ट्रांसवर्स-फील्ड आइसिंग मॉडल: Difference between revisions
No edit summary |
m (23 revisions imported from alpha:ट्रांसवर्स-फील्ड_आइसिंग_मॉडल) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
ट्रांसवर्स-फील्ड [[आइसिंग मॉडल]] क्लासिकल आइसिंग मॉडल का एक क्वांटम संस्करण है। इसमें z अक्ष के साथ स्पिन प्रक्षेपणों के एलाइनमेंट या एंटी एलाइनमेंट के साथ-साथ z अक्ष के लंबवत सामान्य हानि हुए बिना x अक्ष के साथ एक बाहरी चुंबकीय क्षेत्र का झुकाव होता है और इस प्रकार निकटतम नेबर इंटरैक्शन के साथ एक लैटिस | ट्रांसवर्स-फील्ड [[आइसिंग मॉडल]] क्लासिकल आइसिंग मॉडल का एक क्वांटम संस्करण है। इसमें z अक्ष के साथ स्पिन प्रक्षेपणों के एलाइनमेंट या एंटी एलाइनमेंट के साथ-साथ z अक्ष के लंबवत सामान्य हानि हुए बिना x अक्ष के साथ एक बाहरी चुंबकीय क्षेत्र का झुकाव होता है और इस प्रकार निकटतम नेबर इंटरैक्शन के साथ एक लैटिस का रूप है जो दूसरे <math>x</math> -अक्ष पर एक स्पिन दिशा का ऊर्जापूर्ण पूर्वाग्रह उत्पन्न करता है। | ||
इस सेटअप की एक महत्वपूर्ण विशेषता यह है कि क्वांटम अर्थ में <math>x</math> अक्ष के साथ स्पिन प्रक्षेपण और <math>z</math> अक्ष के साथ स्पिन प्रक्षेपण अवलोकन योग्य बाह्य मात्राएं नहीं बदलता है। अर्थात इन दोनों को एक साथ अवलोकन नहीं किया जा सकता है, इसका अर्थ है कि क्लासिकल सांख्यिकीय यांत्रिकी इस मॉडल का वर्णन नहीं कर सकता है और एक क्वांटम ट्रीटमेंट की आवश्यकता होती है। | इस सेटअप की एक महत्वपूर्ण विशेषता यह है कि क्वांटम अर्थ में <math>x</math> अक्ष के साथ स्पिन प्रक्षेपण और <math>z</math> अक्ष के साथ स्पिन प्रक्षेपण अवलोकन योग्य बाह्य मात्राएं नहीं बदलता है। अर्थात इन दोनों को एक साथ अवलोकन नहीं किया जा सकता है, इसका अर्थ है कि क्लासिकल सांख्यिकीय यांत्रिकी इस मॉडल का वर्णन नहीं कर सकता है और एक क्वांटम ट्रीटमेंट की आवश्यकता होती है। | ||
Line 29: | Line 29: | ||
===गैपलेस फेज === | ===गैपलेस फेज === | ||
जब <math>|g|=1</math>, प्रणाली एक क्वांटम फेज ट्रांजीशन से गुजरता है। इस मूल्य पर <math> g</math>, प्रणाली में अंतरहीन प्रेरणाएं हैं और इसके कम-ऊर्जा व्यवहार को दो-आयामी आइसिंग अनुरूप क्षेत्र सिद्धांत द्वारा वर्णित किया गया है। इस अनुरूप सिद्धांत का केंद्रीय प्रभार है <math> c=1/2 </math>, और 1 से कम केंद्रीय चार्ज के साथ एकात्मक [[न्यूनतम मॉडल (भौतिकी)]] का सबसे सरल है। पहचान ऑपरेटर के अतिरिक्त सिद्धांत में दो प्राथमिक क्षेत्र इस प्रकार है, जो स्केलिंग आयामों के साथ <math> (1/16, 1/16) </math> और दूसरा स्केलिंग आयामों के साथ <math> (1/2, 1/2) </math> के रूप में होते है<ref>{{cite arXiv |eprint=hep-th/9108028 |last1=Ginsparg |first1=Paul |title=अनुप्रयुक्त अनुरूप क्षेत्र सिद्धांत|year=1988 }}</ref> | |||
== जॉर्डन-विग्नर परिवर्तन == | == जॉर्डन-विग्नर परिवर्तन == | ||
जॉर्डन-विग्नर ट्रांसफॉर्मेशन के रूप में ज्ञात अत्यधिक नॉन लोकल परिवर्तन का उपयोग करके स्पिन चर को फर्मियोनिक चर के रूप में फिर से लिखना संभव होता है।<ref>{{cite web |url=http://edu.itp.phys.ethz.ch/fs13/cft/SM_Molignini.pdf |title=अनुरूप क्षेत्र सिद्धांत में आइसिंग मॉडल|last=Molignini |first=Paolo |date=11 March 2013 }}</ref> साइट पर एक फर्मियन निर्माण ऑपरेटर <math>j </math> के रूप में परिभाषित किया जा सकता है <math>c_j^\dagger = \frac{1}{2}(Z_j+iY_j)\prod_{k<j} X_k</math> फिर ट्रांसवर्स-फील्ड इज़िंग हैमिल्टनियन को एक अनंत श्रृंखला मानते हुए और सीमा प्रभावों को अनदेखा करते हुए पूरी तरह से सृजन और अन्निहिलेशन ऑपरेटरों वाले स्थानीय क्वॉड्रिक शब्दों के योग के रूप में व्यक्त किया जा सकता है। | जॉर्डन-विग्नर ट्रांसफॉर्मेशन के रूप में ज्ञात अत्यधिक नॉन लोकल परिवर्तन का उपयोग करके स्पिन चर को फर्मियोनिक चर के रूप में फिर से लिखना संभव होता है।<ref>{{cite web |url=http://edu.itp.phys.ethz.ch/fs13/cft/SM_Molignini.pdf |title=अनुरूप क्षेत्र सिद्धांत में आइसिंग मॉडल|last=Molignini |first=Paolo |date=11 March 2013 }}</ref> साइट पर एक फर्मियन निर्माण ऑपरेटर <math>j </math> के रूप में परिभाषित किया जा सकता है <math>c_j^\dagger = \frac{1}{2}(Z_j+iY_j)\prod_{k<j} X_k</math> फिर ट्रांसवर्स-फील्ड इज़िंग हैमिल्टनियन को एक अनंत श्रृंखला मानते हुए और सीमा प्रभावों को अनदेखा करते हुए पूरी तरह से सृजन और अन्निहिलेशन ऑपरेटरों वाले स्थानीय क्वॉड्रिक शब्दों के योग के रूप में व्यक्त किया जा सकता है। | ||
<math>H = -J \sum_j ( c_j^\dagger c_{j+1} + c_{j+1}^\dagger c_j +c_{j}^\dagger c_{j+1}^\dagger + c_{j+1} c_j + 2g(c_j^\dagger c_j-1/2))</math> | |||
यह हैमिल्टनियन कुल फर्मियन संख्या को संरक्षित करने में विफल रहता है और <math>c_j^\dagger c_{j+1}^\dagger + c_{j+1}c_j</math> शब्द की उपस्थिति के कारण संबंधित <math>U(1)</math> वैश्विक समरूपता नहीं रखता है। चूँकि, यह फर्मियन पैरिटी को संरक्षित करता है। अर्थात्, हैमिल्टनियन क्वांटम ऑपरेटर के साथ आवागमन करता है जो इंगित करता है कि फ़र्मियन की कुल संख्या सम है या विषम और यह पैरिटी प्रणाली के समय के विकास के अनुसार नहीं बदलती है। हैमिल्टनियन गणितीय रूप से माध्य क्षेत्र बोगोलीउबोव-डी गेनेस औपचारिकता में एक सुपरकंडक्टर के समान है और इसे उसी मानक विधि से पूरी तरह से समझा जा सकता है। इस प्रकार सटीक एक्साइटेशन वर्णक्रम और अभिलक्षणिक मान को फूरियर द्वारा गति स्थान में परिवर्तित करके और हैमिल्टनियन को विकर्ण करके निर्धारित किया जा सकता है। | यह हैमिल्टनियन कुल फर्मियन संख्या को संरक्षित करने में विफल रहता है और <math>c_j^\dagger c_{j+1}^\dagger + c_{j+1}c_j</math> शब्द की उपस्थिति के कारण संबंधित <math>U(1)</math> वैश्विक समरूपता नहीं रखता है। चूँकि, यह फर्मियन पैरिटी को संरक्षित करता है। अर्थात्, हैमिल्टनियन क्वांटम ऑपरेटर के साथ आवागमन करता है जो इंगित करता है कि फ़र्मियन की कुल संख्या सम है या विषम और यह पैरिटी प्रणाली के समय के विकास के अनुसार नहीं बदलती है। हैमिल्टनियन गणितीय रूप से माध्य क्षेत्र बोगोलीउबोव-डी गेनेस औपचारिकता में एक सुपरकंडक्टर के समान है और इसे उसी मानक विधि से पूरी तरह से समझा जा सकता है। इस प्रकार सटीक एक्साइटेशन वर्णक्रम और अभिलक्षणिक मान को फूरियर द्वारा गति स्थान में परिवर्तित करके और हैमिल्टनियन को विकर्ण करके निर्धारित किया जा सकता है। | ||
Line 47: | Line 47: | ||
\tilde{Z}_j \tilde{Z}_{j+1} &= X_{j+1} \end{align} | \tilde{Z}_j \tilde{Z}_{j+1} &= X_{j+1} \end{align} | ||
</math> | </math> | ||
फिर, टिल्ड्स के साथ नए परिभाषित पाउली मैट्रिसेस के संदर्भ में, जो मूल पाउली मैट्रिसेस के समान बीजगणितीय रिलेशन का अनुसरण करते हैं, हैमिल्टनियन <math>H = -Jg \sum_j ( \tilde{Z}_j \tilde{Z}_{j+1} + g^{-1}\tilde{X}_{j} )</math> सिम्पली हैं और यह इंगित करता है कि युग्मन पैरामीटर <math>g</math> | फिर, टिल्ड्स के साथ नए परिभाषित पाउली मैट्रिसेस के संदर्भ में, जो मूल पाउली मैट्रिसेस के समान बीजगणितीय रिलेशन का अनुसरण करते हैं, हैमिल्टनियन <math>H = -Jg \sum_j ( \tilde{Z}_j \tilde{Z}_{j+1} + g^{-1}\tilde{X}_{j} )</math> सिम्पली हैं और यह इंगित करता है कि युग्मन पैरामीटर <math>g</math> के साथ मॉडल पैरामीटर <math>g^{-1}</math> वाले मॉडल से दोगुना है | ||
इस प्रकार यह क्रमबद्ध फेज और डिसआर्डर फेज के बीच डुअलिटी स्थापित करता है। ऊपर वर्णित मेजराना फर्मियन के संदर्भ में यह डुअलिटी सब्टल रीलेबलिंग में अधिक स्पष्ट रूप से प्रकट होता है इस प्रकार <math> a_j \to b_j, b_j \to a_{j+1}</math>. | |||
ध्यान दें कि आइसिंग श्रृंखला की सीमाओं पर कुछ सूक्ष्म विचार हैं; इनके फलस्वरूप अपकर्ष और <math>\mathbb{Z}_2 | ध्यान दें कि आइसिंग श्रृंखला की सीमाओं पर कुछ सूक्ष्म विचार हैं; इनके फलस्वरूप अपकर्ष और <math>\mathbb{Z}_2 | ||
Line 56: | Line 58: | ||
== क्लासिकल आइसिंग मॉडल == | == क्लासिकल आइसिंग मॉडल == | ||
क्वांटम ट्रांसवर्स-फील्ड आइसिंग मॉडल में <math> d </math> आयाम अनिसोट्रोपिक आइसिंग मॉडल के | क्वांटम ट्रांसवर्स-फील्ड आइसिंग मॉडल में <math> d </math> आयाम अनिसोट्रोपिक आइसिंग मॉडल के दोगुने <math> d+1 </math> आयाम होते है <ref>{{cite web |url=https://mcgreevy.physics.ucsd.edu/s14/239a-lectures.pdf |title=Physics 239a: Where do quantum field theories come from? |last=McGreevy |date=20 April 2021}}</ref> | ||
Line 67: | Line 69: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 28/11/2023]] | [[Category:Created On 28/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:23, 2 February 2024
ट्रांसवर्स-फील्ड आइसिंग मॉडल क्लासिकल आइसिंग मॉडल का एक क्वांटम संस्करण है। इसमें z अक्ष के साथ स्पिन प्रक्षेपणों के एलाइनमेंट या एंटी एलाइनमेंट के साथ-साथ z अक्ष के लंबवत सामान्य हानि हुए बिना x अक्ष के साथ एक बाहरी चुंबकीय क्षेत्र का झुकाव होता है और इस प्रकार निकटतम नेबर इंटरैक्शन के साथ एक लैटिस का रूप है जो दूसरे -अक्ष पर एक स्पिन दिशा का ऊर्जापूर्ण पूर्वाग्रह उत्पन्न करता है।
इस सेटअप की एक महत्वपूर्ण विशेषता यह है कि क्वांटम अर्थ में अक्ष के साथ स्पिन प्रक्षेपण और अक्ष के साथ स्पिन प्रक्षेपण अवलोकन योग्य बाह्य मात्राएं नहीं बदलता है। अर्थात इन दोनों को एक साथ अवलोकन नहीं किया जा सकता है, इसका अर्थ है कि क्लासिकल सांख्यिकीय यांत्रिकी इस मॉडल का वर्णन नहीं कर सकता है और एक क्वांटम ट्रीटमेंट की आवश्यकता होती है।
विशेष रूप से, मॉडल में निम्नलिखित क्वांटम यांत्रिकी मिल्टनियन होती है,
यहां, सबस्क्रिप्ट लैटिस साइटों को संदर्भित करते हैं, जो का योग निकटतम नेबर साइट और के पेअर पर किया जाता है। और स्पिन बीजगणित पाउली मैट्रिसेस के तत्वों का प्रतिनिधित्व करते हैं इस प्रकार स्पिन 1/2 की स्थिति में संबंधित साइटों के स्पिन वेरिएबल का प्रतिनिधित्व करते हैं। यदि वे एक ही साइट पर हैं तो वे एक-दूसरे के साथ आवागमन का विरोध करते हैं और यदि भिन्न -भिन्न साइटों पर होते है तो वे एक-दूसरे के साथ आवागमन करते हैं। ऊर्जा के आयामों वाला एक प्रीफ़ेक्टर है और एक अन्य युग्मन गुणांक है जो निकटतम नेबर इंटरैक्शन की तुलना में बाहरी क्षेत्र की सापेक्ष स्ट्रेंथ निर्धारित करता है।
1डी ट्रांसवर्स-फील्ड आइसिंग मॉडल के फेज
नीचे चर्चा एक आयामी स्थिति तक सीमित होती है जहां प्रत्येक लैटिस साइट दो-आयामी काम्प्लेक्स हिल्बर्ट क्षेत्र के रूप में होते है, अर्थात यह एक स्पिन 1/2 कण का प्रतिनिधित्व करती है। यहाँ सिम्पलिसिटी के लिए और प्रत्येक के लिए सामान्यीकृत निर्धारक -1 के रूप में होते है। इस प्रकार मिल्टनियन के पास समरूपता का एक समूह होता है, जो Z दिशा में सभी स्पिन को फ्लिप करने की एकात्मक प्रक्रिया के अनुसार अपरिवर्तनीय होता है, यह सममिति रूपांतरण एकात्मक द्वारा दिया जाता है
1डी मॉडल दो अवस्थाओ को स्वीकार करता है, जो इस बात पर निर्भर करता है कि क्या मूलभूत अवस्था विशिष्ट रूप से अध पतन के स्थिति में एक मूलभूत स्टेट" के रूप में वर्णित होती है जो मैक्रोस्कोपिक रूप से इनटैंगल स्थिति में नहीं होती है। इस प्रकार उपरोक्त को स्पिन-फ्लिप समरूपता प्रेसर्व या संरक्षित करती है। का चिन्ह गतिशीलता को प्रभावित नहीं करता है। क्योंकि धनात्मक के साथ प्रणाली का मानचित्रित ऋणात्मक के साथ प्रणाली में हर दूसरी साइट के लिए के चारों ओर का घूर्णन करते हुए किया जा सकता है।
मॉडल को सभी युग्मन स्थिरांकों के लिए सटीक रूप से हल किया जा सकता है। चूँकि, ऑन-साइट स्पिन के संदर्भ में समाधान सामान्यता स्पिन चर के संदर्भ में स्पष्ट रूप से लिखने के लिए बहुत असुविधाजनक होती है। जॉर्डन-विग्नर परिवर्तन द्वारा परिभाषित फर्मिओनिक चर के संदर्भ में समाधान को स्पष्ट रूप से लिखना अधिक सुविधाजनक होता है, इस स्थिति में एक्साइटेड स्टेट में एक सरल क्वासिपार्टिकल या क्वासिहोल का विवरण होता है।
क्रमबद्ध फेज
जब , प्रणाली को क्रमबद्ध फेज कहा जाता है। इस फेज में मूलभूत स्थिति स्पिन-फ्लिप समरूपता को तोड़ देती है। इस प्रकार मूलभूत स्थिति वास्तव में दो गुना ख़राब होती है। इस प्रकार के लिए यह फेज लौहचुम्बकत्व क्रम को प्रदर्शित करता है, जबकि के लिए प्रतिलौहचुंबकत्व क्रमबद्ध के रूप में विद्यमान होते है।
सटीक रूप से यदि मिल्टनियन की एक मूलभूत अवस्था है, इस प्रकार एक मूलभूत स्टेट है और साथ में और डीजेनरेट ग्राउंड स्टेट क्षेत्र का विस्तार करते है। एक सरल उदाहरण के रूप में, जब और , मूलभूत अवस्थाएँ हैं और , अर्थात्, सभी स्पिन z अक्ष के साथ एलाइन हैं।
यह एक गैप्ड फेज है, जिसका अर्थ है कि सबसे कम ऊर्जा एक्साइटेड अवस्थाओं की ऊर्जा मूलभूत अवस्था की ऊर्जा से एक गैर-शून्य मात्रा ऊष्मागतिक सीमा में गैर-लुप्त प्राय से अधिक है। विशेष रूप से यह ऊर्जा अंतर है[1]
डिसआर्डर फेज
इसके विपरीत, जब प्रणाली को डिसआर्डर फेज कहा जाता है। तो यह मूलभूत स्टेट स्पिन-फ्लिप समरूपता को बरकरार रखती है और नॉनडीजेनरेट करती है। एक सरल उदाहरण के रूप में, जब अनंत है और मूलभूत अवस्था में होती है और इस प्रकार यह प्रत्येक साइट पर दिशा में स्पिन के साथ है।
यह भी एक गैप्ड फेज है। ऊर्जा का अंतर है
गैपलेस फेज
जब , प्रणाली एक क्वांटम फेज ट्रांजीशन से गुजरता है। इस मूल्य पर , प्रणाली में अंतरहीन प्रेरणाएं हैं और इसके कम-ऊर्जा व्यवहार को दो-आयामी आइसिंग अनुरूप क्षेत्र सिद्धांत द्वारा वर्णित किया गया है। इस अनुरूप सिद्धांत का केंद्रीय प्रभार है , और 1 से कम केंद्रीय चार्ज के साथ एकात्मक न्यूनतम मॉडल (भौतिकी) का सबसे सरल है। पहचान ऑपरेटर के अतिरिक्त सिद्धांत में दो प्राथमिक क्षेत्र इस प्रकार है, जो स्केलिंग आयामों के साथ और दूसरा स्केलिंग आयामों के साथ के रूप में होते है[2]
जॉर्डन-विग्नर परिवर्तन
जॉर्डन-विग्नर ट्रांसफॉर्मेशन के रूप में ज्ञात अत्यधिक नॉन लोकल परिवर्तन का उपयोग करके स्पिन चर को फर्मियोनिक चर के रूप में फिर से लिखना संभव होता है।[3] साइट पर एक फर्मियन निर्माण ऑपरेटर के रूप में परिभाषित किया जा सकता है फिर ट्रांसवर्स-फील्ड इज़िंग हैमिल्टनियन को एक अनंत श्रृंखला मानते हुए और सीमा प्रभावों को अनदेखा करते हुए पूरी तरह से सृजन और अन्निहिलेशन ऑपरेटरों वाले स्थानीय क्वॉड्रिक शब्दों के योग के रूप में व्यक्त किया जा सकता है।
यह हैमिल्टनियन कुल फर्मियन संख्या को संरक्षित करने में विफल रहता है और शब्द की उपस्थिति के कारण संबंधित वैश्विक समरूपता नहीं रखता है। चूँकि, यह फर्मियन पैरिटी को संरक्षित करता है। अर्थात्, हैमिल्टनियन क्वांटम ऑपरेटर के साथ आवागमन करता है जो इंगित करता है कि फ़र्मियन की कुल संख्या सम है या विषम और यह पैरिटी प्रणाली के समय के विकास के अनुसार नहीं बदलती है। हैमिल्टनियन गणितीय रूप से माध्य क्षेत्र बोगोलीउबोव-डी गेनेस औपचारिकता में एक सुपरकंडक्टर के समान है और इसे उसी मानक विधि से पूरी तरह से समझा जा सकता है। इस प्रकार सटीक एक्साइटेशन वर्णक्रम और अभिलक्षणिक मान को फूरियर द्वारा गति स्थान में परिवर्तित करके और हैमिल्टनियन को विकर्ण करके निर्धारित किया जा सकता है।
मेजराना फर्मियन के संदर्भ में और , हैमिल्टनियन योगात्मक स्थिरांक तक:और भी सरल रूप लेता है इस प्रकार,
.
क्रेमर्स-वानियर डुअलिटी
पाउली मैट्रिसेस का एक गैर-स्थानीय मानचित्रण जिसे क्रेमर्स-वानियर डुअलिटी परिवर्तन के रूप में जाना जाता है यह निम्नानुसार किया जा सकता है[4]
इस प्रकार यह क्रमबद्ध फेज और डिसआर्डर फेज के बीच डुअलिटी स्थापित करता है। ऊपर वर्णित मेजराना फर्मियन के संदर्भ में यह डुअलिटी सब्टल रीलेबलिंग में अधिक स्पष्ट रूप से प्रकट होता है इस प्रकार .
ध्यान दें कि आइसिंग श्रृंखला की सीमाओं पर कुछ सूक्ष्म विचार हैं; इनके फलस्वरूप अपकर्ष और क्रमबद्ध और डिसआर्डर फेज के समरूपता गुण क्रेमर्स-वानियर डुअलिटी के अनुसार बदल जाते हैं।
सामान्यीकरण
क्यू-स्टेट क्वांटम पॉट्स मॉडल और क्वांटम क्लॉक मॉडल प्रति साइट स्टेट के साथ लैटिस प्रणालियों के लिए ट्रांसवर्स-फील्ड आइसिंग मॉडल का सामान्यीकरण है। ट्रांसवर्स-फील्ड आइसिंग मॉडल उस स्थिति का प्रतिनिधित्व करता है जहां है
क्लासिकल आइसिंग मॉडल
क्वांटम ट्रांसवर्स-फील्ड आइसिंग मॉडल में आयाम अनिसोट्रोपिक आइसिंग मॉडल के दोगुने आयाम होते है [5]
संदर्भ
- ↑ "Home" (PDF).
- ↑ Ginsparg, Paul (1988). "अनुप्रयुक्त अनुरूप क्षेत्र सिद्धांत". arXiv:hep-th/9108028.
- ↑ Molignini, Paolo (11 March 2013). "अनुरूप क्षेत्र सिद्धांत में आइसिंग मॉडल" (PDF).
- ↑ Radicevic, Djordje (2018). "कम आयामों में स्पिन संरचनाएं और सटीक द्वंद्व". arXiv:1809.07757 [hep-th].
- ↑ McGreevy (20 April 2021). "Physics 239a: Where do quantum field theories come from?" (PDF).