फोटोडिसोसिएशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Chemical reaction in which a compound is broken down by light}}
'''फोटोडिसोसिएशन''' '''(प्रकाशिक वियोजन)''',  प्रकाश अपघटन, फोटोडीकम्पोज़िशन, या फोटोफ़ृेगमेंटेशन एक रासायनिक प्रतिक्रिया है जिसमें एक रासायनिक यौगिक के अणु फोटॉन द्वारा टूट जाते हैं। इसे लक्ष्य अणु के साथ एक या एक से अधिक फोटोन की पारस्परिक क्रिया के रूप में परिभाषित किया गया है।
{{About|रासायनिक प्रक्रिया|परमाणु प्रतिक्रिया|फोटोडिसइंटीग्रेशन}}


'''प्रकाशिक वियोजन''',  प्रकाश अपघटन, फोटोडीकम्पोज़िशन, या फोटोफ़ृेगमेंटेशन एक रासायनिक प्रतिक्रिया है जिसमें एक रासायनिक यौगिक के अणु फोटॉन द्वारा टूट जाते हैं। इसे लक्ष्य अणु के साथ एक या एक से अधिक फोटोन की पारस्परिक क्रिया के रूप में परिभाषित किया गया है।
फोटोडिसोसिएशन दृश्य प्रकाश तक सीमित नहीं है। पर्याप्त ऊर्जा वाला कोई भी फोटॉन किसी रासायनिक यौगिक के रासायनिक बंधों को प्रभावित कर सकता है। चूंकि एक फोटॉन ऊर्जा इसकी तरंग दैर्ध्य के व्युत्क्रमानुपाती होती है, दृश्यमान प्रकाश या उच्चतर ऊर्जा के साथ विद्युत चुम्बकीय विकिरण, जैसे कि पराबैंगनी प्रकाश, एक्स-रे और गामा किरणें ऐसी प्रतिक्रियाओं को प्रेरित कर सकती हैं।
 
प्रकाशिक वियोजन दृश्य प्रकाश तक सीमित नहीं है। पर्याप्त ऊर्जा वाला कोई भी फोटॉन किसी रासायनिक यौगिक के रासायनिक बंधों को प्रभावित कर सकता है। चूंकि एक फोटॉन ऊर्जा इसकी तरंग दैर्ध्य के व्युत्क्रमानुपाती होती है, दृश्यमान प्रकाश या उच्चतर ऊर्जा के साथ विद्युत चुम्बकीय विकिरण, जैसे कि पराबैंगनी प्रकाश, एक्स-रे और गामा किरणें ऐसी प्रतिक्रियाओं को प्रेरित कर सकती हैं।


==प्रकाश संश्लेषण में प्रकाश-अपघटन ==
==प्रकाश संश्लेषण में प्रकाश-अपघटन ==
प्रकाश अपघटन प्रकाश-निर्भर प्रतिक्रिया या प्रकाश चरण या प्रकाश रासायनिक चरण या प्रकाश संश्लेषण की हिल अभिक्रिया का हिस्सा है। प्रकाश संश्लेषक प्रकाश अपघटन की सामान्य प्रतिक्रिया फोटॉन के रूप में इस प्रकार दी जा सकती है:
प्रकाश अपघटन प्रकाश-निर्भर प्रतिक्रिया या प्रकाश चरण या प्रकाश रासायनिक चरण या प्रकाश संश्लेषण की हिल अभिक्रिया का हिस्सा है। प्रकाश संश्लेषक प्रकाश अपघटन की सामान्य प्रतिक्रिया फोटॉन के रूप में इस प्रकार दी जा सकती है:
:<math chem>\ce{H2A} + 2 \text{ photons} \longrightarrow \ce{2e- + 2H+ + A}</math>
:<math chem>\ce{H2A} + 2 \text{ photons} \longrightarrow \ce{2e- + 2H+ + A}</math>
A की रासायनिक प्रकृति जीव के प्रकार पर निर्भर करती है। बैंगनी गंधक किटाणु उदजन सल्फाइड (H2S) को गंधक (S) में ऑक्सीकृत कर देता है। ऑक्सीजेनिक प्रकाश संश्लेषण में, जल (H2O) के लिए एक क्रियाधार के रूप में कार्य करता है जिसके परिणामस्वरूप द्विपरमाणुक प्राणवायु (O2) का उत्पादन होता है। यह वह प्रक्रिया है जो पृथ्वी के वायुमंडल में प्राणवायु लौटाती है। पानी का प्रकाश-अपघटन सायनोबैक्टीरियम के चिपिटाशय और हरित शैवाल और पौधों के हरितलवक में होता है।
A की रासायनिक प्रकृति जीव के प्रकार पर निर्भर करती है। बैंगनी गंधक किटाणु उदजन सल्फाइड (H<sub>2</sub>S) को गंधक (S) में ऑक्सीकृत कर देता है। ऑक्सीजेनिक प्रकाश संश्लेषण में, जल (H<sub>2</sub>O) के लिए एक क्रियाधार के रूप में कार्य करता है जिसके परिणामस्वरूप द्विपरमाणुक प्राणवायु (O<sub>2</sub>) का उत्पादन होता है। यह वह प्रक्रिया है जो पृथ्वी के वायुमंडल में प्राणवायु लौटाती है। पानी का प्रकाश-अपघटन सायनोबैक्टीरियम के चिपिटाशय और हरित शैवाल और पौधों के हरितलवक में होता है।


===ऊर्जा हस्तांतरण प्रतिरूप ===
===ऊर्जा हस्तांतरण प्रतिरूप ===
पारंपरिक परिमाणीकरण अर्ध-शास्त्रीय प्रतिरूप प्रकाश संश्लेषक ऊर्जा हस्तांतरण प्रक्रिया का वर्णन करता है, जिसमें उत्तेजना ऊर्जा प्रकाश-अधिकृत वर्णक अणुओं से प्रतिक्रिया केंद्र अणुओं को चरण-दर-चरण आणविक ऊर्जा सीढ़ी से नीचे ले जाती है।
पारंपरिक परिमाणीकरण अर्ध-शास्त्रीय प्रतिरूप प्रकाश संश्लेषक ऊर्जा हस्तांतरण प्रक्रिया का वर्णन करता है, जिसमें उत्तेजना ऊर्जा प्रकाश-अधिकृत वर्णक अणुओं से प्रतिक्रिया केंद्र अणुओं को चरण-दर-चरण आणविक ऊर्जा निःश्रेणी से नीचे ले जाती है।


विभिन्न तरंग दैर्ध्य के फोटॉन की प्रभावशीलता जीव में प्रकाश संश्लेषक वर्णक के अवशोषण चमकरेखाओं पर निर्भर करती है। पर्णहरित चमकरेखाओं के बैंगनी-नीले और लाल भागों में प्रकाश को अवशोषित करते हैं, चूँकि गौण वर्णक अन्य तरंग दैर्ध्य को भी पकड़ लेते हैं। लाल शैवाल के फाइकोबिलिन नीले-हरे प्रकाश को अवशोषित करते हैं जो लाल प्रकाश की तुलना में पानी में गहराई से प्रवेश करते हैं, जिससे वे गहरे पानी में प्रकाश संश्लेषण कर सकते हैं। प्रत्येक अवशोषित फोटॉन वर्णक अणु में एक एक्सिटोन (एक उच्च ऊर्जा अवस्था के लिए उत्साहित अतिसूक्ष्म परमाणु ) के गठन का कारण बनता है। अनुनाद ऊर्जा हस्तांतरण के माध्यम से  प्रकाशतंत्र के प्रतिक्रिया केंद्र में एक्साइटन की ऊर्जा को पर्णहरित अणु (P680, जहां P वर्णक के लिए और 680 इसके अवशोषण के लिए अधिकतम 680 NM) में स्थानांतरित किया जाता है। P680 एक उपयुक्त तरंग दैर्ध्य पर एक फोटॉन को सीधे अवशोषित कर सकता है।
विभिन्न तरंग दैर्ध्य के फोटॉन की प्रभावशीलता जीव में प्रकाश संश्लेषक वर्णक के अवशोषण चमकरेखाओं पर निर्भर करती है। पर्णहरित चमकरेखाओं के बैंगनी-नीले और लाल भागों में प्रकाश को अवशोषित करते हैं, चूँकि गौण वर्णक अन्य तरंग दैर्ध्य को भी पकड़ लेते हैं। लाल शैवाल के फाइकोबिलिन नीले-हरे प्रकाश को अवशोषित करते हैं जो लाल प्रकाश की तुलना में पानी में गहराई से प्रवेश करते हैं, जिससे वे गहरे पानी में प्रकाश संश्लेषण कर सकते हैं। प्रत्येक अवशोषित फोटॉन वर्णक अणु में एक एक्सिटोन (एक उच्च ऊर्जा अवस्था के लिए उत्साहित अतिसूक्ष्म परमाणु ) के गठन का कारण बनता है। अनुनाद ऊर्जा हस्तांतरण के माध्यम से  प्रकाशतंत्र के प्रतिक्रिया केंद्र में एक्साइटन की ऊर्जा को पर्णहरित अणु (P680, जहां P वर्णक के लिए और 680 इसके अवशोषण के लिए अधिकतम 680 NM) में स्थानांतरित किया जाता है। P680 एक उपयुक्त तरंग दैर्ध्य पर एक फोटॉन को सीधे अवशोषित कर सकता है।


प्रकाश संश्लेषण के दौरान प्रकाश-संचालित अपोपचयन घटनाओं की एक श्रृंखला में प्रकाश अपघटन होता है। P680 के सक्रिय अतिसूक्ष्म परमाणु (एक्सिटोन) को प्रकाश संश्लेषक अतिसूक्ष्म परमाणु परिवहन श्रृंखला के प्राथमिक अतिसूक्ष्म परमाणु स्वीकर्ता द्वारा अधिकृत कर लिया जाता है और इस प्रकार प्रकाशतंत्र से बाहर निकल जाता है। प्रतिक्रिया को दोहराने के लिए, प्रतिक्रिया केंद्र में अतिसूक्ष्म परमाणु को फिर से भरना होगा। यह प्राणवायु प्रकाश संश्लेषण के मामले में पानी के ऑक्सीकरण द्वारा होता है। प्रकाशतंत्र (P680*) का अतिसूक्ष्म परमाणु -कमी प्रतिक्रिया केंद्र अब तक खोजा गया सबसे मजबूत जैविक ऑक्सीकारक है, जो इसे पानी के रूप में स्थिर अणुओं को तोड़ने की अनुमति देता है।<ref name="Campbell">{{cite book |last=Campbell |author-link=Neil Campbell (scientist) |first=Neil A. |author2=Reece, Jane B. |title=जीवविज्ञान|edition=7th |publisher=Pearson – Benjamin Cummings |date=2005 |location=San Francisco |pages=186–191 |isbn=0-8053-7171-0}}</ref>
प्रकाश संश्लेषण के दौरान प्रकाश-संचालित अपोपचयन घटनाओं की एक श्रृंखला में प्रकाश अपघटन होता है। P680 के सक्रिय अतिसूक्ष्म परमाणु (एक्सिटोन) को प्रकाश संश्लेषक अतिसूक्ष्म परमाणु परिवहन श्रृंखला के प्राथमिक अतिसूक्ष्म परमाणु स्वीकर्ता द्वारा अधिकृत कर लिया जाता है और इस प्रकार प्रकाशतंत्र से बाहर निकल जाता है। प्रतिक्रिया को दोहराने के लिए, प्रतिक्रिया केंद्र में अतिसूक्ष्म परमाणु को फिर से भरना होगा। यह प्राणवायु प्रकाश संश्लेषण के मामले में पानी के ऑक्सीकरण द्वारा होता है। प्रकाशतंत्र (P680*) का अतिसूक्ष्म परमाणु -कमी प्रतिक्रिया केंद्र अब तक खोजा गया सबसे मजबूत जैविक ऑक्सीकारक है, जो इसे पानी के रूप में स्थिर अणुओं को तोड़ने की अनुमति देता है।<ref name="Campbell">{{cite book |last=Campbell |author-link=Neil Campbell (scientist) |first=Neil A. |author2=Reece, Jane B. |title=जीवविज्ञान|edition=7th |publisher=Pearson – Benjamin Cummings |date=2005 |location=San Francisco |pages=186–191 |isbn=0-8053-7171-0}}</ref>
प्रकाशतंत्र के प्राणवायु विकसित होने वाले संकुल द्वारा जल-विभाजन प्रतिक्रिया उत्प्रेरित होती है। इस प्रोभूजन-बाध्य अकार्बनिक संकुल में चार मैंगनीज आयन, साथ ही चूर्णातु और विरंजक आयन सहकारक के रूप में होते हैं। दो पानी के अणुओं को मैंगनीज झुण्ड द्वारा जटिल किया जाता है, जो तब प्रकाशतंत्र के प्रतिक्रिया केंद्र को फिर से भरने के लिए चार अतिसूक्ष्म परमाणु निष्कासन (ऑक्सीकरण) की एक श्रृंखला से गुजरता है। इस चक्र के अंत में मुक्त प्राणवायु ({{chem2|O2}}) उत्पन्न होता है और पानी के अणुओं के उदजन को चिपिटाशय अवकाशिका (डोलाई के S-स्थिति आरेख) में छोड़े गए चार प्रोटॉन में परिवर्तित कर दिया गया है।{{citation needed|date=December 2019}}
प्रकाशतंत्र के प्राणवायु विकसित होने वाले संकुल द्वारा जल-विभाजन प्रतिक्रिया उत्प्रेरित होती है। इस प्रोभूजन-बाध्य अकार्बनिक संकुल में चार मैंगनीज आयन, साथ ही चूर्णातु और विरंजक आयन सहकारक के रूप में होते हैं। दो पानी के अणुओं को मैंगनीज झुण्ड द्वारा जटिल किया जाता है, जो तब प्रकाशतंत्र के प्रतिक्रिया केंद्र को फिर से भरने के लिए चार अतिसूक्ष्म परमाणु निष्कासन (ऑक्सीकरण) की एक श्रृंखला से गुजरता है। इस चक्र के अंत में मुक्त प्राणवायु ({{chem2|O2}}) उत्पन्न होता है और पानी के अणुओं के उदजन को चिपिटाशय अवकाशिका (डोलाई के S-स्थिति आरेख) में छोड़े गए चार प्रोटॉन में परिवर्तित कर दिया गया है।
ये प्रोटॉन, साथ ही अतिसूक्ष्म परमाणु परिवहन श्रृंखला के साथ युग्मित चिपिटाशय झिल्ली में उदँचन किए गए अतिरिक्त प्रोटॉन, झिल्ली के पार एक प्रोटॉन ढाल बनाते हैं जो प्रकाश उपापचयन को संचालित करता है और इस प्रकार एडेनोसिन ट्राइफॉस्फेट (ATP) के रूप में रासायनिक ऊर्जा का उत्पादन करता है। अतिसूक्ष्म परमाणु प्रकाशतंत्र I के P700 प्रतिक्रिया केंद्र तक पहुँचते हैं जहाँ वे प्रकाश द्वारा फिर से सक्रिय होते हैं। वे एक और अतिसूक्ष्म परमाणु परिवहन श्रृंखला से गुजरते हैं और अंत में सह प्रकिण्व {{chem2|NADP+}} के साथ जुड़ जाते हैं और चिपिटाशय के बाहर प्रोटॉन NADPH बनाते हैं। जल प्रकाश-अपघटन की शुद्ध ऑक्सीकरण अभिक्रिया को इस प्रकार लिखा जा सकता है
 
:<math chem>\ce{2H2O + 2NADP+} + 8 \text{ photons} \longrightarrow \ce{2NADPH + 2H+ + O3}</math>
ये प्रोटॉन, साथ ही अतिसूक्ष्म परमाणु अभिगमन श्रृंखला के साथ युग्मित चिपिटाशय झिल्ली में उदँचन किए गए अतिरिक्त प्रोटॉन, झिल्ली के पार एक प्रोटॉन ढाल बनाते हैं जो प्रकाश उपापचयन को संचालित करता है और इस प्रकार यौगिक त्रिफॉस्फेट (ATP) के रूप में रासायनिक ऊर्जा का उत्पादन करता है। अतिसूक्ष्म परमाणु प्रकाशतंत्र के P700 प्रतिक्रिया केंद्र तक पहुँचते हैं जहाँ वे प्रकाश द्वारा फिर से सक्रिय होते हैं। वे एक और अतिसूक्ष्म परमाणु परिवहन श्रृंखला से गुजरते हैं और अंत में सह प्रकिण्व {{chem2|NADP+}} के साथ जुड़ जाते हैं और चिपिटाशय के बाहर प्रोटॉन NADPH बनाते हैं। जल प्रकाश-अपघटन की शुद्ध ऑक्सीकरण अभिक्रिया को इस प्रकार लिखा जा सकता है
:<math chem="">\ce{2H2O + 2NADP+} + 8 \text{ photons} \longrightarrow \ce{2NADPH + 2H+ + O3}</math>
मुक्त ऊर्जा परिवर्तन ({{tmath|\Delta G}}) इस प्रतिक्रिया के लिए प्रति मोल 102 किलोकैलोरी है। चूँकि 700 NM पर प्रकाश की ऊर्जा लगभग 40 किलोलोकलरी प्रति मोल फोटॉन है, प्रतिक्रिया के लिए लगभग 320 किलोलोकलरी प्रकाश ऊर्जा उपलब्ध है। इसलिए, उपलब्ध प्रकाश ऊर्जा का लगभग एक तिहाई  प्रकाश अपघटन और अतिसूक्ष्म परमाणु  हस्तांतरण के दौरान NADPH के रूप में अधिकृत कर लिया जाता है। परिणामी प्रोटॉन अनुप्रवण द्वारा समान मात्रा में ATP उत्पन्न होता है। एक उपोत्पाद के रूप में  प्राणवायु प्रतिक्रिया के लिए आगे किसी काम का नहीं है और इस प्रकार वातावरण में छोड़ दिया जाता है।<ref name="Raven">{{cite book |last=Raven |first=Peter H. |author2=Ray F. Evert |author3=Susan E. Eichhorn |title=पौधों की जीवविज्ञान|url=https://archive.org/details/biologyofplants00rave_0 |url-access=registration |edition=7th |publisher=W.H. Freeman and Company Publishers |date=2005 |location=New York |pages=[https://archive.org/details/biologyofplants00rave_0/page/115 115–127] |isbn=0-7167-1007-2}}</ref>
मुक्त ऊर्जा परिवर्तन ({{tmath|\Delta G}}) इस प्रतिक्रिया के लिए प्रति मोल 102 किलोकैलोरी है। चूँकि 700 NM पर प्रकाश की ऊर्जा लगभग 40 किलोलोकलरी प्रति मोल फोटॉन है, प्रतिक्रिया के लिए लगभग 320 किलोलोकलरी प्रकाश ऊर्जा उपलब्ध है। इसलिए, उपलब्ध प्रकाश ऊर्जा का लगभग एक तिहाई  प्रकाश अपघटन और अतिसूक्ष्म परमाणु  हस्तांतरण के दौरान NADPH के रूप में अधिकृत कर लिया जाता है। परिणामी प्रोटॉन अनुप्रवण द्वारा समान मात्रा में ATP उत्पन्न होता है। एक उपोत्पाद के रूप में  प्राणवायु प्रतिक्रिया के लिए आगे किसी काम का नहीं है और इस प्रकार वातावरण में छोड़ दिया जाता है।<ref name="Raven">{{cite book |last=Raven |first=Peter H. |author2=Ray F. Evert |author3=Susan E. Eichhorn |title=पौधों की जीवविज्ञान|url=https://archive.org/details/biologyofplants00rave_0 |url-access=registration |edition=7th |publisher=W.H. Freeman and Company Publishers |date=2005 |location=New York |pages=[https://archive.org/details/biologyofplants00rave_0/page/115 115–127] |isbn=0-7167-1007-2}}</ref>




==== परिमाण प्रतिरूप ====
==== परिमाण प्रतिरूप ====


2007 में ग्राहम फ्लेमिंग और उनके सहकर्मियों द्वारा एक परिमाण प्रतिरूप प्रस्तावित किया गया था जिसमें संभावना अन्तर्वलित है कि प्रकाश संश्लेषक ऊर्जा हस्तांतरण में परिमाण दोलन अन्तर्वलित हो सकते हैं, इसकी असामान्य रूप से उच्च प्रकाश संश्लेषक दक्षता को समझाते हुए।<ref name="QB">{{cite journal |author=Engel Gregory S., Calhoun Tessa R., Read Elizabeth L., Ahn Tae-Kyu, Mančal Tomáš, Cheng Yuan-Chung, [[Robert E. Blankenship |Blankenship Robert E.]], Fleming Graham R. |year=2007 |title=प्रकाश संश्लेषक प्रणालियों में क्वांटम सुसंगतता के माध्यम से तरंग जैसी ऊर्जा हस्तांतरण के साक्ष्य|journal=[[Nature (journal) |Nature]] |volume=446 |issue=7137 |pages=782–786 |doi=10.1038/nature05678 |bibcode=2007Natur.446..782E |pmid=17429397 |s2cid=13865546 |url=https://www.nature.com/articles/nature05678}}</ref>
2007 में ग्राहम फ्लेमिंग और उनके सहकर्मियों द्वारा इसकी असामान्य रूप से उच्च प्रकाश संश्लेषक दक्षता को समझाते हुए एक परिमाण प्रतिरूप प्रस्तावित किया गया था जिसमें संभावना अन्तर्वलित है कि प्रकाश संश्लेषक ऊर्जा हस्तांतरण में परिमाण दोलन अन्तर्वलित हो सकते हैं।<ref name="QB">{{cite journal |author=Engel Gregory S., Calhoun Tessa R., Read Elizabeth L., Ahn Tae-Kyu, Mančal Tomáš, Cheng Yuan-Chung, [[Robert E. Blankenship |Blankenship Robert E.]], Fleming Graham R. |year=2007 |title=प्रकाश संश्लेषक प्रणालियों में क्वांटम सुसंगतता के माध्यम से तरंग जैसी ऊर्जा हस्तांतरण के साक्ष्य|journal=[[Nature (journal) |Nature]] |volume=446 |issue=7137 |pages=782–786 |doi=10.1038/nature05678 |bibcode=2007Natur.446..782E |pmid=17429397 |s2cid=13865546 |url=https://www.nature.com/articles/nature05678}}</ref>
 
फ्लेमिंग के अनुसार [4] प्रत्यक्ष प्रमाण है कि प्रकाश संश्लेषण के दौरान ऊर्जा हस्तांतरण प्रक्रियाओं में उल्लेखनीय रूप से लंबे समय तक चलने वाली इलेक्ट्रॉनिक परिमाण सुसंगतता एक महत्वपूर्ण भूमिका निभाती है, जो ऊर्जा हस्तांतरण की अत्यधिक दक्षता की व्याख्या कर सकती है क्योंकि यह प्रणाली को कम नुकसान के साथ सभी संभावित ऊर्जा मार्गों का प्रतिरूप लेने में सक्षम बनाता है, और सबसे कुशल चुनता है। यद्यपि, यह दावा कई प्रकाशनों में गलत साबित हुआ है।<ref>{{cite journal |author=R. Tempelaar |author2=T. L. C. Jansen |author3=J. Knoester |title=वाइब्रेशनल बीटिंग्स एफएमओ लाइट-हार्वेस्टिंग कॉम्प्लेक्स में इलेक्ट्रॉनिक सुसंगतता के साक्ष्य छुपाते हैं|journal= J. Phys. Chem. B |volume=118 |issue=45 |pages=12865–12872 |date=2014 |doi=10.1021/jp510074q |pmid=25321492}}</ref><ref>{{cite journal |author=N. Christenson |author2=H. F. Kauffmann |author3=T. Pullerits |author4=T. Mancal |title=प्रकाश-कटाई परिसरों में लंबे समय तक रहने वाले समन्वय की उत्पत्ति|journal= J. Phys. Chem. B |volume=116 |pages=7449–7454 |date=2012 |issue=25 |doi=10.1021/jp304649c |arxiv=1201.6325 |pmid=22642682 |pmc=3789255}}</ref><ref>{{cite journal |author=E. Thyrhaug |author2=K. Zidek |author3=J. Dostal |author4=D. Bina |author5=D. Zigmantas |title=फेना में एक्साइटन संरचना और ऊर्जा हस्तांतरण-मैथ्यू-ओल्सन कॉम्प्लेक्स|journal= J. Phys. Chem. Lett. |volume=7 |issue=9 |pages=1653–1660 |date=2016 |doi=10.1021/acs.jpclett.6b00534 |pmid=27082631|url=https://lup.lub.lu.se/search/publication/b1c8070b-60cf-4e41-8895-ea13faf95777}}</ref><ref>{{cite journal |author=A. G. Dijkstra |author2=Y. Tanimura |title=प्रकाश-कटाई दक्षता और सुसंगत दोलनों में पर्यावरण समय के पैमाने की भूमिका|journal= New J. Phys. |volume=14 |issue=7 |pages=073027 |date=2012 |doi=10.1088/1367-2630/14/7/073027|bibcode=2012NJPh...14g3027D|doi-access=free}}</ref><ref>{{cite journal |author=D. M. Monahan |author2=L. Whaley-Mayda |author3=A. Ishizaki |author4=G. R. Fleming |title=कमजोर युग्मित प्रकाश संश्लेषक परिसरों में 2डी इलेक्ट्रॉनिक स्पेक्ट्रा और अंतर-साइट सुसंगतता पर कमजोर कंपन-इलेक्ट्रॉनिक युग्मन का प्रभाव|journal= J. Chem. Phys. |volume=143 |issue=6 |pages=065101 |date=2015 |doi=10.1063/1.4928068|pmid=26277167 |bibcode=2015JChPh.143f5101M |osti=1407273}}</ref>
फ्लेमिंग के अनुसार [4] प्रत्यक्ष प्रमाण है कि प्रकाश संश्लेषण के दौरान ऊर्जा हस्तांतरण प्रक्रियाओं में उल्लेखनीय रूप से लंबे समय तक चलने वाली इलेक्ट्रॉनिक परिमाण सुसंगतता एक महत्वपूर्ण भूमिका निभाती है, जो ऊर्जा हस्तांतरण की अत्यधिक दक्षता की व्याख्या कर सकती है क्योंकि यह प्रणाली को कम नुकसान के साथ सभी संभावित ऊर्जा मार्गों का प्रतिरूप लेने में सक्षम बनाता है, और सबसे कुशल चुनता है। यद्यपि, यह दावा कई प्रकाशनों में गलत साबित हुआ है।<ref>{{cite journal |author=R. Tempelaar |author2=T. L. C. Jansen |author3=J. Knoester |title=वाइब्रेशनल बीटिंग्स एफएमओ लाइट-हार्वेस्टिंग कॉम्प्लेक्स में इलेक्ट्रॉनिक सुसंगतता के साक्ष्य छुपाते हैं|journal= J. Phys. Chem. B |volume=118 |issue=45 |pages=12865–12872 |date=2014 |doi=10.1021/jp510074q |pmid=25321492}}</ref><ref>{{cite journal |author=N. Christenson |author2=H. F. Kauffmann |author3=T. Pullerits |author4=T. Mancal |title=प्रकाश-कटाई परिसरों में लंबे समय तक रहने वाले समन्वय की उत्पत्ति|journal= J. Phys. Chem. B |volume=116 |pages=7449–7454 |date=2012 |issue=25 |doi=10.1021/jp304649c |arxiv=1201.6325 |pmid=22642682 |pmc=3789255}}</ref><ref>{{cite journal |author=E. Thyrhaug |author2=K. Zidek |author3=J. Dostal |author4=D. Bina |author5=D. Zigmantas |title=फेना में एक्साइटन संरचना और ऊर्जा हस्तांतरण-मैथ्यू-ओल्सन कॉम्प्लेक्स|journal= J. Phys. Chem. Lett. |volume=7 |issue=9 |pages=1653–1660 |date=2016 |doi=10.1021/acs.jpclett.6b00534 |pmid=27082631|url=https://lup.lub.lu.se/search/publication/b1c8070b-60cf-4e41-8895-ea13faf95777}}</ref><ref>{{cite journal |author=A. G. Dijkstra |author2=Y. Tanimura |title=प्रकाश-कटाई दक्षता और सुसंगत दोलनों में पर्यावरण समय के पैमाने की भूमिका|journal= New J. Phys. |volume=14 |issue=7 |pages=073027 |date=2012 |doi=10.1088/1367-2630/14/7/073027|bibcode=2012NJPh...14g3027D|doi-access=free}}</ref><ref>{{cite journal |author=D. M. Monahan |author2=L. Whaley-Mayda |author3=A. Ishizaki |author4=G. R. Fleming |title=कमजोर युग्मित प्रकाश संश्लेषक परिसरों में 2डी इलेक्ट्रॉनिक स्पेक्ट्रा और अंतर-साइट सुसंगतता पर कमजोर कंपन-इलेक्ट्रॉनिक युग्मन का प्रभाव|journal= J. Chem. Phys. |volume=143 |issue=6 |pages=065101 |date=2015 |doi=10.1063/1.4928068|pmid=26277167 |bibcode=2015JChPh.143f5101M |osti=1407273}}</ref>


टोरंटो विश्वविद्यालय में ग्रेगरी स्कोल्स और उनकी टीम द्वारा इस दृष्टिकोण की और जांच की गई है, जिसमें 2010 की शुरुआत में प्रकाशित शोध परिणामों में यह संकेत मिलता है कि कुछ समुद्री शैवाल अपनी ऊर्जा दोहन की दक्षता बढ़ाने के लिए  परिमाण-सुसंगत इलेक्ट्रॉनिक ऊर्जा हस्तांतरण (EET) का उपयोग करते हैं।<ref>{{cite web |url=http://www.chem.utoronto.ca/staff/SCHOLES/scholes_home.html |title=स्कोल्स ग्रुप रिसर्च|access-date=2010-03-23 |archive-url=https://web.archive.org/web/20180930180731/http://www.chem.utoronto.ca/staff/SCHOLES/scholes_home.html |archive-date=2018-09-30 |url-status=dead}}</ref><ref>{{citation |author=Gregory D. Scholes |title=Quantum-coherent electronic energy transfer: Did Nature think of it first? |journal=[[Journal of Physical Chemistry Letters]] |volume=1 |number=1 |pages=2–8 |date=7 January 2010 |doi=10.1021/jz900062f}}</ref><ref>{{citation |author1=Elisabetta Collini |author2=Cathy Y. Wong |author3=Krystyna E. Wilk |author4=Paul M. G. Curmi |author5=Paul Brumer |author6=Gregory D. Scholes |title=Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature |journal=[[Nature (journal)|Nature]] |volume=463 |date=4 February 2010 |doi=10.1038/nature08811 |pmid=20130647 |bibcode=2010Natur.463..644C |issue=7281 |pages=644–7|s2cid=4369439}}</ref>
टोरंटो विश्वविद्यालय में ग्रेगरी स्कोल्स और उनके दल द्वारा इस दृष्टिकोण की और जांच की गई है, जिसमें 2010 की प्रारम्भ में प्रकाशित शोध परिणामों में यह संकेत मिलता है कि कुछ समुद्री शैवाल अपनी ऊर्जा दोहन की दक्षता बढ़ाने के लिए  परिमाण-सुसंगत इलेक्ट्रॉनिक ऊर्जा हस्तांतरण (EET) का उपयोग करते हैं।<ref>{{cite web |url=http://www.chem.utoronto.ca/staff/SCHOLES/scholes_home.html |title=स्कोल्स ग्रुप रिसर्च|access-date=2010-03-23 |archive-url=https://web.archive.org/web/20180930180731/http://www.chem.utoronto.ca/staff/SCHOLES/scholes_home.html |archive-date=2018-09-30 |url-status=dead}}</ref><ref>{{citation |author=Gregory D. Scholes |title=Quantum-coherent electronic energy transfer: Did Nature think of it first? |journal=[[Journal of Physical Chemistry Letters]] |volume=1 |number=1 |pages=2–8 |date=7 January 2010 |doi=10.1021/jz900062f}}</ref><ref>{{citation |author1=Elisabetta Collini |author2=Cathy Y. Wong |author3=Krystyna E. Wilk |author4=Paul M. G. Curmi |author5=Paul Brumer |author6=Gregory D. Scholes |title=Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature |journal=[[Nature (journal)|Nature]] |volume=463 |date=4 February 2010 |doi=10.1038/nature08811 |pmid=20130647 |bibcode=2010Natur.463..644C |issue=7281 |pages=644–7|s2cid=4369439}}</ref>
 
 
 
==फोटो प्रेरित प्रोटॉन स्थानांतरण==
==फोटो प्रेरित प्रोटॉन स्थानांतरण==
फोटोअम्ल अणु होते हैं जो प्रकाश अवशोषण पर चित्राधार बनाने के लिए एक प्रोटॉन स्थानांतरण से गुजरते हैं।
फोटोअम्ल अणु होते हैं जो प्रकाश अवशोषण पर चित्राधार बनाने के लिए एक प्रोटॉन स्थानांतरण से गुजरते हैं।
Line 40: Line 37:


== वातावरण में प्रकाश-अपघटन ==
== वातावरण में प्रकाश-अपघटन ==
प्रकाश अपघटन वातावरण में प्रतिक्रियाओं की एक श्रृंखला के हिस्से के रूप में होता है जिसके द्वारा प्राथमिक प्रदूषक जैसे हाइड्रोकार्बन और भूयाति ऑक्साइड माध्यमिक प्रदूषक जैसे पेरोक्सीसिल नाइट्रेट्स बनाने के लिए प्रतिक्रिया करते हैं।  प्रकाशरासायनिक धूमकुहा देखें।
प्रकाश अपघटन वातावरण में प्रतिक्रियाओं की एक श्रृंखला के हिस्से के रूप में होता है जिसके द्वारा प्राथमिक प्रदूषक जैसे हाइड्रोकार्बन और भूयाति ऑक्साइड माध्यमिक प्रदूषक जैसे परऑक्सी ऐसीटिल नाइट्रेट बनाने के लिए प्रतिक्रिया करते हैं।  प्रकाशरासायनिक कुहासा देखें।


क्षोभमंडल में दो सबसे महत्वपूर्ण प्रकाशिक वियोजन प्रतिक्रियाएं, सबसे पहले हैं:
क्षोभमंडल में दो सबसे महत्वपूर्ण फोटोडिसोसिएशन प्रतिक्रियाएं, सबसे पहले हैं:
:<math chem>\ce{O3} + h\nu \longrightarrow \ce{O2 + O(^1D)} \quad \lambda < 320 \text{ nm}</math>
:<math chem>\ce{O3} + h\nu \longrightarrow \ce{O2 + O(^1D)} \quad \lambda < 320 \text{ nm}</math>
जो एक उत्तेजित प्राणवायु परमाणु उत्पन्न करता है जो हाइड्रॉक्सिल विलक्षण देने के लिए पानी के साथ प्रतिक्रिया कर सकता है:
जो एक उत्तेजित प्राणवायु परमाणु उत्पन्न करता है जो हाइड्रॉक्सिस विलक्षण देने के लिए जल के साथ प्रतिक्रिया कर सकता है:
:<chem>O(^1D) + H2O -> 2 ^{*} OH</chem>
:<chem>O(^1D) + H2O -> 2 ^{*} OH</chem>


हाइड्रॉक्सिल विलक्षण वायुमंडलीय रसायन विज्ञान के लिए केंद्रीय है क्योंकि यह वातावरण में हाइड्रोकार्बन के ऑक्सीकरण की शुरुआत करता है और इसलिए प्रक्षालक के रूप में कार्य करता है।
हाइड्रॉक्सिल विलक्षण वायुमंडलीय रसायन विज्ञान के लिए केंद्रीय है क्योंकि यह वातावरण में हाइड्रोकार्बन के ऑक्सीकरण की प्रारम्भ करता है और इसलिए प्रक्षालक के रूप में कार्य करता है।


दूसरी प्रतिक्रिया:
दूसरी प्रतिक्रिया:
Line 53: Line 50:
क्षोभमंडल ओजोन के निर्माण में एक महत्वपूर्ण प्रतिक्रिया है।
क्षोभमंडल ओजोन के निर्माण में एक महत्वपूर्ण प्रतिक्रिया है।


ओजोन परत का निर्माण भी प्रकाश पृथक्करण के कारण होता है। पृथ्वी के समताप मंडल में ओजोन दो  प्राणवायु परमाणुओं से युक्त पराबैंगनी प्रकाश से टकराने वाले  प्राणवायु अणुओं ({{chem2|O2}}) द्वारा बनाई गई है, उन्हें अलग-अलग प्राणवायु परमाणुओं (परमाणु  प्राणवायु) में विभाजित करके।  {{chem2|O3}} ओजोन बनाने के लिए परमाणु प्राणवायु तब अटूट {{chem2|O2}} के साथ मिलती है इसके अलावाप्रकाश अपघटन वह प्रक्रिया है जिसके द्वारा क्लोरोफ्लोरोकार्बन ऊपरी वायुमंडल में टूटकर ओजोन को नष्ट करने वाले नीरजी मुक्त कण बनाते हैं।
ओजोन परत का निर्माण भी प्रकाश पृथक्करण के कारण होता है। पृथ्वी के समताप मंडल में ओजोन दो  प्राणवायु परमाणुओं से युक्त पराबैंगनी प्रकाश से टकराने वाले  प्राणवायु अणुओं ({{chem2|O2}}) द्वारा बनाई गई है, उन्हें अलग-अलग प्राणवायु परमाणुओं (परमाणु  प्राणवायु) में विभाजित करके।  {{chem2|O3}} ओजोन बनाने के लिए परमाणु प्राणवायु तब अटूट {{chem2|O2}} के साथ मिलती है, इसके अलावा प्रकाश अपघटन वह प्रक्रिया है जिसके द्वारा क्लोरोफ्लोरोकार्बन ऊपरी वायुमंडल में टूटकर ओजोन को नष्ट करने वाले नीरजी मुक्त कण बनाते हैं।


==खगोल भौतिकी==
==खगोल भौतिकी==
खगोल भौतिकी में,  प्रकाशिक वियोजन प्रमुख प्रक्रियाओं में से एक है जिसके माध्यम से अणु टूट जाते हैं (लेकिन नए अणु बन रहे हैं)। अंतर्तारकीय माध्यम के निर्वात के कारण, अणु और मुक्त कण लंबे समय तक मौजूद रह सकते हैं। प्रकाशिक वियोजन मुख्य मार्ग है जिसके द्वारा अणु टूट जाते हैं। अंतरतारकीय बादलों की संरचना के अध्ययन में प्रकाशिक वियोजन दर महत्वपूर्ण हैं जिसमें सितारे बनते हैं।
खगोल भौतिकी में,  फोटोडिसोसिएशन प्रमुख प्रक्रियाओं में से एक है जिसके माध्यम से अणु टूट जाते हैं (लेकिन नए अणु बन रहे हैं)। अंतर्तारकीय माध्यम के निर्वात के कारण, अणु और मुक्त कण लंबे समय तक उस्थिपत रह सकते हैं। फोटोडिसोसिएशन मुख्य मार्ग है जिसके द्वारा अणु टूट जाते हैं। अंतरतारकीय बादलों की संरचना के अध्ययन में फोटोडिसोसिएशन दर महत्वपूर्ण हैं जिसमें सितारे बनते हैं।


अंतरतारकीय माध्यम में प्रकाशिक वियोजन के उदाहरण हैं ({{mvar|hν}} आवृत्ति के एकल फोटॉन की ऊर्जा है {{mvar|ν}}):
अंतरतारकीय माध्यम में फोटोडिसोसिएशन के उदाहरण हैं ({{mvar|hν}} आवृत्ति के एकल फोटॉन की ऊर्जा है {{mvar|ν}}):
:<chem>H2O ->[h\nu] H + OH</chem>
:<chem>H2O ->[h\nu] H + OH</chem>
:<chem>CH4 ->[h\nu] CH3 + H</chem>
:<chem>CH4 ->[h\nu] CH3 + H</chem>


==वायुमंडलीय गामा-किरणों का फटना==
==वायुमंडलीय गामा-किरणों का फटना==
{{Unreferenced section|date=August 2014}}
वर्तमान में परिक्रमा करने वाले उपग्रह प्रतिदिन औसतन एक गामा-किरण फटने का पता लगाते हैं। क्योंकि गामा-किरणों का फटना अधिकांश देखने योग्य ब्रह्मांड को घेरने वाली दूरियों के लिए दृश्यमान है, एक मात्रा जिसमें कई अरब आकाशगंगाएँ अन्तर्वलित हैं, इससे पता चलता है कि गामा-किरणों का फटना प्रति आकाशगंगा में अत्यधिक दुर्लभ घटनाएँ होनी चाहिए।
वर्तमान में परिक्रमा करने वाले उपग्रह प्रतिदिन औसतन एक गामा-किरण फटने का पता लगाते हैं। क्योंकि गामा-किरणों का फटना अधिकांश देखने योग्य ब्रह्मांड को घेरने वाली दूरियों के लिए दृश्यमान है, एक मात्रा जिसमें कई अरब आकाशगंगाएँ अन्तर्वलित हैं, इससे पता चलता है कि गामा-किरणों का फटना प्रति आकाशगंगा में अत्यधिक दुर्लभ घटनाएँ होनी चाहिए।


गामा-किरणों के फटने की सटीक दर को मापना मुश्किल है, लेकिन आकाशगंगा के लगभग समान आकार की आकाशगंगा के लिए, अपेक्षित दर (लंबे GRB के लिए) हर 100,000 से 1,000,000 वर्षों में लगभग एक फट जाती है।<ref name="rates">[[#Podsiadlowski|Podsiadlowski 2004]]{{Citation not found|date=December 2019}}</ref> इनमें से केवल कुछ प्रतिशत ही पृथ्वी की ओर प्रसारित होंगे। अज्ञात दीप्तिमान अंश के कारण लघु GRB की दरों का अनुमान और भी अनिश्चित है, लेकिन संभवतः तुलनीय है।<ref>[[#Guetta|Guetta 2006]]{{Citation not found|date=December 2019}}</ref>
गामा-किरणों के फटने की सटीक दर को मापना कठिन है, लेकिन आकाशगंगा के लगभग समान आकार की आकाशगंगा के लिए, अपेक्षित दर (लंबे GRB के लिए) हर 100,000 से 1,000,000 वर्षों में लगभग एक फट जाती है।<ref name="rates">[[#Podsiadlowski|Podsiadlowski 2004]]{{Citation not found|date=December 2019}}</ref> इनमें से केवल कुछ प्रतिशत ही पृथ्वी की ओर प्रसारित होंगे। अज्ञात दीप्तिमान अंश के कारण लघु GRB की दरों का अनुमान और भी अनिश्चित है, लेकिन संभवतः तुलनीय है।<ref>[[#Guetta|Guetta 2006]]{{Citation not found|date=December 2019}}</ref> आकाशगंगा में एक गामा-किरण का विस्फोट, यदि पृथ्वी के काफी नज़दीक हो और उसकी ओर किरण हो, तो जीवमंडल पर महत्वपूर्ण प्रभाव पड़ सकता है। वायुमंडल में विकिरण के अवशोषण से भूयाति का फोटोडिसोसिएशन होगा, जिससे नाइट्रिक ऑक्साइड उत्पन्न होगा जो ओजोन को नष्ट करने के लिए उत्प्रेरक का काम करेगा।<ref>[[#Thorsett|Thorsett 1995]]{{Citation not found|date=December 2019}}</ref>
आकाशगंगा में एक गामा-किरण का विस्फोट, यदि पृथ्वी के काफी करीब हो और उसकी ओर किरण हो, तो जीवमंडल पर महत्वपूर्ण प्रभाव पड़ सकता है। वायुमंडल में विकिरण के अवशोषण से भूयाति का प्रकाशिक वियोजन होगा, जिससे नाइट्रिक ऑक्साइड उत्पन्न होगा जो ओजोन को नष्ट करने के लिए उत्प्रेरक का काम करेगा।<ref>[[#Thorsett|Thorsett 1995]]{{Citation not found|date=December 2019}}</ref>
 
वायुमंडलीय  प्रकाशिक वियोजन
वायुमंडलीय  फोटोडिसोसिएशन
* <chem>N2 -> 2N</chem>
* <chem>N2 -> 2N</chem>
* <chem>O2 -> 2O</chem>
* <chem>O2 -> 2O</chem>
Line 87: Line 83:


==बहु-फोटॉन पृथक्करण==
==बहु-फोटॉन पृथक्करण==
अवरक्त वर्णक्रमीय क्षेत्र में ऐकल फोटॉन सामान्यतः अणुओं के प्रत्यक्ष प्रकाशिक वियोजन के लिए पर्याप्त ऊर्जावान नहीं होते हैं। यद्यपि, कई अवरक्त फोटॉनों के अवशोषण के बाद एक अणु पृथक्करण के लिए अपनी बाधा को दूर करने के लिए आंतरिक ऊर्जा प्राप्त कर सकता है। बहु-फोटॉन पृथक्करण (MPD अवरक्त विकिरण के साथ अवरक्त बहुफ़ोटोन पृथक्करण) उच्च-शक्ति वाले लेज़रों को लागू करके प्राप्त किया जा सकता है, उदा। एक कार्बन डाइऑक्साइड लेजर, या एक मुक्त-  अतिसूक्ष्म परमाणु  लेजर, या तेजी से शीतलन की संभावना के बिना विकिरण क्षेत्र के साथ अणु की लंबी बातचीत के समय, उदा। टकराव से। बाद की विधि कृष्णिका विकिरण से प्रेरित MPD के लिए भी अनुमति देती है, एक तकनीक जिसे कृष्णिका विकिरण विकरणशील पृथकरण (BIRD) कहा जाता है।
अवरक्त वर्णक्रमीय क्षेत्र में ऐकल फोटॉन सामान्यतः अणुओं के प्रत्यक्ष फोटोडिसोसिएशन के लिए पर्याप्त ऊर्जावान नहीं होते हैं। यद्यपि, कई अवरक्त फोटॉनों के अवशोषण के बाद एक अणु पृथक्करण के लिए अपनी बाधा को दूर करने के लिए आंतरिक ऊर्जा प्राप्त कर सकता है। बहु-फोटॉन पृथक्करण (MPD अवरक्त विकिरण के साथ अवरक्त बहुफ़ोटोन पृथक्करण) उच्च-शक्ति वाले लेज़रों को लागू करके प्राप्त किया जा सकता है, उदा। एक कार्बन डाइऑक्साइड लेजर, या एक मुक्त-  अतिसूक्ष्म परमाणु  लेजर, या तेजी से शीतलन की संभावना के बिना विकिरण क्षेत्र के साथ अणु की लंबी बातचीत के समय, उदा। टकराव से। बाद की विधि कृष्णिका विकिरण से प्रेरित MPD के लिए भी अनुमति देती है, एक तकनीक जिसे कृष्णिका विकिरण विकरणशील पृथकरण (BIRD) कहा जाता है।


==यह भी देखें==
==यह भी देखें==
Line 94: Line 90:
*प्रकाशरसायन
*प्रकाशरसायन
*फोटोहाइड्रोजन
*फोटोहाइड्रोजन
{{Reflist}}
{{Reflist}}{{Authority control}}
{{Reaction mechanisms}}
 
{{Authority control}}
[[Category: खगोल भौतिकी]]
[[Category: रासायनिक प्रतिक्रियाएं]]
[[Category: फोटोकैमिस्ट्री]]
[[Category: प्रकाश संश्लेषण]]
[[Category: प्रतिक्रिया तंत्र]]
 


[[Category: Machine Translated Page]]
[[Category:AC with 0 elements]]
[[Category:All articles needing additional references]]
[[Category:All articles with unsourced statements]]
[[Category:Articles needing additional references from August 2014]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from December 2019]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 31/10/2022]]
[[Category:Created On 31/10/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:खगोल भौतिकी]]
[[Category:प्रकाश संश्लेषण]]
[[Category:प्रतिक्रिया तंत्र]]
[[Category:फोटोकैमिस्ट्री]]
[[Category:रासायनिक प्रतिक्रियाएं]]

Latest revision as of 12:30, 31 October 2023

फोटोडिसोसिएशन (प्रकाशिक वियोजन), प्रकाश अपघटन, फोटोडीकम्पोज़िशन, या फोटोफ़ृेगमेंटेशन एक रासायनिक प्रतिक्रिया है जिसमें एक रासायनिक यौगिक के अणु फोटॉन द्वारा टूट जाते हैं। इसे लक्ष्य अणु के साथ एक या एक से अधिक फोटोन की पारस्परिक क्रिया के रूप में परिभाषित किया गया है।

फोटोडिसोसिएशन दृश्य प्रकाश तक सीमित नहीं है। पर्याप्त ऊर्जा वाला कोई भी फोटॉन किसी रासायनिक यौगिक के रासायनिक बंधों को प्रभावित कर सकता है। चूंकि एक फोटॉन ऊर्जा इसकी तरंग दैर्ध्य के व्युत्क्रमानुपाती होती है, दृश्यमान प्रकाश या उच्चतर ऊर्जा के साथ विद्युत चुम्बकीय विकिरण, जैसे कि पराबैंगनी प्रकाश, एक्स-रे और गामा किरणें ऐसी प्रतिक्रियाओं को प्रेरित कर सकती हैं।

प्रकाश संश्लेषण में प्रकाश-अपघटन

प्रकाश अपघटन प्रकाश-निर्भर प्रतिक्रिया या प्रकाश चरण या प्रकाश रासायनिक चरण या प्रकाश संश्लेषण की हिल अभिक्रिया का हिस्सा है। प्रकाश संश्लेषक प्रकाश अपघटन की सामान्य प्रतिक्रिया फोटॉन के रूप में इस प्रकार दी जा सकती है:

A की रासायनिक प्रकृति जीव के प्रकार पर निर्भर करती है। बैंगनी गंधक किटाणु उदजन सल्फाइड (H2S) को गंधक (S) में ऑक्सीकृत कर देता है। ऑक्सीजेनिक प्रकाश संश्लेषण में, जल (H2O) के लिए एक क्रियाधार के रूप में कार्य करता है जिसके परिणामस्वरूप द्विपरमाणुक प्राणवायु (O2) का उत्पादन होता है। यह वह प्रक्रिया है जो पृथ्वी के वायुमंडल में प्राणवायु लौटाती है। पानी का प्रकाश-अपघटन सायनोबैक्टीरियम के चिपिटाशय और हरित शैवाल और पौधों के हरितलवक में होता है।

ऊर्जा हस्तांतरण प्रतिरूप

पारंपरिक परिमाणीकरण अर्ध-शास्त्रीय प्रतिरूप प्रकाश संश्लेषक ऊर्जा हस्तांतरण प्रक्रिया का वर्णन करता है, जिसमें उत्तेजना ऊर्जा प्रकाश-अधिकृत वर्णक अणुओं से प्रतिक्रिया केंद्र अणुओं को चरण-दर-चरण आणविक ऊर्जा निःश्रेणी से नीचे ले जाती है।

विभिन्न तरंग दैर्ध्य के फोटॉन की प्रभावशीलता जीव में प्रकाश संश्लेषक वर्णक के अवशोषण चमकरेखाओं पर निर्भर करती है। पर्णहरित चमकरेखाओं के बैंगनी-नीले और लाल भागों में प्रकाश को अवशोषित करते हैं, चूँकि गौण वर्णक अन्य तरंग दैर्ध्य को भी पकड़ लेते हैं। लाल शैवाल के फाइकोबिलिन नीले-हरे प्रकाश को अवशोषित करते हैं जो लाल प्रकाश की तुलना में पानी में गहराई से प्रवेश करते हैं, जिससे वे गहरे पानी में प्रकाश संश्लेषण कर सकते हैं। प्रत्येक अवशोषित फोटॉन वर्णक अणु में एक एक्सिटोन (एक उच्च ऊर्जा अवस्था के लिए उत्साहित अतिसूक्ष्म परमाणु ) के गठन का कारण बनता है। अनुनाद ऊर्जा हस्तांतरण के माध्यम से प्रकाशतंत्र के प्रतिक्रिया केंद्र में एक्साइटन की ऊर्जा को पर्णहरित अणु (P680, जहां P वर्णक के लिए और 680 इसके अवशोषण के लिए अधिकतम 680 NM) में स्थानांतरित किया जाता है। P680 एक उपयुक्त तरंग दैर्ध्य पर एक फोटॉन को सीधे अवशोषित कर सकता है।

प्रकाश संश्लेषण के दौरान प्रकाश-संचालित अपोपचयन घटनाओं की एक श्रृंखला में प्रकाश अपघटन होता है। P680 के सक्रिय अतिसूक्ष्म परमाणु (एक्सिटोन) को प्रकाश संश्लेषक अतिसूक्ष्म परमाणु परिवहन श्रृंखला के प्राथमिक अतिसूक्ष्म परमाणु स्वीकर्ता द्वारा अधिकृत कर लिया जाता है और इस प्रकार प्रकाशतंत्र से बाहर निकल जाता है। प्रतिक्रिया को दोहराने के लिए, प्रतिक्रिया केंद्र में अतिसूक्ष्म परमाणु को फिर से भरना होगा। यह प्राणवायु प्रकाश संश्लेषण के मामले में पानी के ऑक्सीकरण द्वारा होता है। प्रकाशतंत्र (P680*) का अतिसूक्ष्म परमाणु -कमी प्रतिक्रिया केंद्र अब तक खोजा गया सबसे मजबूत जैविक ऑक्सीकारक है, जो इसे पानी के रूप में स्थिर अणुओं को तोड़ने की अनुमति देता है।[1] प्रकाशतंत्र के प्राणवायु विकसित होने वाले संकुल द्वारा जल-विभाजन प्रतिक्रिया उत्प्रेरित होती है। इस प्रोभूजन-बाध्य अकार्बनिक संकुल में चार मैंगनीज आयन, साथ ही चूर्णातु और विरंजक आयन सहकारक के रूप में होते हैं। दो पानी के अणुओं को मैंगनीज झुण्ड द्वारा जटिल किया जाता है, जो तब प्रकाशतंत्र के प्रतिक्रिया केंद्र को फिर से भरने के लिए चार अतिसूक्ष्म परमाणु निष्कासन (ऑक्सीकरण) की एक श्रृंखला से गुजरता है। इस चक्र के अंत में मुक्त प्राणवायु (O2) उत्पन्न होता है और पानी के अणुओं के उदजन को चिपिटाशय अवकाशिका (डोलाई के S-स्थिति आरेख) में छोड़े गए चार प्रोटॉन में परिवर्तित कर दिया गया है।

ये प्रोटॉन, साथ ही अतिसूक्ष्म परमाणु अभिगमन श्रृंखला के साथ युग्मित चिपिटाशय झिल्ली में उदँचन किए गए अतिरिक्त प्रोटॉन, झिल्ली के पार एक प्रोटॉन ढाल बनाते हैं जो प्रकाश उपापचयन को संचालित करता है और इस प्रकार यौगिक त्रिफॉस्फेट (ATP) के रूप में रासायनिक ऊर्जा का उत्पादन करता है। अतिसूक्ष्म परमाणु प्रकाशतंत्र के P700 प्रतिक्रिया केंद्र तक पहुँचते हैं जहाँ वे प्रकाश द्वारा फिर से सक्रिय होते हैं। वे एक और अतिसूक्ष्म परमाणु परिवहन श्रृंखला से गुजरते हैं और अंत में सह प्रकिण्व NADP+ के साथ जुड़ जाते हैं और चिपिटाशय के बाहर प्रोटॉन NADPH बनाते हैं। जल प्रकाश-अपघटन की शुद्ध ऑक्सीकरण अभिक्रिया को इस प्रकार लिखा जा सकता है

मुक्त ऊर्जा परिवर्तन () इस प्रतिक्रिया के लिए प्रति मोल 102 किलोकैलोरी है। चूँकि 700 NM पर प्रकाश की ऊर्जा लगभग 40 किलोलोकलरी प्रति मोल फोटॉन है, प्रतिक्रिया के लिए लगभग 320 किलोलोकलरी प्रकाश ऊर्जा उपलब्ध है। इसलिए, उपलब्ध प्रकाश ऊर्जा का लगभग एक तिहाई प्रकाश अपघटन और अतिसूक्ष्म परमाणु हस्तांतरण के दौरान NADPH के रूप में अधिकृत कर लिया जाता है। परिणामी प्रोटॉन अनुप्रवण द्वारा समान मात्रा में ATP उत्पन्न होता है। एक उपोत्पाद के रूप में प्राणवायु प्रतिक्रिया के लिए आगे किसी काम का नहीं है और इस प्रकार वातावरण में छोड़ दिया जाता है।[2]


परिमाण प्रतिरूप

2007 में ग्राहम फ्लेमिंग और उनके सहकर्मियों द्वारा इसकी असामान्य रूप से उच्च प्रकाश संश्लेषक दक्षता को समझाते हुए एक परिमाण प्रतिरूप प्रस्तावित किया गया था जिसमें संभावना अन्तर्वलित है कि प्रकाश संश्लेषक ऊर्जा हस्तांतरण में परिमाण दोलन अन्तर्वलित हो सकते हैं।[3]

फ्लेमिंग के अनुसार [4] प्रत्यक्ष प्रमाण है कि प्रकाश संश्लेषण के दौरान ऊर्जा हस्तांतरण प्रक्रियाओं में उल्लेखनीय रूप से लंबे समय तक चलने वाली इलेक्ट्रॉनिक परिमाण सुसंगतता एक महत्वपूर्ण भूमिका निभाती है, जो ऊर्जा हस्तांतरण की अत्यधिक दक्षता की व्याख्या कर सकती है क्योंकि यह प्रणाली को कम नुकसान के साथ सभी संभावित ऊर्जा मार्गों का प्रतिरूप लेने में सक्षम बनाता है, और सबसे कुशल चुनता है। यद्यपि, यह दावा कई प्रकाशनों में गलत साबित हुआ है।[4][5][6][7][8]

टोरंटो विश्वविद्यालय में ग्रेगरी स्कोल्स और उनके दल द्वारा इस दृष्टिकोण की और जांच की गई है, जिसमें 2010 की प्रारम्भ में प्रकाशित शोध परिणामों में यह संकेत मिलता है कि कुछ समुद्री शैवाल अपनी ऊर्जा दोहन की दक्षता बढ़ाने के लिए परिमाण-सुसंगत इलेक्ट्रॉनिक ऊर्जा हस्तांतरण (EET) का उपयोग करते हैं।[9][10][11]

फोटो प्रेरित प्रोटॉन स्थानांतरण

फोटोअम्ल अणु होते हैं जो प्रकाश अवशोषण पर चित्राधार बनाने के लिए एक प्रोटॉन स्थानांतरण से गुजरते हैं।

इन प्रतिक्रियाओं में इलेक्ट्रॉनिक रूप से उत्तेजित अवस्था में पृथक्करण होता है। अतिसूक्ष्म परमाणु कि स्थिर अवस्था में प्रोटॉन स्थानांतरण और विश्राम के बाद, प्रोटॉन और अम्ल फिर से फोटोअम्ल बनाने के लिए पुनर्संयोजन करते हैं।

पराद्रुत लेजर स्पेक्ट्रोमिकी प्रयोगों में PH विषयांतर को प्रेरित करने के लिए फोटोअम्ल एक सुविधाजनक स्रोत है।

वातावरण में प्रकाश-अपघटन

प्रकाश अपघटन वातावरण में प्रतिक्रियाओं की एक श्रृंखला के हिस्से के रूप में होता है जिसके द्वारा प्राथमिक प्रदूषक जैसे हाइड्रोकार्बन और भूयाति ऑक्साइड माध्यमिक प्रदूषक जैसे परऑक्सी ऐसीटिल नाइट्रेट बनाने के लिए प्रतिक्रिया करते हैं। प्रकाशरासायनिक कुहासा देखें।

क्षोभमंडल में दो सबसे महत्वपूर्ण फोटोडिसोसिएशन प्रतिक्रियाएं, सबसे पहले हैं:

जो एक उत्तेजित प्राणवायु परमाणु उत्पन्न करता है जो हाइड्रॉक्सिस विलक्षण देने के लिए जल के साथ प्रतिक्रिया कर सकता है:

हाइड्रॉक्सिल विलक्षण वायुमंडलीय रसायन विज्ञान के लिए केंद्रीय है क्योंकि यह वातावरण में हाइड्रोकार्बन के ऑक्सीकरण की प्रारम्भ करता है और इसलिए प्रक्षालक के रूप में कार्य करता है।

दूसरी प्रतिक्रिया:

क्षोभमंडल ओजोन के निर्माण में एक महत्वपूर्ण प्रतिक्रिया है।

ओजोन परत का निर्माण भी प्रकाश पृथक्करण के कारण होता है। पृथ्वी के समताप मंडल में ओजोन दो प्राणवायु परमाणुओं से युक्त पराबैंगनी प्रकाश से टकराने वाले प्राणवायु अणुओं (O2) द्वारा बनाई गई है, उन्हें अलग-अलग प्राणवायु परमाणुओं (परमाणु प्राणवायु) में विभाजित करके। O3 ओजोन बनाने के लिए परमाणु प्राणवायु तब अटूट O2 के साथ मिलती है, इसके अलावा प्रकाश अपघटन वह प्रक्रिया है जिसके द्वारा क्लोरोफ्लोरोकार्बन ऊपरी वायुमंडल में टूटकर ओजोन को नष्ट करने वाले नीरजी मुक्त कण बनाते हैं।

खगोल भौतिकी

खगोल भौतिकी में, फोटोडिसोसिएशन प्रमुख प्रक्रियाओं में से एक है जिसके माध्यम से अणु टूट जाते हैं (लेकिन नए अणु बन रहे हैं)। अंतर्तारकीय माध्यम के निर्वात के कारण, अणु और मुक्त कण लंबे समय तक उस्थिपत रह सकते हैं। फोटोडिसोसिएशन मुख्य मार्ग है जिसके द्वारा अणु टूट जाते हैं। अंतरतारकीय बादलों की संरचना के अध्ययन में फोटोडिसोसिएशन दर महत्वपूर्ण हैं जिसमें सितारे बनते हैं।

अंतरतारकीय माध्यम में फोटोडिसोसिएशन के उदाहरण हैं ( आवृत्ति के एकल फोटॉन की ऊर्जा है ν):

वायुमंडलीय गामा-किरणों का फटना

वर्तमान में परिक्रमा करने वाले उपग्रह प्रतिदिन औसतन एक गामा-किरण फटने का पता लगाते हैं। क्योंकि गामा-किरणों का फटना अधिकांश देखने योग्य ब्रह्मांड को घेरने वाली दूरियों के लिए दृश्यमान है, एक मात्रा जिसमें कई अरब आकाशगंगाएँ अन्तर्वलित हैं, इससे पता चलता है कि गामा-किरणों का फटना प्रति आकाशगंगा में अत्यधिक दुर्लभ घटनाएँ होनी चाहिए।

गामा-किरणों के फटने की सटीक दर को मापना कठिन है, लेकिन आकाशगंगा के लगभग समान आकार की आकाशगंगा के लिए, अपेक्षित दर (लंबे GRB के लिए) हर 100,000 से 1,000,000 वर्षों में लगभग एक फट जाती है।[12] इनमें से केवल कुछ प्रतिशत ही पृथ्वी की ओर प्रसारित होंगे। अज्ञात दीप्तिमान अंश के कारण लघु GRB की दरों का अनुमान और भी अनिश्चित है, लेकिन संभवतः तुलनीय है।[13] आकाशगंगा में एक गामा-किरण का विस्फोट, यदि पृथ्वी के काफी नज़दीक हो और उसकी ओर किरण हो, तो जीवमंडल पर महत्वपूर्ण प्रभाव पड़ सकता है। वायुमंडल में विकिरण के अवशोषण से भूयाति का फोटोडिसोसिएशन होगा, जिससे नाइट्रिक ऑक्साइड उत्पन्न होगा जो ओजोन को नष्ट करने के लिए उत्प्रेरक का काम करेगा।[14]

वायुमंडलीय फोटोडिसोसिएशन

उपज होगा

  • NO2 (400 ओजोन अणुओं तक की खपत करता है)
  • CH2 (नाममात्र)
  • CH4 (नाममात्र)
  • CO2

(अपूर्ण)

2004 के एक अध्ययन के अनुसार, लगभग एक किलोपारसेक की दूरी पर एक GRB पृथ्वी की ओजोन परत के आधे हिस्से को नष्ट कर सकता है; विस्फोट से प्रत्यक्ष परा बैंगनी विकिरण कम ओजोन परत से गुजरने वाले अतिरिक्त सौर परा बैंगनी विकिरण के साथ खाद्य श्रृंखला पर संभावित रूप से महत्वपूर्ण प्रभाव डाल सकता है और संभावित रूप से बड़े पैमाने पर विलुप्त होने का कारण बन सकता है।[15][16] लेखकों का अनुमान है कि प्रति अरब वर्षों में इस तरह के एक विस्फोट की उम्मीद है, और अनुमान है कि ऑर्डोविशियन-सिलूरियन विलुप्त होने की घटना इस तरह के विस्फोट का परिणाम हो सकती है।

इस बात के पुख्ता संकेत हैं कि लंबे गामा-किरणों का फटना अधिमानतः या विशेष रूप से कम धात्विकता वाले क्षेत्रों में होता है क्योंकि आकाशगंगा पृथ्वी के बनने से पहले से धातु से समृद्ध रहा है, यह प्रभाव पिछले अरब वर्षों के भीतर आकाशगंगा के भीतर एक लंबी गामा-किरण फटने की संभावना को कम या समाप्त कर सकता है।[17] लघु गामा-किरण फटने के लिए ऐसी कोई धात्विकता पूर्वाग्रह ज्ञात नहीं है। इस प्रकार, उनकी स्थानीय दर और दीप्तिमान गुणों के आधार पर, भूगर्भीय समय में किसी बिंदु पर पृथ्वी पर एक नजदीकी घटना के बड़े प्रभाव की संभावना अभी भी महत्वपूर्ण हो सकती है।[18]


बहु-फोटॉन पृथक्करण

अवरक्त वर्णक्रमीय क्षेत्र में ऐकल फोटॉन सामान्यतः अणुओं के प्रत्यक्ष फोटोडिसोसिएशन के लिए पर्याप्त ऊर्जावान नहीं होते हैं। यद्यपि, कई अवरक्त फोटॉनों के अवशोषण के बाद एक अणु पृथक्करण के लिए अपनी बाधा को दूर करने के लिए आंतरिक ऊर्जा प्राप्त कर सकता है। बहु-फोटॉन पृथक्करण (MPD अवरक्त विकिरण के साथ अवरक्त बहुफ़ोटोन पृथक्करण) उच्च-शक्ति वाले लेज़रों को लागू करके प्राप्त किया जा सकता है, उदा। एक कार्बन डाइऑक्साइड लेजर, या एक मुक्त- अतिसूक्ष्म परमाणु लेजर, या तेजी से शीतलन की संभावना के बिना विकिरण क्षेत्र के साथ अणु की लंबी बातचीत के समय, उदा। टकराव से। बाद की विधि कृष्णिका विकिरण से प्रेरित MPD के लिए भी अनुमति देती है, एक तकनीक जिसे कृष्णिका विकिरण विकरणशील पृथकरण (BIRD) कहा जाता है।

यह भी देखें

  • स्फुर प्रकाशअपघटन
  • फोटोकैटलिसिस
  • प्रकाशरसायन
  • फोटोहाइड्रोजन
  1. Campbell, Neil A.; Reece, Jane B. (2005). जीवविज्ञान (7th ed.). San Francisco: Pearson – Benjamin Cummings. pp. 186–191. ISBN 0-8053-7171-0.
  2. Raven, Peter H.; Ray F. Evert; Susan E. Eichhorn (2005). पौधों की जीवविज्ञान (7th ed.). New York: W.H. Freeman and Company Publishers. pp. 115–127. ISBN 0-7167-1007-2.
  3. Engel Gregory S., Calhoun Tessa R., Read Elizabeth L., Ahn Tae-Kyu, Mančal Tomáš, Cheng Yuan-Chung, Blankenship Robert E., Fleming Graham R. (2007). "प्रकाश संश्लेषक प्रणालियों में क्वांटम सुसंगतता के माध्यम से तरंग जैसी ऊर्जा हस्तांतरण के साक्ष्य". Nature. 446 (7137): 782–786. Bibcode:2007Natur.446..782E. doi:10.1038/nature05678. PMID 17429397. S2CID 13865546.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. R. Tempelaar; T. L. C. Jansen; J. Knoester (2014). "वाइब्रेशनल बीटिंग्स एफएमओ लाइट-हार्वेस्टिंग कॉम्प्लेक्स में इलेक्ट्रॉनिक सुसंगतता के साक्ष्य छुपाते हैं". J. Phys. Chem. B. 118 (45): 12865–12872. doi:10.1021/jp510074q. PMID 25321492.
  5. N. Christenson; H. F. Kauffmann; T. Pullerits; T. Mancal (2012). "प्रकाश-कटाई परिसरों में लंबे समय तक रहने वाले समन्वय की उत्पत्ति". J. Phys. Chem. B. 116 (25): 7449–7454. arXiv:1201.6325. doi:10.1021/jp304649c. PMC 3789255. PMID 22642682.
  6. E. Thyrhaug; K. Zidek; J. Dostal; D. Bina; D. Zigmantas (2016). "फेना में एक्साइटन संरचना और ऊर्जा हस्तांतरण-मैथ्यू-ओल्सन कॉम्प्लेक्स". J. Phys. Chem. Lett. 7 (9): 1653–1660. doi:10.1021/acs.jpclett.6b00534. PMID 27082631.
  7. A. G. Dijkstra; Y. Tanimura (2012). "प्रकाश-कटाई दक्षता और सुसंगत दोलनों में पर्यावरण समय के पैमाने की भूमिका". New J. Phys. 14 (7): 073027. Bibcode:2012NJPh...14g3027D. doi:10.1088/1367-2630/14/7/073027.
  8. D. M. Monahan; L. Whaley-Mayda; A. Ishizaki; G. R. Fleming (2015). "कमजोर युग्मित प्रकाश संश्लेषक परिसरों में 2डी इलेक्ट्रॉनिक स्पेक्ट्रा और अंतर-साइट सुसंगतता पर कमजोर कंपन-इलेक्ट्रॉनिक युग्मन का प्रभाव". J. Chem. Phys. 143 (6): 065101. Bibcode:2015JChPh.143f5101M. doi:10.1063/1.4928068. OSTI 1407273. PMID 26277167.
  9. "स्कोल्स ग्रुप रिसर्च". Archived from the original on 2018-09-30. Retrieved 2010-03-23.
  10. Gregory D. Scholes (7 January 2010), "Quantum-coherent electronic energy transfer: Did Nature think of it first?", Journal of Physical Chemistry Letters, 1 (1): 2–8, doi:10.1021/jz900062f
  11. Elisabetta Collini; Cathy Y. Wong; Krystyna E. Wilk; Paul M. G. Curmi; Paul Brumer; Gregory D. Scholes (4 February 2010), "Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature", Nature, 463 (7281): 644–7, Bibcode:2010Natur.463..644C, doi:10.1038/nature08811, PMID 20130647, S2CID 4369439
  12. Podsiadlowski 2004[citation not found]
  13. Guetta 2006[citation not found]
  14. Thorsett 1995[citation not found]
  15. Melott 2004[citation not found]
  16. Wanjek 2005[citation not found]
  17. Stanek 2006[citation not found]
  18. Ejzak 2007[citation not found]