उत्प्रेरक विषाक्तता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 2: Line 2:


== PD उत्प्रेरकों का विषाक्तता ==
== PD उत्प्रेरकों का विषाक्तता ==
कार्बनिक कार्यात्मक समूहों और अकार्बनिक आयनों में अधिकांश धातु की सतहों पर दृढ़ता से सोखने की क्षमता होती है। सामान्य उत्प्रेरक विषाक्ततो  में कार्बन मोनोऑक्साइड, हैलाइड्स, साइनाइड्स, सल्फाइड्स, सल्फाइट्स, फॉस्फेट, फॉस्फाइट्स और कार्बनिक अणु जैसे नाइट्राइल, नाइट्रो यौगिक, ऑक्सीम और नाइट्रोजन युक्त हेटरोसायकल सम्मालित हैं। संक्रमण धातु की प्रकृति के कारण एजेंट अपने उत्प्रेरक गुणों को बदलते हैं। लिंडलर उत्प्रेरक कैल्सियम कार्बोनेट (CaCO<sub>3</sub>) के घोल में [[ पैलेडियम क्लोराइड ]] के अपचयन के बाद [[Index.php?title=लेड एसीटेट|प्रमुख एसीटेट]] के साथ विषाक्तता द्वारा तैयार किये जाते है।<ref name="Lindlar">{{OrgSynth|last1=Lindlar|first1=H.|last2=Dubuis|first2=R.|title=Palladium Catalyst for Partial Reduction of Acetylenes|volume=46|page=89|year=1966|doi=10.15227/orgsyn.046.0089}}</ref> इससे एक संबंधित मामले में, [[ एल्डिहाइड ]] के लिए [[ एसाइल हैलाइड ]] की [[ रोसेनमंड कमी ]], [[ दुर्ग ]] उत्प्रेरक ([[ बेरियम सल्फ़ेट ]] या [[ कैल्शियम कार्बोनेट ]] से अधिक) को उत्प्रेरक गतिविधि को कम करने के लिए जानबूझकर [[ गंधक ]] या [[ क्विनोलिन ]] के अतिरिक्त विषाक्तता दिया जाता है और इस प्रकार एल्डिहाइड उत्पाद को  प्राथमिक अल्कोहल में अत्यधिक गतिविधि को कम करने से रोकता है।  
कार्बनिक कार्यात्मक समूहों और अकार्बनिक आयनों में अधिकांश धातु की सतहों पर दृढ़ता से सोखने की क्षमता होती है। सामान्य उत्प्रेरक विषाक्ततो  में कार्बन मोनोऑक्साइड, हैलाइड्स, साइनाइड्स, सल्फाइड्स, सल्फाइट्स, फॉस्फेट, फॉस्फाइट्स और कार्बनिक अणु जैसे नाइट्राइल, नाइट्रो यौगिक, ऑक्सीम और नाइट्रोजन युक्त हेटरोसायकल सम्मालित हैं। संक्रमण धातु की प्रकृति के कारण एजेंट अपने उत्प्रेरक गुणों को बदलते हैं। लिंडलर उत्प्रेरक कैल्सियम कार्बोनेट (CaCO<sub>3</sub>) के घोल में [[ पैलेडियम क्लोराइड ]] के अपचयन के बाद [[Index.php?title=लेड एसीटेट|प्रमुख एसीटेट]] के साथ विषाक्तता द्वारा तैयार किये जाते है।<ref name="Lindlar">{{OrgSynth|last1=Lindlar|first1=H.|last2=Dubuis|first2=R.|title=Palladium Catalyst for Partial Reduction of Acetylenes|volume=46|page=89|year=1966|doi=10.15227/orgsyn.046.0089}}</ref> इससे एक संबंधित स्थितयों में, [[ एल्डिहाइड ]] के लिए [[ एसाइल हैलाइड ]] की [[ रोसेनमंड कमी ]], [[ दुर्ग ]] उत्प्रेरक ([[ बेरियम सल्फ़ेट ]] या [[ कैल्शियम कार्बोनेट ]] से अधिक) को उत्प्रेरक गतिविधि को कम करने के लिए जानबूझकर [[ गंधक ]] या [[ क्विनोलिन ]] के अतिरिक्त विषाक्तता दिया जाता है और इस प्रकार एल्डिहाइड उत्पाद को  प्राथमिक अल्कोहल में अत्यधिक गतिविधि को कम करने से रोकता है।  


==विषाक्तता प्रक्रिया==
==विषाक्तता प्रक्रिया==
Line 11: Line 11:
यदि उत्प्रेरक और प्रतिक्रिया की स्थिति कम प्रभावशीलता का संकेत देती है, तो चयनात्मक विषाक्तता देखी जा सकती है, जहां उत्प्रेरक की सतह के केवल एक छोटे से अंश की विषाक्तता गतिविधि में अनुपातहीन रूप से बड़ी गिरावट आती  है।<ref name="Hill1977" />
यदि उत्प्रेरक और प्रतिक्रिया की स्थिति कम प्रभावशीलता का संकेत देती है, तो चयनात्मक विषाक्तता देखी जा सकती है, जहां उत्प्रेरक की सतह के केवल एक छोटे से अंश की विषाक्तता गतिविधि में अनुपातहीन रूप से बड़ी गिरावट आती  है।<ref name="Hill1977" />


यदि η विषाक्तता सतह का प्रभावशीलता कारक है और h<sub>p</sub>विषाक्तता मामले के लिए [[ थिएल मापांक ]] है:
यदि η विषाक्तता सतह का प्रभावशीलता कारक है और h<sub>p</sub>विषाक्तता स्थितयों के लिए [[ थिएल मापांक ]] है:


:<math> \eta =\frac{\tanh h_{\rm p}}{h_{\rm p}} </math>
:<math> \eta =\frac{\tanh h_{\rm p}}{h_{\rm p}} </math>
Line 17: Line 17:


:<math> F =\sqrt{1-\alpha}\, \tanh \left (h_{\rm T}  \sqrt{1-\alpha} \right) \coth h_{\rm T} </math>
:<math> F =\sqrt{1-\alpha}\, \tanh \left (h_{\rm T}  \sqrt{1-\alpha} \right) \coth h_{\rm T} </math>
जहां F विषाक्तता के गैर विषाक्तता वाले छिद्रों का अनुपात है, गैर-विषैले मामले के लिए h<sub>T</sub> थिएल मापांक है, और α विषाक्तता वाली सतह का वह अंश है जो  
जहां F विषाक्तता के गैर विषाक्तता वाले छिद्रों का अनुपात है, गैर-विषैले स्थितयों के लिए h<sub>T</sub> थिएल मापांक है, और α विषाक्तता वाली सतह का वह अंश है जो  


उपरोक्त समीकरण h<sub>T</sub> . के मान के आधार पर सरल हो जाता है. जब सतह उपलब्ध होती है, h<sub>T</sub> नगण्य होता है:
उपरोक्त समीकरण h<sub>T</sub> . के मान के आधार पर सरल हो जाता है. जब सतह उपलब्ध होती है, h<sub>T</sub> नगण्य होता है:


:<math> F = 1 - \alpha </math>
:<math> F = 1 - \alpha </math>
यह गैर-चयनात्मक विषाक्तता के शास्त्रीय मामले का प्रतिनिधित्व करता है जहां शेष गतिविधि का अंश शेष गैर-विषैले सतह के अंश के बराबर होता है।
यह गैर-चयनात्मक विषाक्तता के शास्त्रीय स्थितयों का प्रतिनिधित्व करता है जहां शेष गतिविधि का अंश शेष गैर-विषैले सतह के अंश के बराबर होता है।


जब h<sub>T</sub> बहुत बड़ा है, यह बन जाता है:
जब h<sub>T</sub> बहुत बड़ा है, यह बन जाता है:


:<math> F = \sqrt{1- \alpha} </math>
:<math> F = \sqrt{1- \alpha} </math>
इस मामले में, उत्प्रेरक प्रभावशीलता कारक एकता की तुलना में काफी कम हैं, और छिद्र के बंद छोर के पास सोखने वाले विषाक्तता  के हिस्से के प्रभाव उतने स्पष्ट नहीं होते हैं, जब h<sub>T</sub> छोटा है।
इस स्थितयों में, उत्प्रेरक प्रभावशीलता कारक एकता की तुलना में काफी कम हैं, और छिद्र के बंद छोर के पास सोखने वाले विषाक्तता  के हिस्से के प्रभाव उतने स्पष्ट नहीं होते हैं, जब h<sub>T</sub> छोटा है।


विषाक्त क्षेत्र के माध्यम से अभिकारक के प्रसार की दर प्रतिक्रिया की दर के बराबर होती है और इसके द्वारा दी जाती है:
विषाक्त क्षेत्र के माध्यम से अभिकारक के प्रसार की दर प्रतिक्रिया की दर के बराबर होती है और इसके द्वारा दी जाती है:
Line 43: Line 43:


== चयनात्मक विषाक्तता के लाभ ==
== चयनात्मक विषाक्तता के लाभ ==
सामान्यतः, उत्प्रेरक विषाक्तता अवांछनीय है क्योंकि इससे महंगी धातुओं या उनके परिसरों की बर्बादी होती है। चूँकि , प्रतिक्रियाओं की चयनात्मकता में सुधार के लिए उत्प्रेरक की विषाक्तता का उपयोग किया जा सकता है। विषाक्तता चुनिंदा मध्यवर्ती को अलग करने और वांछनीय अंतिम उत्पादों का उत्पादन करने की अनुमति दे सकती है।
सामान्यतः, उत्प्रेरक विषाक्तता अवांछनीय है क्योंकि इससे महंगी धातुओं या उनके परिसरों की बर्बादी होती है। चूँकि , प्रतिक्रियाओं की चयनात्मकता में सुधार के लिए उत्प्रेरक की विषाक्तता का उपयोग किया जा सकता है। विषाक्तता श्रेष्ठ मध्यवर्ती को अलग करने और वांछनीय अंतिम उत्पादों का उत्पादन करने की अनुमति दे सकती है।


== हाइड्रोसल्फराइजेशन उत्प्रेरक ==
== हाइड्रोसल्फराइजेशन उत्प्रेरक ==
Line 62: Line 62:
<references/>
<references/>


{{DEFAULTSORT:Catalyst Poisoning}}[[Category: कटैलिसीस]]
{{DEFAULTSORT:Catalyst Poisoning}}
[[Category: ईंधन सेल]]
 


[[एफआर: पॉइज़न डी उत्प्रेरक]]
[[एफआर: पॉइज़न डी उत्प्रेरक]]


 
[[Category:CS1 maint]]
[[Category: Machine Translated Page]]
[[Category:Created On 04/11/2022|Catalyst Poisoning]]
[[Category:Created On 04/11/2022]]
[[Category:Machine Translated Page|Catalyst Poisoning]]
[[Category:ईंधन सेल|Catalyst Poisoning]]
[[Category:कटैलिसीस|Catalyst Poisoning]]

Latest revision as of 14:27, 3 December 2022

उत्प्रेरक विषाक्तता एक रासायनिक यौगिक द्वारा उत्प्रेरक के आंशिक या कुल अक्रियाशील को संदर्भित करता है। विषाक्तता विशेष रूप से रासायनिक अक्रियाशील को संदर्भित करता है, इसके अतिरिक्त उत्प्रेरक गिरावट के अन्य तंत्र जैसे कि थर्मल अपघटन या शारीरिक क्षति होती है।[1][2] चूँकि सामान्यतः अपकर्ष , विषाक्तता तब सहायक हो सकती है जब इसके परिणामस्वरूप उत्प्रेरक (जैसे लिंडलर का उत्प्रेरक) चयनात्मकता में सुधार होता है। एक महत्वपूर्ण ऐतिहासिक उदाहरण सीसायुक्त ईंधन विषाक्तता उत्प्रेरक परिवर्तित से नुकसान था।

PD उत्प्रेरकों का विषाक्तता

कार्बनिक कार्यात्मक समूहों और अकार्बनिक आयनों में अधिकांश धातु की सतहों पर दृढ़ता से सोखने की क्षमता होती है। सामान्य उत्प्रेरक विषाक्ततो में कार्बन मोनोऑक्साइड, हैलाइड्स, साइनाइड्स, सल्फाइड्स, सल्फाइट्स, फॉस्फेट, फॉस्फाइट्स और कार्बनिक अणु जैसे नाइट्राइल, नाइट्रो यौगिक, ऑक्सीम और नाइट्रोजन युक्त हेटरोसायकल सम्मालित हैं। संक्रमण धातु की प्रकृति के कारण एजेंट अपने उत्प्रेरक गुणों को बदलते हैं। लिंडलर उत्प्रेरक कैल्सियम कार्बोनेट (CaCO3) के घोल में पैलेडियम क्लोराइड के अपचयन के बाद प्रमुख एसीटेट के साथ विषाक्तता द्वारा तैयार किये जाते है।[3] इससे एक संबंधित स्थितयों में, एल्डिहाइड के लिए एसाइल हैलाइड की रोसेनमंड कमी , दुर्ग उत्प्रेरक (बेरियम सल्फ़ेट या कैल्शियम कार्बोनेट से अधिक) को उत्प्रेरक गतिविधि को कम करने के लिए जानबूझकर गंधक या क्विनोलिन के अतिरिक्त विषाक्तता दिया जाता है और इस प्रकार एल्डिहाइड उत्पाद को प्राथमिक अल्कोहल में अत्यधिक गतिविधि को कम करने से रोकता है।

विषाक्तता प्रक्रिया

विषाक्तता में अधिकांश ऐसे यौगिक सम्मालित होते हैं जोरासायनिक बंध उत्प्रेरक की सक्रिय स्थलों की संख्या कम हो जाती है और औसत दूरी जो एक अभिकारक अणु को प्रतिक्रिया से गुजरने से पहले ताकना संरचना के माध्यम से फैलनी चाहिए, परिणामस्वरूप बढ़ जाती है।।[4] परिणामस्वरूप , जहरीली स्थलों अब उस प्रतिक्रिया को तेज नहीं कर सकती हैं जिसके साथ उत्प्रेरक उत्प्रेरित करने वाला था।[5] हैबर-बॉश प्रक्रिया में अमोनिया जैसे पदार्थों के बड़े पैमाने पर उत्पादन में उत्पाद प्रवाह से संभावित विषाक्ततो को हटाने के कदम सम्मालित हैं। जब विषाक्तता प्रतिक्रिया दर प्रसार की दर के सापेक्ष धीमी होती है, तो जहर पूरे उत्प्रेरक में समान रूप से वितरित किया जाएगा और इसके परिणामस्वरूप उत्प्रेरक की सजातीय विषाक्तता होगी। इसके विपरीत, यदि प्रसार की दर की तुलना में प्रतिक्रिया दर तेज है, तो उत्प्रेरक की बाहरी परतों पर एक विषाक्तता खोल बनेगा, एक स्थिति जिसे पोर-माउथ पॉइज़निंग के रूप में जाना जाता है, और उत्प्रेरक प्रतिक्रिया की दर अक्रियाशील खोल के माध्यम से प्रसार की दर से सीमित हो सकती है।[4]


चयनात्मक विषाक्तता

यदि उत्प्रेरक और प्रतिक्रिया की स्थिति कम प्रभावशीलता का संकेत देती है, तो चयनात्मक विषाक्तता देखी जा सकती है, जहां उत्प्रेरक की सतह के केवल एक छोटे से अंश की विषाक्तता गतिविधि में अनुपातहीन रूप से बड़ी गिरावट आती है।[4]

यदि η विषाक्तता सतह का प्रभावशीलता कारक है और hpविषाक्तता स्थितयों के लिए थिएल मापांक है:

जब विषाक्तता रोम छिद्रों की प्रतिक्रिया दर के अनुपात को गैर विषाक्तता वाले रोमछिद्रों के अनुपात पर विचार किया जाता है:

जहां F विषाक्तता के गैर विषाक्तता वाले छिद्रों का अनुपात है, गैर-विषैले स्थितयों के लिए hT थिएल मापांक है, और α विषाक्तता वाली सतह का वह अंश है जो

उपरोक्त समीकरण hT . के मान के आधार पर सरल हो जाता है. जब सतह उपलब्ध होती है, hT नगण्य होता है:

यह गैर-चयनात्मक विषाक्तता के शास्त्रीय स्थितयों का प्रतिनिधित्व करता है जहां शेष गतिविधि का अंश शेष गैर-विषैले सतह के अंश के बराबर होता है।

जब hT बहुत बड़ा है, यह बन जाता है:

इस स्थितयों में, उत्प्रेरक प्रभावशीलता कारक एकता की तुलना में काफी कम हैं, और छिद्र के बंद छोर के पास सोखने वाले विषाक्तता के हिस्से के प्रभाव उतने स्पष्ट नहीं होते हैं, जब hT छोटा है।

विषाक्त क्षेत्र के माध्यम से अभिकारक के प्रसार की दर प्रतिक्रिया की दर के बराबर होती है और इसके द्वारा दी जाती है:

और एक छिद्र के भीतर प्रतिक्रिया की दर किसके द्वारा दी जाती है:

प्रतिक्रिया के लिए उपलब्ध उत्प्रेरक सतह का अंश विषाक्तती प्रतिक्रिया दर के अनुपात से बिना प्रतिक्रिया दर के अनुपात से प्राप्त किया जा सकता है:[4]: 465 


चयनात्मक विषाक्तता के लाभ

सामान्यतः, उत्प्रेरक विषाक्तता अवांछनीय है क्योंकि इससे महंगी धातुओं या उनके परिसरों की बर्बादी होती है। चूँकि , प्रतिक्रियाओं की चयनात्मकता में सुधार के लिए उत्प्रेरक की विषाक्तता का उपयोग किया जा सकता है। विषाक्तता श्रेष्ठ मध्यवर्ती को अलग करने और वांछनीय अंतिम उत्पादों का उत्पादन करने की अनुमति दे सकती है।

हाइड्रोसल्फराइजेशन उत्प्रेरक

पेट्रोलियम उत्पादों के शुद्धिकरण में हाइड्रोडीसल्फराइजेशन की प्रक्रिया का उपयोग किया जाता है।[6] विभिन्न श्रृंखला लंबाई के H2S और हाइड्रोकार्बन का उत्पाद करने के लिए H2 का उपयोग करके थियोफीन जैसे थियोल को कम किया जाता है। उपयोग किए जाने वाले सामान्य उत्प्रेरक टंगस्टन और मोलिब्डेनम सल्फाइड हैं। कोबाल्ट और निकल को दोनों किनारों पर जोड़ना [7] या आंशिक रूप से उन्हें क्रिस्टल जाली संरचना में सम्मालित करने से उत्प्रेरक की दक्षता में सुधार हो सकता है। उत्प्रेरक का संश्लेषण एक समर्थित संकर बनाता है जो कोबाल्ट नाभिक के विषाक्तता को रोकता है।

अन्य उदाहरण

यह भी देखें


संदर्भ

  1. Forzatti, P.; Lietti, L. (1999). "उत्प्रेरक निष्क्रियता". Catalysis Today. 52 (2–3): 165–181. doi:10.1016/S0920-5861(99)00074-7. S2CID 19737702.{{cite journal}}: CS1 maint: uses authors parameter (link)
  2. Bartholomew, Calvin H (2001). "उत्प्रेरक निष्क्रियता के तंत्र". Applied Catalysis A: General. 212 (1–2): 17–60. doi:10.1016/S0926-860X(00)00843-7.
  3. Lindlar, H.; Dubuis, R. (1966). "Palladium Catalyst for Partial Reduction of Acetylenes". Organic Syntheses. 46: 89. doi:10.15227/orgsyn.046.0089.
  4. 4.0 4.1 4.2 4.3 Charles G. Hill, An Introduction To Chemical Engine Design, John Wiley & Sons Inc., 1977 ISBN 0-471-39609-5, page 464
  5. Jens Hagen, Industrial catalysis: a practical approach ,Wiley-VCH, 2006 ISBN 3-527-31144-0, page 197
  6. Cheng, F. Y; Chen, J; Gou, X. L (2006). "MoS2-Ni Nanocomposites थियोफीन और थियोफीन डेरिवेटिव्स के हाइड्रोडेसल्फराइजेशन के लिए उत्प्रेरक के रूप में". Advanced Materials. 18 (19): 2561. doi:10.1002/adma.200600912. S2CID 98052306.
  7. Kishan, G; Coulier, L; Van Veen, J.A.R; Niemantsverdriet, J.W (2001). "चेलेटिंग एजेंटों द्वारा गाय सल्फाइड हाइड्रोट्रीटिंग उत्प्रेरक में सिनर्जी को बढ़ावा देना". Journal of Catalysis. 200: 194–196. doi:10.1006/jcat.2001.3203.



एफआर: पॉइज़न डी उत्प्रेरक