विषम संख्या में निस्यंदक को दोहराना था, जो पूर्व युगों के विद्वानों के बीच लोकप्रिय था। [17] जबकि पुनरावर्ती निस्यंदक का उपयोग किया गया था पहले, इसे हेडमार्ड अनुमान के साथ मेल खाने के लिए दो बार और चार बार लागू किया गया था, जबकि त्रिपक्षीय अनुप्रयोग के लिए एक पक्षीय संवलन के दोगुने से अधिक संचालन की आवश्यकता थी। अतः त्रिपक्षीय अनुप्रयोग के उपयोग को सैद्धांतिक आधार पर आधारित तकनीक के अतिरिक्त सहज तकनीक का नियम माना जाता है और प्रायः चिकित्सकों द्वारा इस पर अत्यधिक बल दिया गया है। - मान लीजिए कि हमारे पास अवलोकनों का एक क्रम है, जो लंबाई L के ऋतु संबंधी परिवर्तन के चक्र के साथ समय से प्रारंभ होता है।

यह विधि डेटा के साथ-साथ ऋतु संबंधी सूचकांकों के लिए एक ट्रेंड रेखा की गणना करती है जो ट्रेंड रेखा में मानों को इस आधार पर प्रतीक्षा करती है कि वह समय बिंदु लंबाई के चक्र में कहां आता है।

अतः मान लीजिए समय पर के लिए स्थिर भाग के सुचारू मान का प्रतिनिधित्व करें, रैखिक प्रवृत्ति के सर्वोत्तम अनुमानों का क्रम है जो ऋतु संबंधी परिवर्तनों पर आरोपित होते हैं, और ऋतु संबंधी सुधार कारकों का क्रम है। हम प्रेक्षणों के चक्र में प्रत्येक समय मोड पर का अनुमान लगाना चाहते हैं। अतः एक सामान्य नियम के रूप में, ऋतु संबंधी कारकों के एक समुच्चय को आरंभ करने के लिए ऐतिहासिक डेटा के न्यूनतम दो पूर्ण ऋतु (या अवधि) की आवश्यकता होती है।

एल्गोरिदम का आउटपुट फिर से , के रूप में लिखा गया है, जो समय t तक के मूल डेटा के आधार पर समय पर के मान का अनुमान है। इस प्रकार से गुणक ऋतु संबंधी के साथ त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग सूत्रों[1]

द्वारा दी गई है, जहां () डेटा स्मूदिंग कारक है, () प्रवृत्ति को सुचारू करने वाला कारक है, और () ऋतु संबंधी परिवर्तन को सुचारू करने वाला कारक है।

इस प्रकार से प्रारंभिक रुझान अनुमान के लिए सामान्य सूत्र निम्नलिखित है:

के लिए ऋतु संबंधी सूचकांकों के लिए प्रारंभिक अनुमान निर्धारित करना थोड़ा अधिक सम्मिलित है। इस प्रकार से यदि आपके डेटा में स्थित पूर्ण चक्रों की संख्या है, तो:

जहां

ध्यान दें कि आपके डेटा के चक्र में का औसत मान है।

अतः इस प्रकार से योगात्मक ऋतु संबंधीता के साथ त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग किसके द्वारा दी जाती है:

सांख्यिकी पैकेज में कार्यान्वयन

  • R (प्रोग्रामिंग भाषा): सांख्यिकी पैकेज में होल्टविंटर्स फलन और पूर्वानुमान पैकेज में ईटीएस फलन (एक अधिक संपूर्ण कार्यान्वयन, जिसके परिणामस्वरूप सामान्यतः स्पष्ट प्रदर्शन होता है)।[18][19][20]
  • पायथन (प्रोग्रामिंग भाषा): स्टैटमॉडल पैकेज का होल्टविंटर्स मॉड्यूल सरल, द्वैत और त्रिपक्षीय एक्स्पोनेंशियल स्मूदिंग की अनुमति देता है।
  • आईबीएम एसपीएसएस में इसके सांख्यिकी और मॉडलर सांख्यिकीय पैकेजों के भीतर समय-श्रेणी मॉडलिंग प्रक्रिया में सरल, सरलतम ऋतु संबंधी, होल्ट का रैखिक रुझान, ब्राउन का रैखिक रुझान, डंप्ड ट्रेंड, विंटर्स एडिटिव और विंटर्स मल्टीप्लिकेटिव सम्मिलित है। अतः डिफ़ॉल्ट विशेषज्ञ मॉडलर सुविधा गैर-ऋतु संबंधी और ऋतु संबंधी पी, डी और क्यू मानों की श्रृंखला के साथ सभी सात घातीय स्मूदिंग मॉडल और एआरआईएमए मॉडल का मूल्यांकन करती है, और सबसे कम बायेसियन सूचना मानदंड आंकड़े वाले मॉडल का चयन करती है।
  • Stata: tssmooth कमांड[21]
  • लिब्रे ऑफिस 5.2[22]
  • Microsoft Excel 2016[23]

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 "NIST/SEMATECH e-Handbook of Statistical Methods". NIST. Retrieved 2010-05-23.
  2. 2.0 2.1 Oppenheim, Alan V.; Schafer, Ronald W. (1975). अंकीय संकेत प्रक्रिया. Prentice Hall. p. 5. ISBN 0-13-214635-5.
  3. Brown, Robert G. (1956). मांग की भविष्यवाणी के लिए घातीय स्मूथिंग. Cambridge, Massachusetts: Arthur D. Little Inc. p. 15.
  4. Holt, Charles C. (1957). "घातीय रूप से भारित औसत द्वारा रुझान और मौसमी का पूर्वानुमान लगाना". Office of Naval Research Memorandum. 52. reprinted in Holt, Charles C. (January–March 2004). "घातीय रूप से भारित औसत द्वारा रुझान और मौसमी का पूर्वानुमान लगाना". International Journal of Forecasting. 20 (1): 5–10. doi:10.1016/j.ijforecast.2003.09.015.
  5. Brown, Robert Goodell (1963). असतत समय श्रृंखला का सुचारू पूर्वानुमान और पूर्वानुमान. Englewood Cliffs, NJ: Prentice-Hall.
  6. "NIST/SEMATECH e-Handbook of Statistical Methods, 6.4.3.1. Single Exponential Smoothing". NIST. Retrieved 2017-07-05.
  7. Nau, Robert. "औसत और घातीय स्मूथिंग मॉडल". Retrieved 26 July 2010.
  8. "Production and Operations Analysis" Nahmias. 2009.
  9. Čisar, P., & Čisar, S. M. (2011). "Optimization methods of EWMA statistics." Acta Polytechnica Hungarica, 8(5), 73–87. Page 78.
  10. 7.1 Simple exponential smoothing | Forecasting: Principles and Practice.
  11. Nahmias, Steven (3 March 2008). उत्पादन और संचालन विश्लेषण (6th ed.). ISBN 978-0-07-337785-8.[page needed]
  12. "Model: Second-Order Exponential Smoothing". SAP AG. Retrieved 23 January 2013.
  13. "6.4.3.3. Double Exponential Smoothing". itl.nist.gov. Retrieved 25 September 2011.
  14. "औसत और घातीय स्मूथिंग मॉडल". duke.edu. Retrieved 25 September 2011.
  15. Kalehar, Prajakta S. "Time series Forecasting using Holt–Winters Exponential Smoothing" (PDF). Retrieved 23 June 2014.
  16. Winters, P. R. (April 1960). "घातीय रूप से भारित मूविंग औसत द्वारा बिक्री का पूर्वानुमान". Management Science. 6 (3): 324–342. doi:10.1287/mnsc.6.3.324.
  17. Winters, P. R. (April 1960). "Forecasting Sales by Exponentially Weighted Moving Averages". Management Science. 6 (3): 324–342. doi:10.1287/mnsc.6.3.324.
  18. "R: Holt–Winters Filtering". stat.ethz.ch. Retrieved 2016-06-05.
  19. "ets {forecast} | inside-R | A Community Site for R". inside-r.org. Archived from the original on 16 July 2016. Retrieved 2016-06-05.
  20. "HoltWinters() और ets() की तुलना करना". Hyndsight (in English). 2011-05-29. Retrieved 2016-06-05.
  21. tssmooth in Stata manual
  22. "LibreOffice 5.2: Release Notes – the Document Foundation Wiki".
  23. "Excel 2016 Forecasting Functions | Real Statistics Using Excel".

बाहरी संबंध