ऑर्थोगोनल मैट्रिक्स: Difference between revisions
No edit summary |
No edit summary |
||
(35 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Real square matrix whose columns and rows are orthogonal unit vectors}} | {{Short description|Real square matrix whose columns and rows are orthogonal unit vectors}} | ||
{{for| | {{for|सम्मिश्र संख्या क्षेत्र पर लंबकोणीयता के साथ आव्यूह | एकल आव्यूह }} | ||
रैखिक बीजगणित में, | रैखिक बीजगणित में, लंबकोणीय आव्यूह, या प्रसामान्य लंबकोणीय आव्यूह, एक वास्तविक [[ स्क्वायर मैट्रिक्स |वर्ग आव्यूह]] है, जिसके कॉलम और पंक्तियाँ [[ ऑर्थोनॉर्मलिटी |प्रसामान्य लंबकोणीय]] [[ वेक्टर (गणित और भौतिकी) |सदिश]] होते है। | ||
इसे व्यक्त करने का एक तरीका है | इसे व्यक्त करने का एक तरीका है<math display="block">Q^\mathrm{T} Q = Q Q^\mathrm{T} = I,</math>जहाँ पर {{math|''Q''<sup>T</sup>}} का स्थानान्तरण है {{mvar|Q}} तथा {{mvar|I}} [[ पहचान मैट्रिक्स |तत्समक आव्यूह]] है। | ||
<math display="block">Q^\mathrm{T} Q = Q Q^\mathrm{T} = I,</math> | |||
जहाँ | |||
आव्यूह Q लंबकोणीय है यदि इसका स्थान इसके व्युत्क्रम के बराबर है, तो यह समतुल्य निरूपण की ओर जाता है। | |||
<math display="block">Q^\mathrm{T}=Q^{-1},</math>जहाँ पे {{math|''Q''<sup>−1</sup>}}, {{mvar|Q}} का व्युत्क्रम है। | |||
लंबकोणीय आव्यूह Q आवश्यक रूप से व्युत्क्रमणीय होता है। ({{math|1=''Q''<sup>−1</sup> = ''Q''<sup>T</sup>}}), [[ एकात्मक मैट्रिक्स |एकल आव्यूह]] ({{math|1=''Q''<sup>−1</sup> = ''Q''<sup>∗</sup>}}), जहाँ पे {{math|1=''Q''<sup>∗</sup>}} का हर्मिटियन आसन्न संयुग्मी परिवर्त {{mvar|Q}}, है, और इसलिए ({{math|1=''Q''<sup>∗</sup>''Q'' = ''QQ''<sup>∗</sup>}}) [[ वास्तविक संख्या | वास्तविक संख्याओं पर सामान्य]] है। किसी भी लंबकोणीय आव्यूह का सारणिक +1 या -1 एक रैखिक परिवर्तन के रूप में, लंबकोणीय आव्यूह सदिश के आंतरिक परिणाम को संचय करता है, और इसलिए [[ यूक्लिडियन अंतरिक्ष |क्रमावर्तन समष्टि]] एक [[ आइसोमेट्री |समान दूरी]] के रूप में कार्य करता है, जैसे [[ रोटेशन (गणित) |क्रमावर्तन]], [[ प्रतिबिंब (गणित) |प्रतिबिंब]] या रोटर प्रतिबिम्ब के रूप में होता है अर्थात दूसरे शब्दों में, कह सकते है यह [[ एकात्मक परिवर्तन |एकल परिवर्तन]] है। | |||
{{math|''n'' × ''n''}} लंबकोणीय आव्यूह का समुच्चय एक समूह {{math|O(''n'')}} बनाता है, जिसे लंबकोणीय समूह के रूप में जाना जाता है। निर्धारक +1 के साथ लंबकोणीय आव्यूह वाले [[उपसमूह]] {{math|SO(''n'')}} को लंबकोणीय समूह कहा जाता है, और इसके प्रत्येक तत्व एक विशेष लंबकोणीय आव्यूह होते हैं। और एक रैखिक परिवर्तन के रूप में, प्रत्येक लंबकोणीय आव्यूह एक क्रमावर्तन के रूप में कार्य करता है। | |||
== अवलोकन == | |||
लंबकोणीय आव्यूह में एकात्मक आव्यूह की वास्तविक विशेषता यह है कि इसके आव्यूह सदैव सामान्य होते है। यद्यपि हम यहां केवल वास्तविक आव्यूहों को ही देखते हैं, परंतु यदि किसी[[ क्षेत्र (गणित) | क्षेत्र]] से प्रविष्टियों के साथ आव्यूहों के लिए इस परिभाषा का प्रयोग किया जाता है। चूँकि, लंबकोणीय आव्यूह स्वाभाविक रूप से बिंदु उत्पादों से उत्पन्न होते हैं, और सम्मिश्र संख्या के आव्यूह के कारण एकात्मक के साथ आगे बढ़ते हैं। लंबकोणीय आव्यूह, बिंदु गुणनफल को संरक्षित करते हैं।<ref>[http://tutorial.math.lamar.edu/Classes/LinAlg/OrthogonalMatrix.aspx "Paul's online math notes"]{{Citation broken|date=January 2013|note=See talk page.}}, Paul Dawkins, [[Lamar University]], 2008. Theorem 3(c)</ref> इसलिए, {{mvar|n}}-आयामी वास्तविक यूक्लिडियन दूरी में सदिश के लिए {{math|'''u'''}} तथा {{math|'''v'''}} होते है | |||
== | |||
<math display="block">{\mathbf u} \cdot {\mathbf v} = \left(Q {\mathbf u}\right) \cdot \left(Q {\mathbf v}\right) </math> | <math display="block">{\mathbf u} \cdot {\mathbf v} = \left(Q {\mathbf u}\right) \cdot \left(Q {\mathbf v}\right) </math> | ||
जहाँ | जहाँ {{mvar|Q}} एक लंबकोणीय आव्यूह है। आंतरिक गुणनफल संबंधन को देखने के लिए, एक n आयामी वास्तविक यूक्लिडियन दूरी में एक सदिश {{math|'''v'''}} को देखते है। प्रसामान्य लंबकोणीय विश्लेषण के संबंध में लिखा हुआ है, कि {{math|'''v'''}} वर्ग की लंबाई {{math|'''v'''<sup>T</sup>'''v'''}} है। यदि आव्यूह रूप में एक रैखिक परिवर्तन, {{math|''Q'''''v'''}} होता है तो फिर ये सदिश लंबाई को संरक्षित करता है। | ||
<math display="block">{\mathbf v}^\mathrm{T}{\mathbf v} = (Q{\mathbf v})^\mathrm{T}(Q{\mathbf v}) = {\mathbf v}^\mathrm{T} Q^\mathrm{T} Q {\mathbf v} .</math> | <math display="block">{\mathbf v}^\mathrm{T}{\mathbf v} = (Q{\mathbf v})^\mathrm{T}(Q{\mathbf v}) = {\mathbf v}^\mathrm{T} Q^\mathrm{T} Q {\mathbf v} .</math>इस प्रकार परिमित आयामी रैखिक सममिति क्रमावर्तन प्रतिबिंब और उनके संयोजन से लंबकोणीय आव्यूहों का निर्माण होता है। और इसका व्युत्क्रम भी सत्य है, लंबकोणीय आव्यूह का अर्थ लंबकोणीय रूपांतरण है। चूँकि, रैखिक बीजगणित में स्थानों के बीच लंबकोणीय परिवर्तन सम्मिलित होता है, ये न तो परिमित-आयामी हो सकते हैं और न ही समान आयाम के हो सकते हैं, और इनमें कोई लंबकोणीय आव्यूह समतुल्य नहीं होता है। | ||
इस प्रकार | |||
सैद्धांतिक और व्यावहारिक दोनों कारणों से | सैद्धांतिक और व्यावहारिक दोनों कारणों से लंबकोणीय आव्यूह महत्वपूर्ण हैं। {{math|''n'' × ''n''}} लंबकोणीय आव्यूह, आव्यूह गुणन के तहत एक समूह का निर्माण करते हैं, जो {{math|O(''n'')}}, लंबकोणीय समूह द्वारा दर्शाया गया है । जिसका प्रयोग व्यापक रूप से गणित और भौतिक विज्ञान में किया जाता है। उदाहरण के लिए, एक अणु का [[ बिंदु समूह |बिंदु समूह]] O(3) का एक उपसमूह है। क्योंकि लंबकोणीय आव्यूह के चल बिंदु संस्करणों में लाभप्रद गुण होते हैं, वे संख्यात्मक रैखिक बीजगणित में कई कलन विधि के लिए महत्वपूर्ण होते हैं, जैसे क्यूआर ( QR) अपघटन । एक अन्य उदाहरण के रूप में, उपयुक्त सामान्यीकरण के साथ असतत कोज्या परिवर्तन [[एमपी3]] संपीड़न में प्रयुक्त लंबकोणीय आव्यूह द्वारा दर्शाया गया है। | ||
== उदाहरण == | == उदाहरण == | ||
नीचे छोटे | नीचे छोटे लंबकोणीय आव्यूह और संभावित व्याख्याओं के कुछ उदाहरण दिए गए हैं। | ||
*<math> | *<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
1 & 0 \\ | 1 & 0 \\ | ||
0 & 1 \\ | 0 & 1 \\ | ||
\end{bmatrix}</math> ( | \end{bmatrix}</math> (तत्समक परिवर्तन) | ||
*<math> | *<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\cos \theta & -\sin \theta \\ | \cos \theta & -\sin \theta \\ | ||
\sin \theta & \cos \theta \\ | \sin \theta & \cos \theta \\ | ||
\end{bmatrix}</math> (मूल के बारे में | \end{bmatrix}</math> (मूल के बारे में क्रमावर्तन) | ||
*<math> | *<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 55: | Line 50: | ||
=== निचला आयाम === | === निचला आयाम === | ||
सबसे सरल | सबसे सरल लंबकोणीय आव्यूह हैं {{nowrap|1 × 1}} आव्यूह [1] और [−1], जिसे हम तत्समक के रूप में व्याख्या कर सकते हैं और मूल के आर-पार वास्तविक रेखा के प्रतिबिंब के रूप में व्याख्या कर सकते हैं। {{nowrap|2 × 2}} आव्यूह का रूप है | ||
<math display="block">\begin{bmatrix} | <math display="block">\begin{bmatrix} | ||
p & t\\ | p & t\\ | ||
q & u | q & u | ||
\end{bmatrix},</math> | \end{bmatrix},</math> | ||
कौन सी | कौन सी लांबिक मांग तीन समीकरणों को संतुष्ट करती है | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
1 & = p^2+t^2, \\ | 1 & = p^2+t^2, \\ | ||
Line 66: | Line 61: | ||
0 & = pq+tu. | 0 & = pq+tu. | ||
\end{align}</math> | \end{align}</math> | ||
पहले समीकरण को ध्यान में रखते हुए, व्यापकता | पहले समीकरण को ध्यान में रखते हुए, व्यापकता की क्षति के बिना {{math|1=''p'' = cos ''θ''}}, {{math|1=''q'' = sin ''θ''}}; तो कोई {{math|1=''t'' = −''q''}}, {{math|1=''u'' = ''p''}} या {{math|1=''t'' = ''q''}}, {{math|1=''u'' = −''p''}}. हम पहली स्थिति को क्रमावर्तन के रूप में व्याख्या कर सकते हैं {{mvar|θ}} (जहाँ पे {{math|1=''θ'' = 0}} तत्समक है), और दूसरे कोण पर एक रेखा में प्रतिबिंब के रूप में {{math|{{sfrac|''θ''|2}}}} है। | ||
<math display="block"> | <math display="block"> | ||
Line 78: | Line 73: | ||
\end{bmatrix}\text{ (reflection)} | \end{bmatrix}\text{ (reflection)} | ||
</math> | </math> | ||
प्रतिबिंब आव्यूह का विशेष | प्रतिबिंब आव्यूह का विशेष प्रकरण जिसमें {{math|1=''θ'' = 90°}} से दी गई पंक्ति के बारे में y = x द्वारा दिए गए 45° कोण पर प्रतिबिंब बनता है, और इसलिए आदान-प्रदान {{mvar|x}} तथा {{mvar|y}} यह एक [[ क्रमपरिवर्तन मैट्रिक्स | क्रमचय आव्यूह]] है, जिसमें प्रत्येक कॉलम और पंक्ति में एक 1 और अन्यथा 0 होता है। | ||
<math display="block">\begin{bmatrix} | <math display="block">\begin{bmatrix} | ||
0 & 1\\ | 0 & 1\\ | ||
1 & 0 | 1 & 0 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> तत्समक एक क्रमचय आव्यूह है। | ||
प्रतिबिंब का अपना प्रतिलोम होता है, जिसका अर्थ है कि [[प्रतिबिंब मैट्रिक्स|प्रतिबिंब आव्यूह]], इसके स्थानांतरण तथा लंबकोणीय के समान सममित होता है। दो [[ रोटेशन मैट्रिक्स |क्रमावर्तन आव्यूह]] का उत्पाद एक क्रमावर्तन आव्यूह है, और दो प्रतिबिंब आव्यूह का उत्पाद भी एक क्रमावर्तन आव्यूह है। | |||
=== उच्च आयाम === | === उच्च आयाम === | ||
आयाम | आयाम की बात किए बिना, लंबकोणीय आव्यूह को विशुद्ध रूप से घूर्णी या नहीं के रूप में वर्गीकृत करना सदैव आसान होता है, लेकिन {{nowrap|3 × 3}} आव्यूहों के लिए और बड़ी संख्या में घूर्णन आव्यूह परावर्तनों की अपेक्षा अधिक कठिन हो सकते हैं। उदाहरण के लिए, | ||
<math display="block"> | <math display="block"> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 99: | Line 94: | ||
0 & 0 & -1 | 0 & 0 & -1 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
=== | मूल बिंदु और रोटोइनवर्जन के माध्यम से एक बिंदु से व्युत्क्रम का प्रतिनिधित्व करते हैं, जो क्रमश, Z- अक्ष के बारे में। | ||
सबसे प्राथमिक क्रमचय एक स्थानान्तरण है, जो दो पंक्तियों का आदान-प्रदान करके | |||
उच्च आयामों में क्रमावर्तन अधिक कठिन हो जाते हैं क्योंकि उन्हें अब एक कोण से पूरी तरह से वर्गीकृत नहीं किया जा सकता, और एक से अधिक तल क्षेत्र को प्रभावित कर सकते हैं। यह अक्ष और कोण के संदर्भ में 3 × 3 क्रमावर्तन आव्यूह का वर्णन करने के लिए सामान्य बात है, लेकिन यह केवल तीन आयामों में काम करता है। तीन आयामों से ऊपर दो या दो से अधिक कोणों की आवश्यकता होती है, जिनमें से प्रत्येक क्रमावर्तन एक समतल से जुड़ा होता है। | |||
चूँकि, हमारे पास सामान्य रूप से लागू होने वाले क्रम परिवर्तन, प्रतिबिंब और क्रमावर्तन के लिए प्राथमिक रचक अणु होते हैं। | |||
=== प्राचीन === | |||
सबसे प्राथमिक क्रमचय एक स्थानान्तरण है, जो दो पंक्तियों का आदान-प्रदान करके तत्समक आव्यूह से प्राप्त किया जाता है। कोई {{math|''n'' × ''n''}} क्रमचय आव्यूह को इससे अधिक के उत्पाद के रूप में बनाया जा सकता है {{math|''n'' − 1}} स्थानान्तरण के रूप में है। | |||
हाउसहोल्ड प्रतिबिंब को गैर-शून्य सदिश {{math|'''v'''}} से बनाया गया है। | |||
<math display="block">Q = I - 2 \frac{{\mathbf v}{\mathbf v}^\mathrm{T}}{{\mathbf v}^\mathrm{T}{\mathbf v}} .</math> | <math display="block">Q = I - 2 \frac{{\mathbf v}{\mathbf v}^\mathrm{T}}{{\mathbf v}^\mathrm{T}{\mathbf v}} .</math> | ||
एक | |||
यहाँ अंश एक सममित आव्यूह है। जबकि हर संख्या {{math|'''v'''}} का वर्ग परिमाण है। यह {{math|'''v'''}} के समानांतर किसी भी सदिश घटक को निष्फल के लिए अधिसमतल लंबवत में प्रतिबिंब के रूप में होता है। यदि {{math|'''v'''}} इकाई सदिश है, तो {{math|1=''Q'' = ''I'' − 2'''vv'''<sup>T</sup>}} पर्याप्त है। एक हाउसहोल्ड प्रतिबिंब का उपयोग सामान्तया एक कॉलम के निचले हिस्से को एक साथ शून्य करने के लिए किया जाता है। आकार {{nowrap|''n'' × ''n''}} के किसी भी लंबकोणीय आव्यूह को अधिकतर {{mvar|n}} के ऐसे प्रतिबिंबों के उत्पाद के रूप में बनाया जा सकता है। | |||
दिया गया [[क्रमावर्तन]] दो आयामी तलीय पर कार्य करता है, जो कि चयनित कोण द्वारा घूमते हुए दो समन्वय अक्षों द्वारा विस्तरित उपक्षेत्र है। यह सामान्तया एकल उपविकर्ण प्रविष्टि को शून्य करने के लिए उपयोग किया जाता है। {{math|''n'' × ''n''}} आकार के किसी भी क्रमावर्तन आव्यूह को अधिकतर {{math|{{sfrac|''n''(''n'' − 1)|2}}}} जैसे क्रमावर्तन के उत्पाद के रूप में बनाया जा सकता है। 3 × 3 आव्यूह की स्थिति में, ऐसे तीन क्रमावर्तन पर्याप्त हैं, इस प्रकार हम सभी 3 × 3 क्रमावर्तन आव्यूह का वर्णन कर सकते हैं, चूँकि यूलर कोण कहे जाने वाले तीन कोणों के संदर्भ में अद्वितीय नहीं हैं। | |||
[[जैकोबी क्रमावर्तन]] दिए गए क्रमावर्तन के रूप में समान है, लेकिन इसका उपयोग 2 × 2 सममित उपआव्यूह की उपविकर्णों की प्रविष्टियों को शून्य करने के लिए किया जाता है। | |||
== गुण == | == गुण == | ||
=== आव्यूह गुण === | === आव्यूह गुण === | ||
एक वास्तविक वर्ग आव्यूह | एक वास्तविक वर्ग लंबकोणीय आव्यूह होता है, और यदि इसके कॉलम सामान्य यूक्लिडियन दूरी {{math|'''R'''<sup>''n''</sup>}} के लंबकोणीय आधार के रूप में होते है।, इस तरह की स्थिति सिर्फ़ इसकी पंक्तियाँ {{math|'''R'''<sup>''n''</sup>}}.लंबकोणीय के साथ एक आव्यूह को समझने के लिए होती है। कि लंबकोणीय ( प्रसामान्य लंबकोणीय नहीं) कॉलम वाले आव्यूह को लंबकोणीय आव्यूह के रूप में जाना जाता है, लेकिन इस प्रकार के आव्यूहों की विशेष रूचि नहीं होती और उन्हें केवल किसी विशेष नाम से संतुष्ट नहीं होते हैं। {{math|1=''M''<sup>T</sup>''M'' = ''D''}}, साथ {{mvar|D}} एक [[ विकर्ण मैट्रिक्स | विकर्ण आव्यूह]] होते है। | ||
किसी भी | किसी भी लंबकोणीय आव्यूह का सारणिक +1 या -1 होता है। यह सारणिक के बारे में मूलभूत तथ्यों से है जैसा कि नीचे दिया गया है। | ||
<math display="block">1=\det(I)=\det\left(Q^\mathrm{T}Q\right)=\det\left(Q^\mathrm{T}\right)\det(Q)=\bigl(\det(Q)\bigr)^2 .</math> | <math display="block">1=\det(I)=\det\left(Q^\mathrm{T}Q\right)=\det\left(Q^\mathrm{T}\right)\det(Q)=\bigl(\det(Q)\bigr)^2 .</math> | ||
इसका | इसका विलोम सही नहीं है ±1 के सारणिक होने से लांबिक का कोई आश्वासन नहीं है, यहां तक कि लंबकोणीय कॉलम के साथ भी, जैसा कि निम्नलिखित प्रत्युत्तर उदाहरण द्वारा दिखाया गया है। | ||
<math display="block">\begin{bmatrix} | <math display="block">\begin{bmatrix} | ||
2 & 0 \\ | 2 & 0 \\ | ||
0 & \frac{1}{2} | 0 & \frac{1}{2} | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
क्रमचय आव्यूह के साथ सारणिक अंकित अंक से मेल खाता है, क्रमचय की समानता के रूप में +1 या-1 को सम या विषम किया जाना पंक्तियों का वैकल्पिक कार्य है। | |||
सारणिक प्रतिबंध से मजबूत तथ्य यह है कि एक लंबकोणीय आव्यूह सदैव अभिलक्षणिक मान और अभिलक्षणिक सदिश के पूर्ण समुच्चय को प्रदर्शित करने के लिए [[ जटिल संख्या | जटिल संख्याओं]] पर विकर्ण आव्यूह होता है, जिनमें से सभी का जटिल निरपेक्ष मान 1 होना चाहिए। | |||
=== समूह गुण === | === समूह गुण === | ||
प्रत्येक | प्रत्येक लंबकोणीय आव्यूह का प्रतिलोम पुनः लंबकोणीय होता है, जैसा कि दो लंबकोणीय आव्यूह का आव्यूह उत्पाद होता है। यथार्थ में, सभी का समुच्चय {{math|''n'' × ''n''}} लंबकोणीय आव्यूह के सभी समूह एक्सीओम्स को संतुष्ट करते है। यह आयाम का एक [[ कॉम्पैक्ट स्पेस |कॉम्पैक्ट क्षेत्र]] लाई समूह {{math|{{sfrac|''n''(''n'' − 1)|2}}}} है, इसे लंबकोणीय समूह कहा जाता है और {{math|O(''n'')}} द्वारा दर्शाया जाता है। | ||
लंबकोणीय आव्यूह जिसका सारणिक +1 है, और सूचकांक 2 के SO(n) के पथ से [[जुड़े]] [[सामान्य उपसमूह]] का निर्माण करते है, इसके क्रमावर्तन का विशेष लंबकोणीय समूह SO(n) है। [[ भागफल समूह |भागफल समूह]] .{{math|O(''n'')/SO(''n'')}} के लिए तुल्याकारी है {{math|O(1)}}, सारणिक के अनुसार +1 या −1 चुनने वाले प्रक्षेपण मानचित्र के साथ होते है । सारणिक-1 के साथ लंबकोणीय आव्यूह में तत्समक सम्मिलित नहीं होते है, और इसलिए एक उपसमूह नहीं बल्कि केवल सहसमुच्चय बनाते हैं, यह अलग से भी जुड़ा हुआ है। इस प्रकार प्रत्येक लंबकोणीय समूह के दो टुकड़े हो जाते हैं, और क्योंकि प्रक्षेपण मानचित्र पर विभाजन होता है, {{math|SO(''n'')}} द्वारा {{math|O(''n'')}} {{math|O(1)}} का अर्धप्रत्यक्ष उत्पाद है, व्यावहारिक संदर्भ में, एक तुलनीय कथन यह है कि क्रमावर्तन आव्यूह को लेकर किसी लंबकोणीय आव्यूह का निर्माण किया जा सकता है। संभवतः इसके किसी एक कॉलम को अस्वीकार कर बनाया जाता है, जैसा कि हमने देखा {{nowrap|2 × 2}} आव्यूह में। यदि {{mvar|n}} विषम है, तो सेमीडायरेक्ट उत्पाद वास्तव में [[ समूहों का प्रत्यक्ष उत्पाद |समूहों का प्रत्यक्ष उत्पाद]] है, और किसी भी लंबकोणीय आव्यूह को क्रमावर्तन आव्यूह द्वारा और संभवतः इसके सभी कॉलम को अस्वीकार कर बनाया जा सकता है। यह सारणिक की गुण धर्म का अनुसरण करता है और यह एक कॉलम को अस्वीकार कर सारणिक को निषेध करता है, और इस प्रकार कॉलम की एक विषम (लेकिन सम नहीं) संख्या को अस्वीकार कर सारणिक को निषेध करता है। | |||
अब विचार करें {{math|(''n'' + 1) × (''n'' + 1)}} | अब विचार करें {{math|(''n'' + 1) × (''n'' + 1)}} लंबकोणीय आव्यूह जिसमें नीचे दाहिनी प्रविष्टि 1 के बराबर है। अंतिम कॉलम और अंतिम पंक्ति का शेष शून्य होना चाहिए, और ऐसे दो आव्यूह के उत्पाद का एक ही रूप है। शेष आव्यूह एक है {{math|''n'' × ''n''}} लंबकोणीय आव्यूह, इस प्रकार {{math|O(''n'')}} का एक उपसमूह है {{math|O(''n'' + 1)}} (और सभी उच्च समूहों के)। | ||
<math display="block">\begin{bmatrix} | <math display="block">\begin{bmatrix} | ||
Line 145: | Line 150: | ||
0 & \cdots & 0 & 1 | 0 & \cdots & 0 & 1 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
चूंकि [[ | चूंकि, [[हाउसहोल्डर]] आव्यूह के रूप में एक प्रारंभिक प्रतिबिंब किसी भी लंबकोणीय आव्यूह को बाधित कर सकता है, और इस तरह के प्रतिबिंबों की एक श्रृंखला किसी भी लंबकोणीय आव्यूह को तत्समक में ला सकती है, इस प्रकार एक लंबकोणीय समूह[[ प्रतिबिंब समूह ]] होता है। और अंतिम कॉलम किसी भी इकाई सदिश के लिए तय किया जा सकता है, और प्रत्येक विकल्प की एक अलग प्रति देता है {{math|O(''n'')}} में {{math|O(''n'' + 1)}} सामान्तया {{math|O(''n'' + 1)}} इकाई गोले के ऊपर एक [[ फाइबर बंडल ]] {{math|''S''<sup>''n''</sup>}} है और फाइबर के साथ {{math|O(''n'')}}.होते है। | ||
इसी प्रकार, {{math|SO(''n'')}} का एक उपसमूह है {{math|SO(''n'' + 1)}} | इसी प्रकार, {{math|SO(''n'')}} का एक उपसमूह है {{math|SO(''n'' + 1)}}, और किसी भी विशेष लंबकोणीय आव्यूह को एक समान प्रक्रिया का उपयोग करके सपाट क्रमावर्तन द्वारा उत्पन्न किया जा सकता है। इसमें बंडल की संरचना बनी रहती है, {{math|SO(''n'') ↪ SO(''n'' + 1) → ''S''<sup>''n''</sup>}}. एक एकल घुमाव अंतिम कॉलम की पहली पंक्ति में एक शून्य उत्पन्न कर सकता है, और श्रृंखला {{math|''n'' − 1}} क्रमावर्तन एक n × n क्रमावर्तन आव्यूह के अंतिम कॉलम की अंतिम पंक्ति को छोड़कर सभी को शून्य कर देगा। चूंकि समतल स्थिर होते हैं, इसलिए प्रत्येक क्रमावर्तन में केवल एक कोटि की स्वतंत्रता होती है, इसलिए प्रेरण में इसका कोण {{math|SO(''n'')}} होता है। | ||
<math display="block">(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}</math> | <math display="block">(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}</math> | ||
इसी तरह O(n) स्वतंत्रता की कोटि के रूप में कार्य.करता है। | |||
क्रमचय आव्यूह अभी भी सरल हैं, वे लाई समूह नहीं, बल्कि केवल एक परिमित समूह बनाते हैं, क्रम फैक्टोरियल {{math|''n''!}}[[ सममित समूह ]]{{math|S<sub>''n''</sub>}}. इसी युक्ति से, {{math|S<sub>''n''</sub>}} का एक उपसमूह है {{math|S<sub>''n'' + 1</sub>}}. सम क्रम परिवर्तन सारणिक +1 के क्रमचय आव्यूह के उपसमूह की उत्पत्ति,करते हैं, क्रम {{math|{{sfrac|''n''!|2}}}}[[ वैकल्पिक समूह ]] के होते है। | |||
=== विहित रूप === | === विहित रूप === | ||
सामान्तया, किसी भी लंबकोणीय आव्यूह का प्रभाव लंबकोणीय द्वि-आयामी उप-क्षेत्रों पर स्वतंत्र क्रियाओं को अलग करता है। अर्थात, यदि Q लंबकोणीय है तो एक को सदैव लंबकोणीय आव्यूह {{mvar|P}}, आधार का घूर्णी परिवर्तन मिल जाता है, जो Q को आव्यूह के विकर्ण के रूप में लाता है। | |||
<math display="block">P^\mathrm{T}QP = \begin{bmatrix} | <math display="block">P^\mathrm{T}QP = \begin{bmatrix} | ||
Line 162: | Line 167: | ||
R_1 & & & \\ & \ddots & & \\ & & R_k & \\ & & & 1 | R_1 & & & \\ & \ddots & & \\ & & R_k & \\ & & & 1 | ||
\end{bmatrix}\ (n\text{ odd}).</math> | \end{bmatrix}\ (n\text{ odd}).</math> | ||
जहां | जहां आव्यूह {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} {{nowrap|2 × 2}} क्रमावर्तन आव्यूह हैं, और शेष प्रविष्टियों के साथ शून्य असाधारण रूप से, एक क्रमावर्तन आव्यूह के विकर्ण हो सकते है, {{math|±''I''}}. इस प्रकार, यदि आवश्यक हो तो एक कॉलम को अस्वीकारना और यह ध्यान रखना कि एक {{nowrap|2 × 2}} प्रतिबिंब +1 और -1 के लिए आव्यूह के विकर्ण है, और किसी भी लंबकोणीय आव्यूह को क्रमबद्ध किया जा सकता है। | ||
<math display="block">P^\mathrm{T}QP = \begin{bmatrix} | <math display="block">P^\mathrm{T}QP = \begin{bmatrix} | ||
\begin{matrix}R_1 & & \\ & \ddots & \\ & & R_k\end{matrix} & 0 \\ | \begin{matrix}R_1 & & \\ & \ddots & \\ & & R_k\end{matrix} & 0 \\ | ||
0 & \begin{matrix}\pm 1 & & \\ & \ddots & \\ & & \pm 1\end{matrix} \\ | 0 & \begin{matrix}\pm 1 & & \\ & \ddots & \\ & & \pm 1\end{matrix} \\ | ||
\end{bmatrix},</math> | \end{bmatrix},</math> | ||
आव्यूह {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} सम्मिश्र संख्या में इकाई वृत्त पर स्थित अभिलक्षणिक मान के संयुग्म को जोड़े देते हैं, इसलिए यह अपघटन को पुष्टि करता है कि सभी अभिलक्षणिक मान और अभिलक्षणिक सदिश का पूर्ण मान 1 है। यदि {{mvar|n}} विषम है, कम से कम एक वास्तविक अभिलक्षणिक मान है, +1 या -1, एक के लिए {{nowrap|3 × 3}} क्रमावर्तन, +1 से जुड़ा अभिलक्षणिक सदिश क्रमावर्तन अक्ष का है। | |||
=== लेट बीजगणित === | === लेट बीजगणित === | ||
मान लीजिए की प्रविष्टियाँ {{mvar|Q}} के अलग-अलग कार्य हैं {{mvar|t}}, और कि {{math|1=''t'' = 0}} देता है {{math|1=''Q'' = ''I''}}. | मान लीजिए की प्रविष्टियाँ {{mvar|Q}} के अलग-अलग कार्य हैं {{mvar|t}}, और कि {{math|1=''t'' = 0}} देता है {{math|1=''Q'' = ''I''}}. लंबकोणीयिटी की स्थिति को अलग करता है। | ||
<math display="block">Q^\mathrm{T} Q = I </math> | <math display="block">Q^\mathrm{T} Q = I </math> | ||
प्रतिफल | |||
<math display="block">\dot{Q}^\mathrm{T} Q + Q^\mathrm{T} \dot{Q} = 0</math> | <math display="block">\dot{Q}^\mathrm{T} Q + Q^\mathrm{T} \dot{Q} = 0</math> | ||
पर मूल्यांकन {{math|1=''t'' = 0}} ({{math|1=''Q'' = ''I''}}) तो तात्पर्य है | पर मूल्यांकन {{math|1=''t'' = 0}} ({{math|1=''Q'' = ''I''}}) तो तात्पर्य है | ||
<math display="block">\dot{Q}^\mathrm{T} = -\dot{Q} .</math> | <math display="block">\dot{Q}^\mathrm{T} = -\dot{Q} .</math> | ||
लाई(lie) समूह के शब्दों में, इसका मतलब है कि एक लंबकोणीय आव्यूह समूह के लाई बीजगणित में [[ तिरछा-सममित मैट्रिक्स | तिरछा-सममित आव्यूह]] होता है। और दूसरी दिशा में जा रहे हैं, किसी भी तिरछा-सममित आव्यूह का आव्यूह घातीय लंबकोणीय आव्यूह है (वास्तव में, विशेष लंबकोणीय है)। | |||
उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी | उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी कहती है कि कोणीय वेग एक विभेदक क्रमावर्तन है, इस प्रकार लाई बीजगणित में एक सदिश है <math>\mathfrak{so}(3)</math> स्पर्शरेखा {{math|SO(3)}}. दी गयी है {{math|1='''ω''' = (''xθ'', ''yθ'', ''zθ'')}}, साथ {{math|1='''v''' = (''x'', ''y'', ''z'')}} एक इकाई सदिश होने के नाते, {{mvar|'''ω'''}} का सही तिरछा-सममित आव्यूह रूप है। <math display="block"> | ||
<math display="block"> | |||
\Omega = \begin{bmatrix} | \Omega = \begin{bmatrix} | ||
0 & -z\theta & y\theta \\ | 0 & -z\theta & y\theta \\ | ||
Line 185: | Line 189: | ||
-y\theta & x\theta & 0 | -y\theta & x\theta & 0 | ||
\end{bmatrix} .</math> | \end{bmatrix} .</math> | ||
इसका घातांक अक्ष के चारों ओर घूमने के लिए | इसका घातांक अक्ष के चारों ओर घूमने के लिए लंबकोणीय आव्यूह है {{math|'''v'''}} कोण से {{mvar|θ}}, स्थापना {{math|1=''c'' = cos {{sfrac|''θ''|2}}}}, {{math|1=''s'' = sin {{sfrac|''θ''|2}}}} है। | ||
<math display="block">\exp(\Omega) = \begin{bmatrix} | <math display="block">\exp(\Omega) = \begin{bmatrix} | ||
1 - 2s^2 + 2x^2 s^2 & 2xy s^2 - 2z sc & 2xz s^2 + 2y sc\\ | 1 - 2s^2 + 2x^2 s^2 & 2xy s^2 - 2z sc & 2xz s^2 + 2y sc\\ | ||
Line 196: | Line 200: | ||
===लाभ === | ===लाभ === | ||
[[ संख्यात्मक विश्लेषण ]] संख्यात्मक रैखिक बीजगणित के लिए | [[ संख्यात्मक विश्लेषण ]] संख्यात्मक रैखिक स्वाभाविक रूप से बीजगणित के लिए लंबकोणीय आव्यूह के गुणों के लिए लाभ उत्पन्न करते हैं। उदाहरण के लिए, किसी स्थान के लिए प्रसामान्य लंबकोणीय आधार, या आधारों के लंबकोणीय परिवर्तन की गणना करना सदैव कठिन होता है, दोनों लंबकोणीय आव्यूह का रूप लेते हैं। सारणिक±1 और परिमाण 1 के सभी अभिलक्षणिक मान [[ संख्यात्मक स्थिरता ]] के लिए बहुत लाभ का है। एक निहितार्थ यह है कि स्थिति संख्या 1 जो न्यूनतम है, इसलिए लंबकोणीय आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई कलन विधि लंबकोणीय आव्यूहों जैसे हाउसहोल्डर प्रतिबिंब का उपयोग करते हैं तथा इस कारण से दिए गए क्रमावर्तन का प्रयोग करते हैं। यह भी सहायक है कि न केवल लंबकोणीय आव्यूह वर्तनीय है बल्कि इसका प्रतिलोम सूचकांकों के विनिमय द्वारा अनिवार्य रूप से मुक्त भी है। | ||
कई | कई कलन विधि की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें अधिक परिश्रमी व्यक्ति गौसी उन्मूलन के साथ आशिक धुरी सम्मिलित होती है (जहां क्रमपरिवर्तन धुरी का काम करते हैं)। चूँकि, वे शायद ही कभी स्पष्ट रूप से आव्यूह के रूप में प्रकट होते हैं, उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची {{mvar|n}} सूचकांक में है। | ||
इसी तरह, हाउसहोल्डर और | इसी तरह, हाउसहोल्डर और दिए गए आव्यूह का उपयोग करने वाले कलन विधि अधिकांशता गुणन और संचयन के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, दिया गया क्रमावर्तन एक [[आव्यूह]] की दो पंक्तियों को प्रभावित करता है जो इसे गुणन करता है, और ''n''<sup>3</sup> क्रम के पूर्ण [[गुणन]] को और अधिक कुशल {{mvar|n}} क्रम में बदल देता है। जब इन प्रतिबिंबों और क्रमावर्तन का उपयोग आव्यूह में शून्य का तत्समक करता है, तो समष्टि परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त आँकड़े संचय करने के लिए पर्याप्त है, और यह बहुत ही तेजी से किया जा सके। [[स्टीवर्ट के बाद (1976) में]], हम एक क्रमावर्तन कोण को संचय नहीं करते हैं, जो महंगा भी है और बुरा भी। | ||
===अपघटन === | ===अपघटन === | ||
कई महत्वपूर्ण [[ मैट्रिक्स अपघटन | आव्यूह अपघटन]] {{harv|Golub|Van Loan|1996}} विशेष रूप से | कई महत्वपूर्ण [[ मैट्रिक्स अपघटन | आव्यूह अपघटन]] {{harv|Golub|Van Loan|1996}} विशेष रूप से लंबकोणीय आव्यूह में सम्मिलित है। | ||
{{mvar|QR}} अपघटन, | |||
;[[ विलक्षण मान अपघटन ]] : {{math|1=''M'' = ''U''Σ''V''<sup>T</sup>}}, {{mvar|U}} तथा {{mvar|V}} | |||
;आव्यूह का | {{math|1=''M'' = ''QR''}}, {{mvar|Q}} लंबकोणीय, {{mvar|R}} ऊपरी त्रिकोणीय | ||
;[[ ध्रुवीय अपघटन ]] : {{math|1=''M'' = ''QS''}}, {{mvar|Q}} | ;[[ विलक्षण मान अपघटन | विलक्षण मान अपघटन]]: {{math|1=''M'' = ''U''Σ''V''<sup>T</sup>}}, {{mvar|U}} तथा {{mvar|V}} लंबकोणीय, {{math|Σ}} विकर्ण आव्यूह | ||
;आव्यूह का अभिलक्षणिक अपघटन ([[ वर्णक्रमीय प्रमेय | वर्णक्रमीय प्रमेय]] के अनुसार अपघटन): {{math|1=''S'' = ''Q''Λ''Q''<sup>T</sup>}}, {{mvar|S}} सममित, {{mvar|Q}} लंबकोणीय, {{math|Λ}} विकर्ण | |||
;[[ ध्रुवीय अपघटन | ध्रुवीय अपघटन]]: {{math|1=''M'' = ''QS''}}, {{mvar|Q}} लंबकोणीय, {{mvar|S}} सममित सकारात्मक-अर्धपरिमित | |||
==== उदाहरण ==== | ==== उदाहरण ==== | ||
रैखिक समीकरणों की एक अतिनिर्धारित प्रणाली पर | रैखिक समीकरणों की एक अतिनिर्धारित प्रणाली पर बातचीत करने पर, जैसा कि प्रयोगात्मक त्रुटियों की क्षतिपूर्ति के लिए भौतिक घटना के बार-बार परीक्षण से होता है। लिखे {{math|1=''A'''''x''' = '''b'''}}, जहाँ पे {{mvar|A}} है {{math|''m'' × ''n''}}, {{math|''m'' > ''n''}}. | ||
ए {{mvar|QR}} अपघटन कम हो जाता | ए {{mvar|QR}} अपघटन कम हो जाता है। {{mvar|A}} ऊपरी त्रिकोणीय के लिए {{mvar|R}}. उदाहरण के लिए, यदि {{mvar|A}} {{nowrap|5 × 3}} है जो {{mvar|R}} रूप में है। | ||
<math display="block">R = \begin{bmatrix} | <math display="block">R = \begin{bmatrix} | ||
\cdot & \cdot & \cdot \\ | \cdot & \cdot & \cdot \\ | ||
Line 220: | Line 226: | ||
0 & 0 & 0 | 0 & 0 & 0 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
[[ रैखिक कम से कम वर्ग (गणित) |रैखिक कम से कम वर्ग गणित]] समस्या x को खोजने के लिए है जो ||Ax - b|| को छोटा करता है जो A के कॉलम द्वारा {{math|मानदंड 'ए' 'एक्स' − 'बी'}} फैलाए गए उप-स्थान पर {{math|'''b'''}} को प्रोजेक्ट करने के बराबर है। {{mvar|A}} (और इसलिए {{mvar|R}}) के कॉलम को स्वतंत्र मानते हुए, प्रक्षेपण समाधान {{math|1=''A''<sup>T</sup>''A'''''x''' = ''A''<sup>T</sup>'''b'''}} से मिलता है। अब ({{math|''n'' × ''n''}}) और व्युत्क्रम है, और {{math|''R''<sup>T</sup>''R''}} के बराबर भी है। लेकिन {{mvar|R}} में शून्य की निचली पंक्तियाँ उत्पाद में ज़रूरत से ज़्यादा हैं, जो इस प्रकार पहले से ही निचले-त्रिकोणीय ऊपरी-त्रिकोणीय तथ्यात्मक रूप में है, जैसा कि गाऊसी उन्मूलन ([[ चोल्स्की अपघटन |चोल्स्की अपघटन]]) में है। यहाँ रूढ़िवादिता न केवल {{math|1=''A''<sup>T</sup>''A'' = (''R''<sup>T</sup>''Q''<sup>T</sup>)''QR''}} में कम करने के लिए महत्वपूर्ण है, लेकिन यह संख्यात्मक समस्याओं को बढ़ाए बिना समाधान की अनुमति देने के लिए भी है। | |||
एक रैखिक प्रणाली की स्थिति जो अनिश्चित है, या अन्यथा अपरिवर्तनीय आव्यूह का विलक्षण मान अपघटन (एसवीडी) समान रूप से उपयोगी है। साथ {{mvar|A}} के रूप में कारक {{math|''U''Σ''V''<sup>T</sup>}}, संतोषजनक समाधान मूर-पेनरोज़ का उपयोग करता है, {{math|''V''Σ<sup>+</sup>''U''<sup>T</sup>}}, जहाँ पे {{math|Σ<sup>+</sup>}} केवल प्रत्येक गैर-शून्य विकर्ण प्रविष्टि को उसके व्युत्क्रम से प्रतिस्थापित करता है। समूह {{math|'''x'''}} प्रति {{math|''V''Σ<sup>+</sup>''U''<sup>T</sup>'''b'''}}. | |||
उदाहरण के लिए, एक गैर- | व्युत्क्रम आव्यूह की घटना भी महत्व रखती है। उदाहरण के लिए मान लीजिए, कि {{mvar|A}} एक 3 × 3 क्रमावर्तन आव्यूह जिसकी गणना कई घुमाव और टर्न की संरचना के रूप में की गई है। चल बिंदु वास्तविक संख्याओं के गणितीय आदर्श से मेल नहीं खाते है, इसलिए {{mvar|A}} धीरे-धीरे अपनी वास्तविक रूढ़िवादिता को खो दिया है। एक ग्राम-श्मिट प्रक्रिया कॉलम को [[ ऑर्थोगोनलाइज़ेशन | लंबकोणीयाइज़ेशन]] कर सकती है, लेकिन यह सबसे विश्वसनीय नहीं है, और न ही सबसे कुशल, और न ही सबसे अपरिवर्तनीय विधि है।ध्रुवीय विघटन के कारण युग्म में एक आव्यूह होता है, जिनमें से एक दिए गए आव्यूह के लिए अद्वितीय निकटतम लंबकोणीय आव्यूह होता है, या दिए गए आव्यूह एकवचन है तो निकटतम में से एक होता है। निकटता को आधार के लंबकोणीय परिवर्तन के तहत किसी भी [[ मैट्रिक्स मानदंड | आव्यूह मानदंड]] अपरिवर्तनीय द्वारा मापा जा सकता है, जैसे वर्णक्रमीय मानदंड या फ्रोबेनियस मानदंड, निकट-लंबकोणीय आव्यूह के लिए, लंबकोणीय कारक के लिए तेजी से अभिसरण न्यूटन की विधि द्वारा प्राप्त किया जा सकता है। हिघम (1986) (1990), आव्यूह को बार-बार इसके व्युत्क्रम स्थानांतरण के साथ औसत करता है। {{harvtxt|Dubrulle|1999}} एक सुविधाजनक अभिसरण परीक्षण के साथ एक त्वरित विधि प्रकाशित की है। | ||
<math display="block">\begin{bmatrix}3 & 1\\7 & 5\end{bmatrix} | |||
उदाहरण के लिए, एक गैर-लंबकोणीय आव्यूह पर विचार करें जिसके लिए साधारण औसत कलन विधि सात चरण लेती है।<math display="block">\begin{bmatrix}3 & 1\\7 & 5\end{bmatrix} | |||
\rightarrow | \rightarrow | ||
\begin{bmatrix}1.8125 & 0.0625\\3.4375 & 2.6875\end{bmatrix} | \begin{bmatrix}1.8125 & 0.0625\\3.4375 & 2.6875\end{bmatrix} | ||
Line 247: | Line 253: | ||
===यादृच्छिकीकरण=== | ===यादृच्छिकीकरण=== | ||
कुछ संख्यात्मक अनुप्रयोग, जैसे कि [[ मोंटे कार्लो विधि ]] | कुछ संख्यात्मक अनुप्रयोग, जैसे कि [[ मोंटे कार्लो विधि ]] और उच्च-आयामी आँकड़े दूरी की खोज के लिए, [[ समान वितरण (निरंतर) |समान रूप से वितरित]] यादृच्छिक लंबकोणीय आव्यूह की उत्पति की आवश्यकता होती है। इस संदर्भ में, हार (haar) माप के संदर्भ में एकसार को परिभाषित किया गया है, जो अनिवार्य रूप से आवश्यक है कि किसी भी स्वतंत्र रूप से चुने गए लंबकोणीय आव्यूह द्वारा गुणा किए जाने पर वितरण में परिवर्तन न हो। [[ सांख्यिकीय स्वतंत्रता ]] के साथ लंबकोणीयाइज़िंग आव्यूह समान रूप से वितरित यादृच्छिक प्रविष्टियाँ समान रूप से वितरित लंबकोणीय आव्यूह में परिणाम नहीं देती हैं{{Citation needed|date=June 2009}}, लेकिन {{mvar|QR}} अपघटन स्वतंत्र [[ सामान्य वितरण ]] का अपघटन यादृच्छिक प्रविष्टि करता है, जब तक R के विकर्ण में केवल धनात्मक प्रविष्टियाँ सम्मिलित होती हैं [[(मेजादरी 2006 ), (स्टीवर्ट 1980)]] इसे एक अधिक कुशल विचार के साथ बदल दिया [[(डायकोनिस और शाहशाहनी 1987)]] बाद में उपसमूह कलन विधि के रूप में सामान्यीकृत किया गया इस रूप में यह क्रमचय और क्रमावर्तन के लिए भी काम करता है। एक {{math|(''n'' + 1) × (''n'' + 1)}} लंबकोणीय आव्यूह उत्पन्न करने के लिए, {{math|''n'' × ''n''}} एक और आयाम एक समान रूप से वितरित इकाई सदिश {{nowrap|''n'' + 1}} से हाउसहोल्ड प्रतिबिम्ब बनाते है, फिर इसे छोटे आव्यूह पर लागू करते है। नीचे दाएं कोने में 1 के साथ बड़े आकार में सन्निहित किया गया। | ||
कुछ संख्यात्मक अनुप्रयोगों, जैसे कि मोंटे कार्लो विधि और उच्च-आयामी आंकड़े स्थानों के अन्वेषण के लिए समान रूप से वितरित यादृच्छिक आव्यूह के उत्पादन की आवश्यकता होती है। | |||
=== निकटतम | === निकटतम लंबकोणीय आव्यूह === | ||
दिए गए आव्यूह M के निकटतम लंबकोणीय आव्यूह का Q से जुड़ी समस्या का मान ज्ञात करने के लिए उपयुक्त [[लंबकोणीय प्रोक्रस्ट्स]] इसकी [[समस्या]] से संबंधित है। अद्वितीय समाधान प्राप्त करने के कई अलग-अलग तरीके हैं, जिनमें से सबसे सरल विशिष्ट मूल्य {{mvar|M}} अपघटन को प्राप्त कर विशिष्ट मूल्यों को एक साथ बदल देते हैं। एक अन्य विधि {{mvar|R}} स्पष्ट रूप से व्यक्त करती है। लेकिन [[ मैट्रिक्स वर्गमूल | आव्यूह वर्गमूल]] के उपयोग की आवश्यकता होती है।<ref>[http://people.csail.mit.edu/bkph/articles/Nearest_Orthonormal_Matrix.pdf "Finding the Nearest Orthonormal Matrix"], [[Berthold K.P. Horn]], [[MIT]].</ref> | |||
<math display="block">Q = M \left(M^\mathrm{T} M\right)^{-\frac 1 2}</math> | <math display="block">Q = M \left(M^\mathrm{T} M\right)^{-\frac 1 2}</math> | ||
यह पुनरावृत्ति देने के लिए एक आव्यूह | |||
यह पुनरावृत्ति देने के लिए एक आव्यूह का वर्गमूल निकालने के लिए बेबीलोनियन विधि के साथ जोड़ा जा सकता है जो एक लंबकोणीय आव्यूह को द्विघात रूप से अभिसरण करता है। | |||
<math display="block">Q_{n + 1} = 2 M \left(Q_n^{-1} M + M^\mathrm{T} Q_n\right)^{-1}</math> | <math display="block">Q_{n + 1} = 2 M \left(Q_n^{-1} M + M^\mathrm{T} Q_n\right)^{-1}</math> | ||
जहाँ पे {{math|1=''Q''<sub>0</sub> = ''M''}}. | जहाँ पे {{math|1=''Q''<sub>0</sub> = ''M''}}. | ||
ये पुनरावृत्तियां स्थिर हैं बशर्ते की स्थिति संख्या {{mvar|M}} तीन से कम है।<ref>[http://www.maths.manchester.ac.uk/~nareports/narep91.pdf "Newton's Method for the Matrix Square Root"] {{Webarchive|url=https://web.archive.org/web/20110929131330/http://www.maths.manchester.ac.uk/~nareports/narep91.pdf |date=2011-09-29 }}, Nicholas J. Higham, Mathematics of Computation, Volume 46, Number 174, 1986.</ref> | ये पुनरावृत्तियां स्थिर हैं बशर्ते की स्थिति संख्या {{mvar|M}} तीन से कम है।<ref>[http://www.maths.manchester.ac.uk/~nareports/narep91.pdf "Newton's Method for the Matrix Square Root"] {{Webarchive|url=https://web.archive.org/web/20110929131330/http://www.maths.manchester.ac.uk/~nareports/narep91.pdf |date=2011-09-29 }}, Nicholas J. Higham, Mathematics of Computation, Volume 46, Number 174, 1986.</ref> | ||
व्युत्क्रम के प्रथम-क्रम के सन्निकटन का उपयोग करना और उसी आरंभीकरण के परिणामस्वरूप संशोधित पुनरावृत्ति होती | व्युत्क्रम के प्रथम-क्रम के सन्निकटन का उपयोग करना और उसी आरंभीकरण के परिणामस्वरूप संशोधित पुनरावृत्ति होती है। | ||
<math display="block">N_{n} = Q_n^\mathrm{T} Q_n</math> | <math display="block">N_{n} = Q_n^\mathrm{T} Q_n</math> | ||
Line 266: | Line 277: | ||
== स्पिन और पिन == | == स्पिन और पिन == | ||
एक सूक्ष्म तकनीकी समस्या | एक सूक्ष्म तकनीकी समस्या लंबकोणीय आव्यूह के कुछ उपयोगों को प्रभावित करती है। सारणिक +1 और -1 वाले समूह घटक एक दूसरे से न केवल जुड़े नहीं हैं, यहां तक कि +1 घटक भी, {{math|SO(''n'')}}, केवल जुड़ा हुआ स्थान नहीं है, SO(1) को छोड़कर, जो तुच्छ है। इस प्रकार यह कभी कभी लाभप्रद होता है, या इसके लिए एक [[आवरण समूह]] SO(''n'') के साथ काम करना आवश्यक होता है, स्पिन समूह, {{math|Spin(''n'')}}. वैसे ही, {{math|O(''n'')}} आवरण ग्रुप में,[[ पिन समूह ]],होते हैं। पिन(''n'') के लिये {{math|''n'' > 2}}, स्पिन एन {{math|Spin(''n'')}} बस जुड़ा हुआ है और इस प्रकार के लिए विशवव्यापी आवरण समूह {{math|SO(''n'')}}. हैं। स्पिन समूह का अब तक का सबसे प्रसिद्ध उदाहरण है {{math|Spin(3)}}, जो और कुछ नहीं {{math|SU(2)}}, या इकाई चतुष्कोणों का समूह हैं। | ||
पिन और स्पिन समूह क्लिफोर्ड बीजगणित के भीतर पाए जाते हैं, जो स्वयं | पिन और स्पिन समूह क्लिफोर्ड बीजगणित के भीतर पाए जाते हैं, जो स्वयं लंबकोणीय आव्यूह से बनाए जा सकते हैं। | ||
==आयताकार आव्यूह == | ==आयताकार आव्यूह == | ||
{{Main| | {{Main|सेमी-ऑर्थोगोनल मैट्रिक्स}} | ||
यदि {{mvar|Q}} एक वर्ग आव्यूह नहीं है, | यदि {{mvar|Q}} एक वर्ग आव्यूह नहीं है, तब स्थितियाँ {{math|1=''Q''<sup>T</sup>''Q'' = ''I''}} तथा {{math|1=''QQ''<sup>T</sup> = ''I''}} समकक्ष नहीं हैं। स्थिति {{math|1=''Q''<sup>T</sup>''Q'' = ''I''}} के अनुसार Q के लम्बवत कॉलम हैं। यह तभी हो सकता है जब {{mvar|Q}} एक {{math|''m'' × ''n''}} रैखिक निर्भरता के कारण {{math|''n'' ≤ ''m''}} के साथ आव्यूह है। इसी प्रकार, {{math|1=''QQ''<sup>T</sup> = ''I''}}, {{mvar|Q}} की पंक्तियां लंबकोणीय जिसके लिए हैं, {{math|''n'' ≥ ''m''}}.की आवश्यकता है। | ||
इन आव्यूह के लिए कोई मानक शब्दावली नहीं है। | इन आव्यूह के लिए कोई मानक शब्दावली नहीं है। इन्हे विभिन्न प्रकार से अर्ध-लंबकोणीय आव्यूह कहा जाता है, प्रसामान्य लंबकोणीय आव्यूह, लंबकोणीय आव्यूह, और कभी कभी सिर्फ लंबकोणीय पंक्ति कॉलम के साथ आव्यूह होता है। | ||
इन स्थिति के लिए {{math|''n'' ≤ ''m''}}, प्रसामान्य लंबकोणीय कॉलम वाले आव्यूह को लंबकोणीय k- फ्रेम के रूप में संदर्भित किया जाता है| और ये [[स्टिफेल]] [[मैनिफोल्ड]] के तत्व हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 403: | Line 414: | ||
{{Matrix classes}} | {{Matrix classes}} | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with short description]] | |||
[[Category:Articles with unsourced statements from June 2009]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 14/11/2022]] | [[Category:Created On 14/11/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:आव्यूह]] |
Latest revision as of 23:37, 1 December 2022
रैखिक बीजगणित में, लंबकोणीय आव्यूह, या प्रसामान्य लंबकोणीय आव्यूह, एक वास्तविक वर्ग आव्यूह है, जिसके कॉलम और पंक्तियाँ प्रसामान्य लंबकोणीय सदिश होते है।
इसे व्यक्त करने का एक तरीका है
आव्यूह Q लंबकोणीय है यदि इसका स्थान इसके व्युत्क्रम के बराबर है, तो यह समतुल्य निरूपण की ओर जाता है।
लंबकोणीय आव्यूह Q आवश्यक रूप से व्युत्क्रमणीय होता है। (Q−1 = QT), एकल आव्यूह (Q−1 = Q∗), जहाँ पे Q∗ का हर्मिटियन आसन्न संयुग्मी परिवर्त Q, है, और इसलिए (Q∗Q = QQ∗) वास्तविक संख्याओं पर सामान्य है। किसी भी लंबकोणीय आव्यूह का सारणिक +1 या -1 एक रैखिक परिवर्तन के रूप में, लंबकोणीय आव्यूह सदिश के आंतरिक परिणाम को संचय करता है, और इसलिए क्रमावर्तन समष्टि एक समान दूरी के रूप में कार्य करता है, जैसे क्रमावर्तन, प्रतिबिंब या रोटर प्रतिबिम्ब के रूप में होता है अर्थात दूसरे शब्दों में, कह सकते है यह एकल परिवर्तन है।
n × n लंबकोणीय आव्यूह का समुच्चय एक समूह O(n) बनाता है, जिसे लंबकोणीय समूह के रूप में जाना जाता है। निर्धारक +1 के साथ लंबकोणीय आव्यूह वाले उपसमूह SO(n) को लंबकोणीय समूह कहा जाता है, और इसके प्रत्येक तत्व एक विशेष लंबकोणीय आव्यूह होते हैं। और एक रैखिक परिवर्तन के रूप में, प्रत्येक लंबकोणीय आव्यूह एक क्रमावर्तन के रूप में कार्य करता है।
अवलोकन
लंबकोणीय आव्यूह में एकात्मक आव्यूह की वास्तविक विशेषता यह है कि इसके आव्यूह सदैव सामान्य होते है। यद्यपि हम यहां केवल वास्तविक आव्यूहों को ही देखते हैं, परंतु यदि किसी क्षेत्र से प्रविष्टियों के साथ आव्यूहों के लिए इस परिभाषा का प्रयोग किया जाता है। चूँकि, लंबकोणीय आव्यूह स्वाभाविक रूप से बिंदु उत्पादों से उत्पन्न होते हैं, और सम्मिश्र संख्या के आव्यूह के कारण एकात्मक के साथ आगे बढ़ते हैं। लंबकोणीय आव्यूह, बिंदु गुणनफल को संरक्षित करते हैं।[1] इसलिए, n-आयामी वास्तविक यूक्लिडियन दूरी में सदिश के लिए u तथा v होते है
सैद्धांतिक और व्यावहारिक दोनों कारणों से लंबकोणीय आव्यूह महत्वपूर्ण हैं। n × n लंबकोणीय आव्यूह, आव्यूह गुणन के तहत एक समूह का निर्माण करते हैं, जो O(n), लंबकोणीय समूह द्वारा दर्शाया गया है । जिसका प्रयोग व्यापक रूप से गणित और भौतिक विज्ञान में किया जाता है। उदाहरण के लिए, एक अणु का बिंदु समूह O(3) का एक उपसमूह है। क्योंकि लंबकोणीय आव्यूह के चल बिंदु संस्करणों में लाभप्रद गुण होते हैं, वे संख्यात्मक रैखिक बीजगणित में कई कलन विधि के लिए महत्वपूर्ण होते हैं, जैसे क्यूआर ( QR) अपघटन । एक अन्य उदाहरण के रूप में, उपयुक्त सामान्यीकरण के साथ असतत कोज्या परिवर्तन एमपी3 संपीड़न में प्रयुक्त लंबकोणीय आव्यूह द्वारा दर्शाया गया है।
उदाहरण
नीचे छोटे लंबकोणीय आव्यूह और संभावित व्याख्याओं के कुछ उदाहरण दिए गए हैं।
- (तत्समक परिवर्तन)
- (मूल के बारे में क्रमावर्तन)
- (एक्स-अक्ष पर प्रतिबिंब)
- (समन्वय अक्षों का क्रमचय)
प्राथमिक निर्माण
निचला आयाम
सबसे सरल लंबकोणीय आव्यूह हैं 1 × 1 आव्यूह [1] और [−1], जिसे हम तत्समक के रूप में व्याख्या कर सकते हैं और मूल के आर-पार वास्तविक रेखा के प्रतिबिंब के रूप में व्याख्या कर सकते हैं। 2 × 2 आव्यूह का रूप है
प्रतिबिंब का अपना प्रतिलोम होता है, जिसका अर्थ है कि प्रतिबिंब आव्यूह, इसके स्थानांतरण तथा लंबकोणीय के समान सममित होता है। दो क्रमावर्तन आव्यूह का उत्पाद एक क्रमावर्तन आव्यूह है, और दो प्रतिबिंब आव्यूह का उत्पाद भी एक क्रमावर्तन आव्यूह है।
उच्च आयाम
आयाम की बात किए बिना, लंबकोणीय आव्यूह को विशुद्ध रूप से घूर्णी या नहीं के रूप में वर्गीकृत करना सदैव आसान होता है, लेकिन 3 × 3 आव्यूहों के लिए और बड़ी संख्या में घूर्णन आव्यूह परावर्तनों की अपेक्षा अधिक कठिन हो सकते हैं। उदाहरण के लिए,
मूल बिंदु और रोटोइनवर्जन के माध्यम से एक बिंदु से व्युत्क्रम का प्रतिनिधित्व करते हैं, जो क्रमश, Z- अक्ष के बारे में।
उच्च आयामों में क्रमावर्तन अधिक कठिन हो जाते हैं क्योंकि उन्हें अब एक कोण से पूरी तरह से वर्गीकृत नहीं किया जा सकता, और एक से अधिक तल क्षेत्र को प्रभावित कर सकते हैं। यह अक्ष और कोण के संदर्भ में 3 × 3 क्रमावर्तन आव्यूह का वर्णन करने के लिए सामान्य बात है, लेकिन यह केवल तीन आयामों में काम करता है। तीन आयामों से ऊपर दो या दो से अधिक कोणों की आवश्यकता होती है, जिनमें से प्रत्येक क्रमावर्तन एक समतल से जुड़ा होता है।
चूँकि, हमारे पास सामान्य रूप से लागू होने वाले क्रम परिवर्तन, प्रतिबिंब और क्रमावर्तन के लिए प्राथमिक रचक अणु होते हैं।
प्राचीन
सबसे प्राथमिक क्रमचय एक स्थानान्तरण है, जो दो पंक्तियों का आदान-प्रदान करके तत्समक आव्यूह से प्राप्त किया जाता है। कोई n × n क्रमचय आव्यूह को इससे अधिक के उत्पाद के रूप में बनाया जा सकता है n − 1 स्थानान्तरण के रूप में है।
हाउसहोल्ड प्रतिबिंब को गैर-शून्य सदिश v से बनाया गया है।
यहाँ अंश एक सममित आव्यूह है। जबकि हर संख्या v का वर्ग परिमाण है। यह v के समानांतर किसी भी सदिश घटक को निष्फल के लिए अधिसमतल लंबवत में प्रतिबिंब के रूप में होता है। यदि v इकाई सदिश है, तो Q = I − 2vvT पर्याप्त है। एक हाउसहोल्ड प्रतिबिंब का उपयोग सामान्तया एक कॉलम के निचले हिस्से को एक साथ शून्य करने के लिए किया जाता है। आकार n × n के किसी भी लंबकोणीय आव्यूह को अधिकतर n के ऐसे प्रतिबिंबों के उत्पाद के रूप में बनाया जा सकता है।
दिया गया क्रमावर्तन दो आयामी तलीय पर कार्य करता है, जो कि चयनित कोण द्वारा घूमते हुए दो समन्वय अक्षों द्वारा विस्तरित उपक्षेत्र है। यह सामान्तया एकल उपविकर्ण प्रविष्टि को शून्य करने के लिए उपयोग किया जाता है। n × n आकार के किसी भी क्रमावर्तन आव्यूह को अधिकतर n(n − 1)/2 जैसे क्रमावर्तन के उत्पाद के रूप में बनाया जा सकता है। 3 × 3 आव्यूह की स्थिति में, ऐसे तीन क्रमावर्तन पर्याप्त हैं, इस प्रकार हम सभी 3 × 3 क्रमावर्तन आव्यूह का वर्णन कर सकते हैं, चूँकि यूलर कोण कहे जाने वाले तीन कोणों के संदर्भ में अद्वितीय नहीं हैं।
जैकोबी क्रमावर्तन दिए गए क्रमावर्तन के रूप में समान है, लेकिन इसका उपयोग 2 × 2 सममित उपआव्यूह की उपविकर्णों की प्रविष्टियों को शून्य करने के लिए किया जाता है।
गुण
आव्यूह गुण
एक वास्तविक वर्ग लंबकोणीय आव्यूह होता है, और यदि इसके कॉलम सामान्य यूक्लिडियन दूरी Rn के लंबकोणीय आधार के रूप में होते है।, इस तरह की स्थिति सिर्फ़ इसकी पंक्तियाँ Rn.लंबकोणीय के साथ एक आव्यूह को समझने के लिए होती है। कि लंबकोणीय ( प्रसामान्य लंबकोणीय नहीं) कॉलम वाले आव्यूह को लंबकोणीय आव्यूह के रूप में जाना जाता है, लेकिन इस प्रकार के आव्यूहों की विशेष रूचि नहीं होती और उन्हें केवल किसी विशेष नाम से संतुष्ट नहीं होते हैं। MTM = D, साथ D एक विकर्ण आव्यूह होते है।
किसी भी लंबकोणीय आव्यूह का सारणिक +1 या -1 होता है। यह सारणिक के बारे में मूलभूत तथ्यों से है जैसा कि नीचे दिया गया है।
क्रमचय आव्यूह के साथ सारणिक अंकित अंक से मेल खाता है, क्रमचय की समानता के रूप में +1 या-1 को सम या विषम किया जाना पंक्तियों का वैकल्पिक कार्य है।
सारणिक प्रतिबंध से मजबूत तथ्य यह है कि एक लंबकोणीय आव्यूह सदैव अभिलक्षणिक मान और अभिलक्षणिक सदिश के पूर्ण समुच्चय को प्रदर्शित करने के लिए जटिल संख्याओं पर विकर्ण आव्यूह होता है, जिनमें से सभी का जटिल निरपेक्ष मान 1 होना चाहिए।
समूह गुण
प्रत्येक लंबकोणीय आव्यूह का प्रतिलोम पुनः लंबकोणीय होता है, जैसा कि दो लंबकोणीय आव्यूह का आव्यूह उत्पाद होता है। यथार्थ में, सभी का समुच्चय n × n लंबकोणीय आव्यूह के सभी समूह एक्सीओम्स को संतुष्ट करते है। यह आयाम का एक कॉम्पैक्ट क्षेत्र लाई समूह n(n − 1)/2 है, इसे लंबकोणीय समूह कहा जाता है और O(n) द्वारा दर्शाया जाता है।
लंबकोणीय आव्यूह जिसका सारणिक +1 है, और सूचकांक 2 के SO(n) के पथ से जुड़े सामान्य उपसमूह का निर्माण करते है, इसके क्रमावर्तन का विशेष लंबकोणीय समूह SO(n) है। भागफल समूह .O(n)/SO(n) के लिए तुल्याकारी है O(1), सारणिक के अनुसार +1 या −1 चुनने वाले प्रक्षेपण मानचित्र के साथ होते है । सारणिक-1 के साथ लंबकोणीय आव्यूह में तत्समक सम्मिलित नहीं होते है, और इसलिए एक उपसमूह नहीं बल्कि केवल सहसमुच्चय बनाते हैं, यह अलग से भी जुड़ा हुआ है। इस प्रकार प्रत्येक लंबकोणीय समूह के दो टुकड़े हो जाते हैं, और क्योंकि प्रक्षेपण मानचित्र पर विभाजन होता है, SO(n) द्वारा O(n) O(1) का अर्धप्रत्यक्ष उत्पाद है, व्यावहारिक संदर्भ में, एक तुलनीय कथन यह है कि क्रमावर्तन आव्यूह को लेकर किसी लंबकोणीय आव्यूह का निर्माण किया जा सकता है। संभवतः इसके किसी एक कॉलम को अस्वीकार कर बनाया जाता है, जैसा कि हमने देखा 2 × 2 आव्यूह में। यदि n विषम है, तो सेमीडायरेक्ट उत्पाद वास्तव में समूहों का प्रत्यक्ष उत्पाद है, और किसी भी लंबकोणीय आव्यूह को क्रमावर्तन आव्यूह द्वारा और संभवतः इसके सभी कॉलम को अस्वीकार कर बनाया जा सकता है। यह सारणिक की गुण धर्म का अनुसरण करता है और यह एक कॉलम को अस्वीकार कर सारणिक को निषेध करता है, और इस प्रकार कॉलम की एक विषम (लेकिन सम नहीं) संख्या को अस्वीकार कर सारणिक को निषेध करता है।
अब विचार करें (n + 1) × (n + 1) लंबकोणीय आव्यूह जिसमें नीचे दाहिनी प्रविष्टि 1 के बराबर है। अंतिम कॉलम और अंतिम पंक्ति का शेष शून्य होना चाहिए, और ऐसे दो आव्यूह के उत्पाद का एक ही रूप है। शेष आव्यूह एक है n × n लंबकोणीय आव्यूह, इस प्रकार O(n) का एक उपसमूह है O(n + 1) (और सभी उच्च समूहों के)।
इसी प्रकार, SO(n) का एक उपसमूह है SO(n + 1), और किसी भी विशेष लंबकोणीय आव्यूह को एक समान प्रक्रिया का उपयोग करके सपाट क्रमावर्तन द्वारा उत्पन्न किया जा सकता है। इसमें बंडल की संरचना बनी रहती है, SO(n) ↪ SO(n + 1) → Sn. एक एकल घुमाव अंतिम कॉलम की पहली पंक्ति में एक शून्य उत्पन्न कर सकता है, और श्रृंखला n − 1 क्रमावर्तन एक n × n क्रमावर्तन आव्यूह के अंतिम कॉलम की अंतिम पंक्ति को छोड़कर सभी को शून्य कर देगा। चूंकि समतल स्थिर होते हैं, इसलिए प्रत्येक क्रमावर्तन में केवल एक कोटि की स्वतंत्रता होती है, इसलिए प्रेरण में इसका कोण SO(n) होता है।
क्रमचय आव्यूह अभी भी सरल हैं, वे लाई समूह नहीं, बल्कि केवल एक परिमित समूह बनाते हैं, क्रम फैक्टोरियल n!सममित समूह Sn. इसी युक्ति से, Sn का एक उपसमूह है Sn + 1. सम क्रम परिवर्तन सारणिक +1 के क्रमचय आव्यूह के उपसमूह की उत्पत्ति,करते हैं, क्रम n!/2वैकल्पिक समूह के होते है।
विहित रूप
सामान्तया, किसी भी लंबकोणीय आव्यूह का प्रभाव लंबकोणीय द्वि-आयामी उप-क्षेत्रों पर स्वतंत्र क्रियाओं को अलग करता है। अर्थात, यदि Q लंबकोणीय है तो एक को सदैव लंबकोणीय आव्यूह P, आधार का घूर्णी परिवर्तन मिल जाता है, जो Q को आव्यूह के विकर्ण के रूप में लाता है।
लेट बीजगणित
मान लीजिए की प्रविष्टियाँ Q के अलग-अलग कार्य हैं t, और कि t = 0 देता है Q = I. लंबकोणीयिटी की स्थिति को अलग करता है।
उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी कहती है कि कोणीय वेग एक विभेदक क्रमावर्तन है, इस प्रकार लाई बीजगणित में एक सदिश है स्पर्शरेखा SO(3). दी गयी है ω = (xθ, yθ, zθ), साथ v = (x, y, z) एक इकाई सदिश होने के नाते, ω का सही तिरछा-सममित आव्यूह रूप है।
संख्यात्मक रैखिक बीजगणित
लाभ
संख्यात्मक विश्लेषण संख्यात्मक रैखिक स्वाभाविक रूप से बीजगणित के लिए लंबकोणीय आव्यूह के गुणों के लिए लाभ उत्पन्न करते हैं। उदाहरण के लिए, किसी स्थान के लिए प्रसामान्य लंबकोणीय आधार, या आधारों के लंबकोणीय परिवर्तन की गणना करना सदैव कठिन होता है, दोनों लंबकोणीय आव्यूह का रूप लेते हैं। सारणिक±1 और परिमाण 1 के सभी अभिलक्षणिक मान संख्यात्मक स्थिरता के लिए बहुत लाभ का है। एक निहितार्थ यह है कि स्थिति संख्या 1 जो न्यूनतम है, इसलिए लंबकोणीय आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई कलन विधि लंबकोणीय आव्यूहों जैसे हाउसहोल्डर प्रतिबिंब का उपयोग करते हैं तथा इस कारण से दिए गए क्रमावर्तन का प्रयोग करते हैं। यह भी सहायक है कि न केवल लंबकोणीय आव्यूह वर्तनीय है बल्कि इसका प्रतिलोम सूचकांकों के विनिमय द्वारा अनिवार्य रूप से मुक्त भी है।
कई कलन विधि की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें अधिक परिश्रमी व्यक्ति गौसी उन्मूलन के साथ आशिक धुरी सम्मिलित होती है (जहां क्रमपरिवर्तन धुरी का काम करते हैं)। चूँकि, वे शायद ही कभी स्पष्ट रूप से आव्यूह के रूप में प्रकट होते हैं, उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची n सूचकांक में है।
इसी तरह, हाउसहोल्डर और दिए गए आव्यूह का उपयोग करने वाले कलन विधि अधिकांशता गुणन और संचयन के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, दिया गया क्रमावर्तन एक आव्यूह की दो पंक्तियों को प्रभावित करता है जो इसे गुणन करता है, और n3 क्रम के पूर्ण गुणन को और अधिक कुशल n क्रम में बदल देता है। जब इन प्रतिबिंबों और क्रमावर्तन का उपयोग आव्यूह में शून्य का तत्समक करता है, तो समष्टि परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त आँकड़े संचय करने के लिए पर्याप्त है, और यह बहुत ही तेजी से किया जा सके। स्टीवर्ट के बाद (1976) में, हम एक क्रमावर्तन कोण को संचय नहीं करते हैं, जो महंगा भी है और बुरा भी।
अपघटन
कई महत्वपूर्ण आव्यूह अपघटन (Golub & Van Loan 1996) विशेष रूप से लंबकोणीय आव्यूह में सम्मिलित है।
QR अपघटन,
M = QR, Q लंबकोणीय, R ऊपरी त्रिकोणीय
- विलक्षण मान अपघटन
- M = UΣVT, U तथा V लंबकोणीय, Σ विकर्ण आव्यूह
- आव्यूह का अभिलक्षणिक अपघटन ( वर्णक्रमीय प्रमेय के अनुसार अपघटन)
- S = QΛQT, S सममित, Q लंबकोणीय, Λ विकर्ण
- ध्रुवीय अपघटन
- M = QS, Q लंबकोणीय, S सममित सकारात्मक-अर्धपरिमित
उदाहरण
रैखिक समीकरणों की एक अतिनिर्धारित प्रणाली पर बातचीत करने पर, जैसा कि प्रयोगात्मक त्रुटियों की क्षतिपूर्ति के लिए भौतिक घटना के बार-बार परीक्षण से होता है। लिखे Ax = b, जहाँ पे A है m × n, m > n. ए QR अपघटन कम हो जाता है। A ऊपरी त्रिकोणीय के लिए R. उदाहरण के लिए, यदि A 5 × 3 है जो R रूप में है।
रैखिक कम से कम वर्ग गणित समस्या x को खोजने के लिए है जो ||Ax - b|| को छोटा करता है जो A के कॉलम द्वारा मानदंड 'ए' 'एक्स' − 'बी' फैलाए गए उप-स्थान पर b को प्रोजेक्ट करने के बराबर है। A (और इसलिए R) के कॉलम को स्वतंत्र मानते हुए, प्रक्षेपण समाधान ATAx = ATb से मिलता है। अब (n × n) और व्युत्क्रम है, और RTR के बराबर भी है। लेकिन R में शून्य की निचली पंक्तियाँ उत्पाद में ज़रूरत से ज़्यादा हैं, जो इस प्रकार पहले से ही निचले-त्रिकोणीय ऊपरी-त्रिकोणीय तथ्यात्मक रूप में है, जैसा कि गाऊसी उन्मूलन (चोल्स्की अपघटन) में है। यहाँ रूढ़िवादिता न केवल ATA = (RTQT)QR में कम करने के लिए महत्वपूर्ण है, लेकिन यह संख्यात्मक समस्याओं को बढ़ाए बिना समाधान की अनुमति देने के लिए भी है।
एक रैखिक प्रणाली की स्थिति जो अनिश्चित है, या अन्यथा अपरिवर्तनीय आव्यूह का विलक्षण मान अपघटन (एसवीडी) समान रूप से उपयोगी है। साथ A के रूप में कारक UΣVT, संतोषजनक समाधान मूर-पेनरोज़ का उपयोग करता है, VΣ+UT, जहाँ पे Σ+ केवल प्रत्येक गैर-शून्य विकर्ण प्रविष्टि को उसके व्युत्क्रम से प्रतिस्थापित करता है। समूह x प्रति VΣ+UTb.
व्युत्क्रम आव्यूह की घटना भी महत्व रखती है। उदाहरण के लिए मान लीजिए, कि A एक 3 × 3 क्रमावर्तन आव्यूह जिसकी गणना कई घुमाव और टर्न की संरचना के रूप में की गई है। चल बिंदु वास्तविक संख्याओं के गणितीय आदर्श से मेल नहीं खाते है, इसलिए A धीरे-धीरे अपनी वास्तविक रूढ़िवादिता को खो दिया है। एक ग्राम-श्मिट प्रक्रिया कॉलम को लंबकोणीयाइज़ेशन कर सकती है, लेकिन यह सबसे विश्वसनीय नहीं है, और न ही सबसे कुशल, और न ही सबसे अपरिवर्तनीय विधि है।ध्रुवीय विघटन के कारण युग्म में एक आव्यूह होता है, जिनमें से एक दिए गए आव्यूह के लिए अद्वितीय निकटतम लंबकोणीय आव्यूह होता है, या दिए गए आव्यूह एकवचन है तो निकटतम में से एक होता है। निकटता को आधार के लंबकोणीय परिवर्तन के तहत किसी भी आव्यूह मानदंड अपरिवर्तनीय द्वारा मापा जा सकता है, जैसे वर्णक्रमीय मानदंड या फ्रोबेनियस मानदंड, निकट-लंबकोणीय आव्यूह के लिए, लंबकोणीय कारक के लिए तेजी से अभिसरण न्यूटन की विधि द्वारा प्राप्त किया जा सकता है। हिघम (1986) (1990), आव्यूह को बार-बार इसके व्युत्क्रम स्थानांतरण के साथ औसत करता है। Dubrulle (1999) एक सुविधाजनक अभिसरण परीक्षण के साथ एक त्वरित विधि प्रकाशित की है।
उदाहरण के लिए, एक गैर-लंबकोणीय आव्यूह पर विचार करें जिसके लिए साधारण औसत कलन विधि सात चरण लेती है।
यादृच्छिकीकरण
कुछ संख्यात्मक अनुप्रयोग, जैसे कि मोंटे कार्लो विधि और उच्च-आयामी आँकड़े दूरी की खोज के लिए, समान रूप से वितरित यादृच्छिक लंबकोणीय आव्यूह की उत्पति की आवश्यकता होती है। इस संदर्भ में, हार (haar) माप के संदर्भ में एकसार को परिभाषित किया गया है, जो अनिवार्य रूप से आवश्यक है कि किसी भी स्वतंत्र रूप से चुने गए लंबकोणीय आव्यूह द्वारा गुणा किए जाने पर वितरण में परिवर्तन न हो। सांख्यिकीय स्वतंत्रता के साथ लंबकोणीयाइज़िंग आव्यूह समान रूप से वितरित यादृच्छिक प्रविष्टियाँ समान रूप से वितरित लंबकोणीय आव्यूह में परिणाम नहीं देती हैं[citation needed], लेकिन QR अपघटन स्वतंत्र सामान्य वितरण का अपघटन यादृच्छिक प्रविष्टि करता है, जब तक R के विकर्ण में केवल धनात्मक प्रविष्टियाँ सम्मिलित होती हैं (मेजादरी 2006 ), (स्टीवर्ट 1980) इसे एक अधिक कुशल विचार के साथ बदल दिया (डायकोनिस और शाहशाहनी 1987) बाद में उपसमूह कलन विधि के रूप में सामान्यीकृत किया गया इस रूप में यह क्रमचय और क्रमावर्तन के लिए भी काम करता है। एक (n + 1) × (n + 1) लंबकोणीय आव्यूह उत्पन्न करने के लिए, n × n एक और आयाम एक समान रूप से वितरित इकाई सदिश n + 1 से हाउसहोल्ड प्रतिबिम्ब बनाते है, फिर इसे छोटे आव्यूह पर लागू करते है। नीचे दाएं कोने में 1 के साथ बड़े आकार में सन्निहित किया गया।
कुछ संख्यात्मक अनुप्रयोगों, जैसे कि मोंटे कार्लो विधि और उच्च-आयामी आंकड़े स्थानों के अन्वेषण के लिए समान रूप से वितरित यादृच्छिक आव्यूह के उत्पादन की आवश्यकता होती है।
निकटतम लंबकोणीय आव्यूह
दिए गए आव्यूह M के निकटतम लंबकोणीय आव्यूह का Q से जुड़ी समस्या का मान ज्ञात करने के लिए उपयुक्त लंबकोणीय प्रोक्रस्ट्स इसकी समस्या से संबंधित है। अद्वितीय समाधान प्राप्त करने के कई अलग-अलग तरीके हैं, जिनमें से सबसे सरल विशिष्ट मूल्य M अपघटन को प्राप्त कर विशिष्ट मूल्यों को एक साथ बदल देते हैं। एक अन्य विधि R स्पष्ट रूप से व्यक्त करती है। लेकिन आव्यूह वर्गमूल के उपयोग की आवश्यकता होती है।[2]
यह पुनरावृत्ति देने के लिए एक आव्यूह का वर्गमूल निकालने के लिए बेबीलोनियन विधि के साथ जोड़ा जा सकता है जो एक लंबकोणीय आव्यूह को द्विघात रूप से अभिसरण करता है।
ये पुनरावृत्तियां स्थिर हैं बशर्ते की स्थिति संख्या M तीन से कम है।[3] व्युत्क्रम के प्रथम-क्रम के सन्निकटन का उपयोग करना और उसी आरंभीकरण के परिणामस्वरूप संशोधित पुनरावृत्ति होती है।
स्पिन और पिन
एक सूक्ष्म तकनीकी समस्या लंबकोणीय आव्यूह के कुछ उपयोगों को प्रभावित करती है। सारणिक +1 और -1 वाले समूह घटक एक दूसरे से न केवल जुड़े नहीं हैं, यहां तक कि +1 घटक भी, SO(n), केवल जुड़ा हुआ स्थान नहीं है, SO(1) को छोड़कर, जो तुच्छ है। इस प्रकार यह कभी कभी लाभप्रद होता है, या इसके लिए एक आवरण समूह SO(n) के साथ काम करना आवश्यक होता है, स्पिन समूह, Spin(n). वैसे ही, O(n) आवरण ग्रुप में,पिन समूह ,होते हैं। पिन(n) के लिये n > 2, स्पिन एन Spin(n) बस जुड़ा हुआ है और इस प्रकार के लिए विशवव्यापी आवरण समूह SO(n). हैं। स्पिन समूह का अब तक का सबसे प्रसिद्ध उदाहरण है Spin(3), जो और कुछ नहीं SU(2), या इकाई चतुष्कोणों का समूह हैं।
पिन और स्पिन समूह क्लिफोर्ड बीजगणित के भीतर पाए जाते हैं, जो स्वयं लंबकोणीय आव्यूह से बनाए जा सकते हैं।
आयताकार आव्यूह
यदि Q एक वर्ग आव्यूह नहीं है, तब स्थितियाँ QTQ = I तथा QQT = I समकक्ष नहीं हैं। स्थिति QTQ = I के अनुसार Q के लम्बवत कॉलम हैं। यह तभी हो सकता है जब Q एक m × n रैखिक निर्भरता के कारण n ≤ m के साथ आव्यूह है। इसी प्रकार, QQT = I, Q की पंक्तियां लंबकोणीय जिसके लिए हैं, n ≥ m.की आवश्यकता है।
इन आव्यूह के लिए कोई मानक शब्दावली नहीं है। इन्हे विभिन्न प्रकार से अर्ध-लंबकोणीय आव्यूह कहा जाता है, प्रसामान्य लंबकोणीय आव्यूह, लंबकोणीय आव्यूह, और कभी कभी सिर्फ लंबकोणीय पंक्ति कॉलम के साथ आव्यूह होता है।
इन स्थिति के लिए n ≤ m, प्रसामान्य लंबकोणीय कॉलम वाले आव्यूह को लंबकोणीय k- फ्रेम के रूप में संदर्भित किया जाता है| और ये स्टिफेल मैनिफोल्ड के तत्व हैं।
यह भी देखें
टिप्पणियाँ
- ↑ "Paul's online math notes"[full citation needed], Paul Dawkins, Lamar University, 2008. Theorem 3(c)
- ↑ "Finding the Nearest Orthonormal Matrix", Berthold K.P. Horn, MIT.
- ↑ "Newton's Method for the Matrix Square Root" Archived 2011-09-29 at the Wayback Machine, Nicholas J. Higham, Mathematics of Computation, Volume 46, Number 174, 1986.
संदर्भ
- Diaconis, Persi; Shahshahani, Mehrdad (1987), "The subgroup algorithm for generating uniform random variables", Probability in the Engineering and Informational Sciences, 1: 15–32, doi:10.1017/S0269964800000255, ISSN 0269-9648, S2CID 122752374
- Dubrulle, Augustin A. (1999), "An Optimum Iteration for the Matrix Polar Decomposition", Electronic Transactions on Numerical Analysis, 8: 21–25
- Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3/e ed.), Baltimore: Johns Hopkins University Press, ISBN 978-0-8018-5414-9
- Higham, Nicholas (1986), "Computing the Polar Decomposition—with Applications" (PDF), SIAM Journal on Scientific and Statistical Computing, 7 (4): 1160–1174, doi:10.1137/0907079, ISSN 0196-5204
- Higham, Nicholas; Schreiber, Robert (July 1990), "Fast polar decomposition of an arbitrary matrix", SIAM Journal on Scientific and Statistical Computing, 11 (4): 648–655, CiteSeerX 10.1.1.230.4322, doi:10.1137/0911038, ISSN 0196-5204, S2CID 14268409 [1]
- Stewart, G. W. (1976), "The Economical Storage of Plane Rotations", Numerische Mathematik, 25 (2): 137–138, doi:10.1007/BF01462266, ISSN 0029-599X, S2CID 120372682
- Stewart, G. W. (1980), "The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators", SIAM Journal on Numerical Analysis, 17 (3): 403–409, Bibcode:1980SJNA...17..403S, doi:10.1137/0717034, ISSN 0036-1429
- Mezzadri, Francesco (2006), "How to generate random matrices from the classical compact groups", Notices of the American Mathematical Society, 54, arXiv:math-ph/0609050, Bibcode:2006math.ph...9050M