फूरियर व्युत्क्रम प्रमेय: Difference between revisions

From Vigyanwiki
mNo edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
गणित की फूरियर व्युत्क्रम प्रमेय के अनुसार ,कई प्रकार के फलनों के लिए किसी फलन को उसके फूरियर रूपांतरण से पुनर्प्राप्त करना संभव है। सहज रूप से इसे इस कथन के रूप में देखा जा सकता है कि यदि हम तरंगों की सभी आवृत्ति और कला (तरंगों) की जानकारी के विषय में जानते हैं तो हम मूल तरंग का ठीक-ठीक पुनर्निर्माण कर सकते हैं।
गणित की फूरियर व्युत्क्रम प्रमेय के अनुसार, कई प्रकार के फलनों के लिए किसी फलन को उसके फूरियर रूपांतरण से पुनर्प्राप्त करना संभव है। सहज रूप से इसे इस कथन के रूप में देखा जा सकता है कि यदि हम तरंगों की सभी आवृत्ति और कला(तरंगों) की जानकारी के विषय में जानते हैं तो हम मूल तरंग का ठीक-ठीक पुनर्निर्माण कर सकते हैं।


प्रमेय कहता है कि यदि हमारे पास कोई फलन है <math>f:\R \to \Complex</math> कुछ प्रतिबन्धों को पूरा करते हैं, और हम फूरियर रूपांतरण के लिए अन्य सम्मेलनों का उपयोग करते हैं
प्रमेय कहता है कि यदि हमारे पास कोई फलन है <math>f:\R \to \Complex</math> कुछ प्रतिबन्धों को पूरा करते हैं, और हम फूरियर रूपांतरण के लिए अन्य सम्मेलनों का उपयोग करते हैं


:<math>(\mathcal{F}f)(\xi):=\int_{\mathbb{R}} e^{-2\pi iy\cdot\xi} \, f(y)\,dy,</math>
:<math>(\mathcal{F}f)(\xi):=\int_{\mathbb{R}} e^{-2\pi iy\cdot\xi} \, f(y)\,dy,</math>
Line 12: Line 12:
इस अंतिम समीकरण को फूरियर समाकलन प्रमेय कहा जाता है।
इस अंतिम समीकरण को फूरियर समाकलन प्रमेय कहा जाता है।


प्रमेय को बताने का दूसरा तरीका यह है कि अगर <math>R</math> फ्लिप परिचालक है यानी <math>(Rf)(x) := f(-x)</math>, फिर
प्रमेय को बताने का दूसरा तरीका यह है कि अगर <math>R</math> फ्लिप परिचालक है अर्थात <math>(Rf)(x) := f(-x)</math>, फिर


:<math>\mathcal{F}^{-1}=\mathcal{F}R=R\mathcal{F}.</math>
:<math>\mathcal{F}^{-1}=\mathcal{F}R=R\mathcal{F}.</math>
प्रमेय धारण करता है यदि दोनों <math>f</math> और इसके फूरियर रूपांतरण पूरी तरह से समाकलन फलन हैं (लेबेसेग एकीकरण में) और <math>f</math> बिंदु <math>x</math> पर सतत है, हालाँकि, अधिक सामान्य परिस्थितियों में भी फूरियर व्युत्क्रम प्रमेय के संस्करण लागू होते हैं। इन मामलों में उपरोक्त समाकल सामान्य अर्थों में अभिसरित नहीं हो सकते हैं।
प्रमेय धारण करता है यदि दोनों <math>f</math> और इसके फूरियर रूपांतरण पूरी तरह से समाकलन फलन हैं(लेबेसेग एकीकरण में) और <math>f</math> बिंदु <math>x</math> पर सतत है, हालाँकि, अधिक सामान्य परिस्थितियों में भी फूरियर व्युत्क्रम प्रमेय के संस्करण लागू होते हैं। इन मामलों में उपरोक्त समाकल सामान्य अर्थों में अभिसरित नहीं हो सकते हैं।


== कथन ==
== कथन ==
Line 26: Line 26:
'''व्युत्क्रम फूरियर रूपांतरण समाकलन के रूप में'''
'''व्युत्क्रम फूरियर रूपांतरण समाकलन के रूप में'''


फूरियर व्युत्क्रम प्रमेय का सबसे सामान्य कथन व्युत्क्रम परिवर्तन को एक समाकलन के रूप में बताना है। किसी भी समाकलन फलन के लिए <math>g</math> और सभी <math>x \in \mathbb R^n</math> समूह
फूरियर व्युत्क्रम प्रमेय का सबसे सामान्य कथन व्युत्क्रम परिवर्तन को एक समाकलन के रूप में बताना है। किसी भी समाकलन फलन के लिए <math>g</math> और सभी <math>x \in \mathbb R^n</math> समूह


:<math>\mathcal{F}^{-1}g(x):=\int_{\mathbb{R}^n} e^{2\pi ix\cdot\xi} \, g(\xi)\,d\xi.</math>
:<math>\mathcal{F}^{-1}g(x):=\int_{\mathbb{R}^n} e^{2\pi ix\cdot\xi} \, g(\xi)\,d\xi.</math>
Line 55: Line 55:




=== द्वी पक्ष व्युत्क्रम ===
=== द्वि-पक्षीय व्युत्क्रम ===


ऊपर वर्णित फूरियर व्युत्क्रम प्रमेय का सामान्य रूप, इस प्रकार का है,
ऊपर वर्णित फूरियर व्युत्क्रम प्रमेय का सामान्य रूप, इस प्रकार का है,
Line 63: Line 63:


:<math>\mathcal{F}(\mathcal{F}^{-1}f)(\xi) = f(\xi).</math>
:<math>\mathcal{F}(\mathcal{F}^{-1}f)(\xi) = f(\xi).</math>
तब से <math>\mathcal{F}^{-1}</math> के समान है <math>\mathcal{F}</math>, यह फूरियर व्युत्क्रम प्रमेय (बदलते चर) से बहुत आसानी से अनुसरण करता है <math>\zeta := -\zeta</math>):
तब से <math>\mathcal{F}^{-1}</math> के समान है <math>\mathcal{F}</math>, यह फूरियर व्युत्क्रम प्रमेय(बदलते चर) से बहुत आसानी से अनुसरण करता है <math>\zeta := -\zeta</math>):


:<math>\begin{align}
:<math>\begin{align}
Line 71: Line 71:
  & =\mathcal{F}(\mathcal{F}^{-1}f)(x).
  & =\mathcal{F}(\mathcal{F}^{-1}f)(x).
\end{align}</math>
\end{align}</math>
वैकल्पिक रूप से, इसे <math>\mathcal{F}^{-1}f</math> और फ्लिप परिचालक के मध्य संबंध से देखा जा सकता है और साथ ही साथ फलन संरचना की सहयोगीता के रूप में भी देखा जा सकता है इस प्रकार, चूंकि
वैकल्पिक रूप से, इसे <math>\mathcal{F}^{-1}f</math> और फ्लिप परिचालक के मध्य संबंध से देखा जा सकता है और साथ ही साथ फलन संरचना की सहयोगिता के रूप में भी देखा जा सकता है इस प्रकार, चूंकि


:<math>f = \mathcal{F}^{-1}(\mathcal{F}f) = \mathcal{F}R\mathcal{F}f = \mathcal{F} (\mathcal{F}^{-1}f).</math>
:<math>f = \mathcal{F}^{-1}(\mathcal{F}f) = \mathcal{F}R\mathcal{F}f = \mathcal{F} (\mathcal{F}^{-1}f).</math>




== फलन पर प्रतिबन्धें ==
== फलन पर प्रतिबन्ध ==


जब भौतिकी और इंजीनियरिंग में उपयोग किया जाता है, तो फूरियर व्युत्क्रम प्रमेय सदैव इस धारणा के आधार पर प्रयोग किया जाता है कि सब कुछ भली प्रकार से व्यवहार करता है। गणित में इस तरह के अनुमानित तर्कों की अनुमति नहीं है, और फूरियर व्युत्क्रम प्रमेय में एक स्पष्ट विनिर्देश सम्मिलित है कि किस वर्ग के फलनों को अनुमति दी जा रही है। हालांकि, फूरियर व्युत्क्रम प्रमेय के इतने सारे रूपों पर विचार करने के लिए फलनों का कोई सर्वश्रेष्ठ वर्ग मौजूद नहीं है, यद्यपि संगत निष्कर्ष के साथ।
जब भौतिकी और इंजीनियरिंग में उपयोग किया जाता है, तो फूरियर व्युत्क्रम प्रमेय सदैव इस धारणा के आधार पर प्रयोग किया जाता है कि सब कुछ भली प्रकार से व्यवहार करता है। गणित में इस तरह के अनुमानित तर्कों की अनुमति नहीं है, और फूरियर व्युत्क्रम प्रमेय में एक स्पष्ट विनिर्देश सम्मिलित है कि किस वर्ग के फलनों को अनुमति दी जा रही है। हालांकि, फूरियर व्युत्क्रम प्रमेय के इतने सारे रूपों पर विचार करने के लिए फलनों का कोई सर्वश्रेष्ठ वर्ग मौजूद नहीं है, यद्यपि संगत निष्कर्ष के साथ।


=== श्वार्ट्ज फलन ===
=== श्वार्ट्ज फलन ===


फूरियर व्युत्क्रम प्रमेय सभी श्वार्ट्ज फलनों के लिए मान्य है (सामान्य रूप से बताया जाये तो, सतत फलन जो जल्दी से क्षय हो जाते हैं और जिनके सभी अवकलन जल्दी से क्षय हो जाते हैं)। इस स्थिति का लाभ यह है कि यह फलन के विषय में एक प्राथमिक प्रत्यक्ष कथन है (इसके फूरियर रूपांतरण पर एक प्रतिबन्ध लगाने के विपरीत), और समाकलन जो फूरियर रूपांतरण और इसके व्युत्क्रम को परिभाषित करता है, बिल्कुल पूर्णांक हैं। प्रमेय के इस संस्करण का उपयोग संस्कारित वितरण के लिए फूरियर व्युत्क्रम प्रमेय के प्रमाण में किया जाता है (नीचे देखें)।
फूरियर व्युत्क्रम प्रमेय सभी श्वार्ट्ज फलनों के लिए मान्य है(सामान्य रूप से बताया जाये तो, सतत फलन जो जल्दी से क्षय हो जाते हैं और जिनके सभी अवकलन जल्दी से क्षय हो जाते हैं)। इस स्थिति का लाभ यह है कि यह फलन के विषय में एक प्राथमिक प्रत्यक्ष कथन है(इसके फूरियर रूपांतरण पर एक प्रतिबन्ध लगाने के विपरीत), और समाकलन जो फूरियर रूपांतरण और इसके व्युत्क्रम को परिभाषित करता है, बिल्कुल पूर्णांक हैं। प्रमेय के इस संस्करण का उपयोग संस्कारित वितरण के लिए फूरियर व्युत्क्रम प्रमेय के प्रमाण में किया जाता है(नीचे देखें)।


=== पूर्णांक फूरियर रूपांतरण के साथ एकीकृत फलन ===
=== पूर्णांक फूरियर रूपांतरण के साथ एकीकृत फलन ===


फूरियर व्युत्क्रम प्रमेय उन सभी सतत फलनों के लिए है जो बिल्कुल पूर्णांक हैं (अर्थात <math>L^1(\mathbb R^n)</math>) बिल्कुल पूर्णांक फूरियर रूपांतरण के साथ। इसमें श्वार्ट्ज के सभी फलन सम्मिलित हैं, इसलिए यह प्रमेय पूर्व में लिखी प्रमेय से अधिक प्रबल रूप है। यह प्रतिबन्ध वही है जो उपरोक्त दिए कथन में प्रयोग की गई है।
फूरियर व्युत्क्रम प्रमेय उन सभी सतत फलनों के लिए है जो बिल्कुल पूर्णांक हैं(अर्थात <math>L^1(\mathbb R^n)</math>) बिल्कुल पूर्णांक फूरियर रूपांतरण के साथ। इसमें श्वार्ट्ज के सभी फलन सम्मिलित हैं, इसलिए यह प्रमेय पूर्व में लिखी प्रमेय से अधिक प्रबल रूप है। यह प्रतिबन्ध वही है जो उपरोक्त दिए कथन में प्रयोग की गई है।


एक सामान्य संस्करण उस स्थिति को त्यागना है कि फलन <math>f </math> सतत हो लेकिन फिर भी आवश्यकता है कि यह और इसका फूरियर रूपांतरण पूरी तरह से एकीकृत हो। फिर <math>f = g</math> लगभग हर जगह जहां {{math|''g''}} एक सतत फलन है, और <math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=g(x)</math> प्रत्येक के लिए <math>x \in \mathbb R^n</math>.
एक सामान्य संस्करण उस स्थिति को त्यागना है कि फलन <math>f </math> सतत हो लेकिन फिर भी आवश्यकता है कि यह और इसका फूरियर रूपांतरण पूरी तरह से एकीकृत हो। फिर <math>f = g</math> लगभग हर जगह जहां {{math|''g''}} एक सतत फलन है, और <math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=g(x)</math> प्रत्येक के लिए <math>x \in \mathbb R^n</math>.


=== एक विमीय समाकलनीय फलन ===
=== एक विमीय समाकलनीय फलन ===


; खंडो में सुचारु; एक विमीय
; खंडो में सुचारु; एक विमीय
यदि फलन एक विमा में पूरी तरह से समाकलनीय है (अर्थात <math> f \in L^1(\mathbb R)</math>) और खंडो के र्रोप में सुचारु है तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण लागू होता है। इस सम्बन्ध को हम परिभाषित करते हैं
यदि फलन एक विमा में पूरी तरह से समाकलनीय है(अर्थात <math> f \in L^1(\mathbb R)</math>) और खंडो के र्रोप में सुचारु है तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण लागू होता है। इस सम्बन्ध को हम परिभाषित करते हैं


:<math>\mathcal{F}^{-1}g(x):=\lim_{R\to\infty}\int_{-R}^R e^{2\pi ix\xi}\,g(\xi)\,d\xi.</math>
:<math>\mathcal{F}^{-1}g(x):=\lim_{R\to\infty}\int_{-R}^R e^{2\pi ix\xi}\,g(\xi)\,d\xi.</math>
Line 100: Line 100:
अर्थात। <math>\mathcal{F}^{-1}(\mathcal{F}f)(x)</math> की बाएँ और दाएँ सीमा औसतन बराबर है <math> f</math> पर <math> x</math>. जिन बिंदुओं पर <math> f</math> सतत है यह केवल <math> f(x)</math> के बराबर है .
अर्थात। <math>\mathcal{F}^{-1}(\mathcal{F}f)(x)</math> की बाएँ और दाएँ सीमा औसतन बराबर है <math> f</math> पर <math> x</math>. जिन बिंदुओं पर <math> f</math> सतत है यह केवल <math> f(x)</math> के बराबर है .


प्रमेय के इस रूप का एक उच्च-विमीय अनुरूप भी है, लेकिन फोलैंड (1992) के अनुसार यह उत्कृष्ट है और बहुत उपयोगी नहीं है।
प्रमेय के इस रूप का एक उच्च-विमीय अनुरूप भी है, लेकिन फोलैंड(1992) के अनुसार यह उत्कृष्ट है और बहुत उपयोगी नहीं है।


; खंडो में सतत; एक विमीय
=== खंडो में सतत; एक विमीय ===
 
यदि फलन एक विमा में पूरी तरह से पूर्णांक है(अर्थात <math> f \in L^1(\mathbb R)</math>) लेकिन केवल खंडो में सतत है तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण अभी भी बना रहता है । इस सम्बन्ध में व्युत्क्रम फूरियर रूपांतरण में समाकलन को एक तेज प्राचीर फलन के बजाय एक सुचारु फलन की सहायता से परिभाषित किया गया है; विशेष रूप से हम परिभाषित करते हैं
यदि फलन एक विमा में पूरी तरह से पूर्णांक है (अर्थात <math> f \in L^1(\mathbb R)</math>) लेकिन केवल खंडो में सतत है तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण अभी भी बना रहता है । इस सम्बन्ध में व्युत्क्रम फूरियर रूपांतरण में समाकलन को एक तेज कट ऑफ फलन के बजाय एक चिकनी की सहायता से परिभाषित किया गया है; विशेष रूप से हम परिभाषित करते हैं


:<math>\mathcal{F}^{-1}g(x):=\lim_{R\to\infty}\int_{\mathbb{R}} \varphi(\xi/R)\,e^{2\pi ix\xi}\,g(\xi)\,d\xi,\qquad\varphi(\xi):=e^{-\xi^2}.</math>
:<math>\mathcal{F}^{-1}g(x):=\lim_{R\to\infty}\int_{\mathbb{R}} \varphi(\xi/R)\,e^{2\pi ix\xi}\,g(\xi)\,d\xi,\qquad\varphi(\xi):=e^{-\xi^2}.</math>
प्रमेय का निष्कर्ष तब वही होता है जैसा ऊपर चर्चा की गई टुकड़े-टुकड़े चिकने सम्बन्ध के लिए होता है।
प्रमेय का निष्कर्ष तब वही होता है जैसा ऊपर चर्चा की गई टुकड़े-टुकड़े सुचारु सम्बन्ध के लिए होता है।
 
; सतत; किसी भी संख्या में विमा


यदि <math> f</math> सतत और पूर्णतः समाकलनीय है <math>\mathbb R^n</math> तब फूरियर व्युत्क्रम प्रमेय अभी भी तब तक कायम रहता है जब तक कि हम फिर से व्युत्क्रम परिवर्तन को एक चिकने कट ऑफ फंक्शन के साथ परिभाषित करते हैं अर्थात
=== सतत; किसी भी संख्या में विमा ===
यदि <math> f</math> सतत और पूर्णतः समाकलनीय है <math>\mathbb R^n</math> तब फूरियर व्युत्क्रम प्रमेय अभी भी तब तक कायम रहता है जब तक कि हम फिर से व्युत्क्रम परिवर्तन को एक सुचारु प्राचीर फलन के साथ परिभाषित करते हैं अर्थात


:<math>\mathcal{F}^{-1}g(x):=\lim_{R\to\infty}\int_{\mathbb{R}^n} \varphi(\xi/R)\,e^{2\pi ix\cdot\xi}\,g(\xi)\,d\xi,\qquad\varphi(\xi):=e^{-\vert\xi\vert^2}.</math>
:<math>\mathcal{F}^{-1}g(x):=\lim_{R\to\infty}\int_{\mathbb{R}^n} \varphi(\xi/R)\,e^{2\pi ix\cdot\xi}\,g(\xi)\,d\xi,\qquad\varphi(\xi):=e^{-\vert\xi\vert^2}.</math>
निष्कर्ष अब बस इतना ही है कि सभी के लिए <math>x \in \mathbb R^n</math>
निष्कर्ष अब बस इतना ही है कि सभी के लिए <math>x \in \mathbb R^n</math>
:<math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=f(x).</math>
:<math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=f(x).</math>
; कोई नियमितता की स्थिति नहीं; किसी भी संख्या में विमा


यदि हम (टुकड़ेवार) सततता के विषय में सभी धारणाओं को छोड़ दें <math>f</math> और मान लें कि यह पूरी तरह से पूर्णांक है, तो प्रमेय का एक संस्करण अभी भी कायम है। व्युत्क्रम परिवर्तन को फिर से चिकनी कट ऑफ के साथ परिभाषित किया गया है, लेकिन इस निष्कर्ष के साथ कि
=== कोई नियमितता की स्थिति नहीं; कोई भी विमीय संख्या ===
यदि हम(टुकड़ेवार) <math>f</math> की सततता के विषय में सभी धारणाओं को छोड़ दें,और मान लें कि यह पूरी तरह से पूर्णांक है, तो प्रमेय का एक संस्करण अभी भी कायम है। व्युत्क्रम परिवर्तन को फिर से सुचारु प्राचीर के साथ परिभाषित किया गया है, लेकिन इस निष्कर्ष के साथ कि


:<math>\mathcal{F}^{-1}(\mathcal{F}f)(x) = f(x)</math> लगभग हर के लिए <math>x \in \mathbb R^n.</math> <ref>{{Cite news|url=https://yannisparissis.wordpress.com/2011/03/10/dmat0101-notes-3-the-fourier-transform-on-l1|title=DMat0101, नोट्स 3: फूरियर L^1 पर रूपांतरित होता है|date=2011-03-10|work=I Woke Up In A Strange Place|access-date=2018-02-12|language=en-US}}</ref>
:<math>\mathcal{F}^{-1}(\mathcal{F}f)(x) = f(x)</math> लगभग हर के लिए <math>x \in \mathbb R^n.</math> <ref>{{Cite news|url=https://yannisparissis.wordpress.com/2011/03/10/dmat0101-notes-3-the-fourier-transform-on-l1|title=DMat0101, नोट्स 3: फूरियर L^1 पर रूपांतरित होता है|date=2011-03-10|work=I Woke Up In A Strange Place|access-date=2018-02-12|language=en-US}}</ref>




=== वर्ग पूर्णांक फलन ===
=== वर्ग पूर्णांक फलन ===


इस सम्बन्ध में फूरियर रूपांतरण को सीधे एक समाकलन के रूप में परिभाषित नहीं किया जा सकता है क्योंकि यह बिल्कुल अभिसरण नहीं हो सकता है, इसलिए इसे घनत्व तर्क द्वारा परिभाषित किया गया है (Fourier_transform#On_Lp_spaces देखें)। उदाहरण के लिए, लगाना
इस सम्बन्ध में फूरियर रूपांतरण को सीधे एक समाकलन के रूप में परिभाषित नहीं किया जा सकता है क्योंकि यह बिल्कुल अभिसरण नहीं हो सकता है, इसलिए इसे घनत्व तर्क द्वारा परिभाषित किया गया है। उदाहरण के लिए,
:<math>g_k(\xi):=\int_{\{y\in\mathbb{R}^n:\left\vert y\right\vert\leq k\}} e^{-2\pi iy\cdot\xi} \, f(y)\,dy,\qquad k\in\mathbb{N},</math>
:<math>g_k(\xi):=\int_{\{y\in\mathbb{R}^n:\left\vert y\right\vert\leq k\}} e^{-2\pi iy\cdot\xi} \, f(y)\,dy,\qquad k\in\mathbb{N},</math>
हम सेट कर सकते हैं <math>\textstyle\mathcal{F}f := \lim_{k\to\infty}g_k</math> जहां सीमा में लिया जाता है <math>L^2</math>-आदर्श। व्युत्क्रम परिवर्तन को घनत्व द्वारा उसी तरह परिभाषित किया जा सकता है या इसे फूरियर रूपांतरण और फ्लिप परिचालक के संदर्भ में परिभाषित किया जा सकता है। हमारे पास तब है
हम सेट कर सकते हैं <math>\textstyle\mathcal{F}f := \lim_{k\to\infty}g_k</math> जहां सीमा में लिया जाता है <math>L^2</math>-आदर्श। व्युत्क्रम परिवर्तन को घनत्व द्वारा उसी तरह परिभाषित किया जा सकता है या इसे फूरियर रूपांतरण और फ्लिप परिचालक के संदर्भ में परिभाषित किया जा सकता है। हमारे पास तब है


:<math>f(x)=\mathcal{F}(\mathcal{F}^{-1}f)(x)=\mathcal{F}^{-1}(\mathcal{F}f)(x)</math> एलपी अंतरिक्ष में। एक विमा (और केवल एक विमा) में, यह भी दिखाया जा सकता है कि यह लगभग हर एक के लिए अभिसरण करता है {{math|''x''∈ℝ}}- यह कार्लसन का प्रमेय है, लेकिन माध्य वर्ग मानदंड में अभिसरण की तुलना में सिद्ध करना बहुत कठिन है।
:<math>f(x)=\mathcal{F}(\mathcal{F}^{-1}f)(x)=\mathcal{F}^{-1}(\mathcal{F}f)(x)</math> एलपी अंतरिक्ष में। एक विमा(और केवल एक विमा) में, यह भी दिखाया जा सकता है कि यह लगभग हर एक के लिए अभिसरण करता है {{math|''x''∈ℝ}}- यह कार्लसन का प्रमेय है, लेकिन माध्य वर्ग मानदंड में अभिसरण की तुलना में सिद्ध करना बहुत कठिन है।


=== टेम्पर्ड वितरण ===
=== टेम्पर्ड वितरण ===


फूरियर रूपांतरण फूरियर रूपांतरण # टेम्पर्ड_डिस्ट्रीब्यूशन <math>\mathcal{S}'(\mathbb{R}^n)</math> श्वार्ट्ज फलनों के स्थान पर फूरियर रूपांतरण के द्वैत द्वारा। विशेष तौर पर <math>f\in\mathcal{S}'(\mathbb{R}^n)</math> और सभी परीक्षण फलनों के लिए <math>\varphi\in\mathcal S(\mathbb{R}^n)</math> हमलोग तैयार हैं
फूरियर रूपांतरण टेम्पर्ड वितरण <math>\mathcal{S}'(\mathbb{R}^n)</math> के पदों में श्वार्ट्ज फलनों के स्थान पर फूरियर रूपांतरण के द्वैत द्वारा परिभाषित किया जा सकता है । विशेष तौर पर <math>f\in\mathcal{S}'(\mathbb{R}^n)</math> और सभी परीक्षण फलनों के लिए <math>\varphi\in\mathcal S(\mathbb{R}^n)</math> हमलोग तैयार हैं
:<math>\langle \mathcal{F}f,\varphi\rangle := \langle f,\mathcal{F}\varphi\rangle,</math>
:<math>\langle \mathcal{F}f,\varphi\rangle := \langle f,\mathcal{F}\varphi\rangle,</math>
कहाँ पे <math>\mathcal{F}\varphi</math> समाकलन सूत्र का उपयोग करके परिभाषित किया गया है। यदि <math>f \in L^1(\mathbb R^n) \cap L^2(\mathbb R^n)</math> तो यह सामान्य परिभाषा से सहमत है। हम व्युत्क्रम परिवर्तन को परिभाषित कर सकते हैं <math>\mathcal{F}^{-1}\colon\mathcal{S}'(\mathbb{R}^n)\to\mathcal{S}'(\mathbb{R}^n)</math>, या तो उसी तरह श्वार्ट्ज फलनों पर व्युत्क्रम परिवर्तन से द्वैत द्वारा, या इसे फ्लिप परिचालक के संदर्भ में परिभाषित करके (जहां फ्लिप परिचालक द्वैत द्वारा परिभाषित किया गया है)। हमारे पास तब है
कहाँ पे <math>\mathcal{F}\varphi</math> समाकलन सूत्र का उपयोग करके परिभाषित किया गया है। यदि <math>f \in L^1(\mathbb R^n) \cap L^2(\mathbb R^n)</math> तो यह सामान्य परिभाषा से सहमत है। हम व्युत्क्रम परिवर्तन को परिभाषित कर सकते हैं <math>\mathcal{F}^{-1}\colon\mathcal{S}'(\mathbb{R}^n)\to\mathcal{S}'(\mathbb{R}^n)</math>, या तो उसी तरह श्वार्ट्ज फलनों पर व्युत्क्रम परिवर्तन से द्वैत द्वारा, या इसे फ्लिप परिचालक के संदर्भ में परिभाषित करके(जहां फ्लिप परिचालक द्वैत द्वारा परिभाषित किया गया है)। हमारे पास तब है


:<math>\mathcal{F}\mathcal{F}^{-1} = \mathcal{F}^{-1}\mathcal{F} = \operatorname{Id}_{\mathcal{S}'(\mathbb{R}^n)}.</math>
:<math>\mathcal{F}\mathcal{F}^{-1} = \mathcal{F}^{-1}\mathcal{F} = \operatorname{Id}_{\mathcal{S}'(\mathbb{R}^n)}.</math>
Line 142: Line 140:
== फूरियर श्रृंखला से संबंध ==
== फूरियर श्रृंखला से संबंध ==


{{hatnote|When considering the Fourier series of a function it is conventional to rescale it so that it acts on <math>[0, 2 \pi]</math> (or is <math>2 \pi</math>-periodic). In this section we instead use the somewhat unusual convention taking <math>f</math> to act on <math>[0, 1]</math>, since that matches the convention of the Fourier transform used here.}}
{{hatnote|किसी फलन की फूरियर श्रृंखला पर विचार करते समय इसे पुनर्विक्रय करना पारंपरिक है ताकि यह  [0, 2 \π] (या 2π आवधिक) पर कार्य करे। इसके बजाय इस खंड में हम f को [0, 1] पर कार्य करने के लिए कुछ असामान्य सम्मेलन का उपयोग करते हैं, क्योंकि यह यहां उपयोग किए गए फूरियर रूपांतरण के सम्मेलन से मेल खाता है।}}
फूरियर व्युत्क्रम प्रमेय फूरियर श्रृंखला के अभिसरण के अनुरूप है। हमारे पास फूरियर रूपांतरण केस में है
 
फूरियर व्युत्क्रम प्रमेय फूरियर श्रृंखला के अभिसरण के अनुरूप है। हमारे पास फूरियर रूपांतरण के सम्बन्ध में,
:<math>f\colon\mathbb{R}^n\to\mathbb{C},\quad\hat f\colon\mathbb{R}^n\to\mathbb{C},</math>
:<math>f\colon\mathbb{R}^n\to\mathbb{C},\quad\hat f\colon\mathbb{R}^n\to\mathbb{C},</math>
:<math>\hat f(\xi):=\int_{\mathbb{R}^n} e^{-2\pi iy\cdot\xi} \, f(y)\,dy,</math>
:<math>\hat f(\xi):=\int_{\mathbb{R}^n} e^{-2\pi iy\cdot\xi} \, f(y)\,dy,</math>
:<math>f(x)=\int_{\mathbb{R}^n} e^{2\pi ix\cdot\xi} \, \hat f(\xi)\,d\xi.</math>
:<math>f(x)=\int_{\mathbb{R}^n} e^{2\pi ix\cdot\xi} \, \hat f(\xi)\,d\xi.</math>
फूरियर श्रृंखला के सम्बन्ध में हमारे पास इसके बजाय है
फूरियर श्रृंखला के सम्बन्ध में हमारे पास इसके अतिरिक्त है
:<math>f\colon[0,1]^n\to\mathbb{C},\quad\hat f\colon\mathbb{Z}^n\to\mathbb{C},</math>
:<math>f\colon[0,1]^n\to\mathbb{C},\quad\hat f\colon\mathbb{Z}^n\to\mathbb{C},</math>
:<math>\hat f(k):=\int_{[0,1]^n} e^{-2\pi iy\cdot k} \, f(y)\,dy,</math>
:<math>\hat f(k):=\int_{[0,1]^n} e^{-2\pi iy\cdot k} \, f(y)\,dy,</math>
Line 155: Line 154:
== अनुप्रयोग ==
== अनुप्रयोग ==


[[File:Commutative diagram illustrating problem solving via the Fourier transform.svg|thumb|400px|फूरियर रूपांतरण लागू होने पर कुछ समस्याएं, जैसे कुछ अंतर समीकरण, हल करना आसान हो जाता है। उस सम्बन्ध में व्युत्क्रमफूरियर रूपांतरण का उपयोग करके मूल समस्या का समाधान पुनर्प्राप्त किया जाता है।]]फूरियर रूपांतरण#अनुप्रयोगों में फूरियर व्युत्क्रमप्रमेय सदैव एक महत्वपूर्ण भूमिका निभाता है। कई स्थितियों में मूल रणनीति फूरियर रूपांतरण को लागू करना है, कुछ संचालन या सरलीकरण करना है, और फिर व्युत्क्रमफूरियर रूपांतरण लागू करना है।
[[File:Commutative diagram illustrating problem solving via the Fourier transform.svg|thumb|400px|फूरियर रूपांतरण लागू होने पर कुछ समस्याएं, जैसे कुछ अंतर समीकरण, हल करना आसान हो जाता है। उस सम्बन्ध में व्युत्क्रमफूरियर रूपांतरण का उपयोग करके मूल समस्या का समाधान पुनर्प्राप्त किया जाता है।]]फूरियर रूपांतरण,अनुप्रयोगों में फूरियर व्युत्क्रमप्रमेय सदैव एक महत्वपूर्ण भूमिका निभाता है। कई स्थितियों में मूल रणनीति फूरियर रूपांतरण को लागू करना है, कुछ संचालन या सरलीकरण करना है, और फिर व्युत्क्रमफूरियर रूपांतरण लागू करना है।


अधिक संक्षेप में, फूरियर व्युत्क्रमप्रमेय एक परिचालक (गणित) के रूप में फूरियर रूपांतरण के विषय में एक बयान है (फूरियर रूपांतरण#Fourier_transform_on_फलन_spaces देखें)। उदाहरण के लिए, फूरियर व्युत्क्रम प्रमेय पर <math>f \in L^2(\mathbb R^n)</math> दिखाता है कि फूरियर रूपांतरण एक एकात्मक संकारक है <math>L^2(\mathbb R^n)</math>.
अधिक संक्षेप में, फूरियर व्युत्क्रमप्रमेय एक परिचालक(गणित) के रूप में फूरियर रूपांतरण के विषय में एक प्रमाण है( फलन क्षेत्र में फूरियर रूपांतरण देखें)। उदाहरण के लिए, फूरियर व्युत्क्रम प्रमेय पर <math>f \in L^2(\mathbb R^n)</math> दिखाता है कि फूरियर रूपांतरण एक एकात्मक संकारक है <math>L^2(\mathbb R^n)</math>.


== व्युत्क्रमपरिवर्तन के गुण ==
== व्युत्क्रम परिवर्तन के गुण ==


व्युत्क्रमफूरियर रूपांतरण मूल फूरियर रूपांतरण के समान ही है: जैसा कि ऊपर चर्चा की गई है, यह केवल फ्लिप परिचालक के आवेदन में भिन्न है। इस कारण से फूरियर रूपांतरण #Properties_of_the_Fourier_transform व्युत्क्रम फूरियर रूपांतरण के लिए होल्ड करता है, जैसे कि कनवल्शन प्रमेय और रीमैन-लेबेस्गु लेम्मा।
व्युत्क्रमफूरियर रूपांतरण मूल फूरियर रूपांतरण के समान ही है: जैसा कि ऊपर बताया गया है, यह केवल फ्लिप परिचालक के आवेदन में भिन्न है। फूरियर रूपांतरण के गुण के कारण यह व्युत्क्रम फूरियर रूपांतरण के लिए लागू होता है, जैसे कि कनवल्शन प्रमेय और रीमैन-लेबेस्गु लेम्मा।


फूरियर रूपांतरण # महत्वपूर्ण फूरियर रूपांतरणों की तालिकाएं आसानी से व्युत्क्रमफूरियर रूपांतरण के लिए फ्लिप परिचालक के साथ लुक-अप फलन की रचना करके उपयोग की जा सकती हैं। उदाहरण के लिए, रेक्ट फंक्शन के फूरियर रूपांतरण को देखते हुए हम देखते हैं
फूरियर रूपांतरण तालिकाएं,महत्वपूर्ण फूरियर रूपांतरणों को आसानी से व्युत्क्रम फूरियर रूपांतरण के लिए फ्लिप परिचालक के साथ लुक-अप फलन की रचना करके उपयोग की जा सकती हैं। उदाहरण के लिए, रेक्ट फलन के फूरियर रूपांतरण को देखते हुए हम देखते हैं
<math display="block">f(x) = \operatorname{rect}(a x) \quad \Rightarrow \quad (\mathcal{F}f)(\xi)=\frac{1}{|a|} \operatorname{sinc}\left(\frac{\xi}{a}\right),</math>
<math display="block">f(x) = \operatorname{rect}(a x) \quad \Rightarrow \quad (\mathcal{F}f)(\xi)=\frac{1}{|a|} \operatorname{sinc}\left(\frac{\xi}{a}\right),</math>
तो व्युत्क्रमपरिवर्तन के लिए संगत तथ्य है
तो व्युत्क्रम परिवर्तन के लिए संगत तथ्य है
<math display="block">g(\xi)=\operatorname{rect}(a \xi) \quad \Rightarrow \quad (\mathcal{F}^{-1}g)(x)=\frac{1}{|a|} \operatorname{sinc}\left(-\frac{x}{a}\right) .</math>
<math display="block">g(\xi)=\operatorname{rect}(a \xi) \quad \Rightarrow \quad (\mathcal{F}^{-1}g)(x)=\frac{1}{|a|} \operatorname{sinc}\left(-\frac{x}{a}\right) .</math>


Line 171: Line 170:
== प्रमाण ==
== प्रमाण ==


सबूत दिए गए कुछ तथ्यों का उपयोग करता है <math>f(y)</math> तथा <math>\mathcal{F}f (\xi) = \int_{\mathbb{R}^n} e^{-2\pi i y\cdot\xi} f(y)\,dy</math>.
प्रमाण दिए गए कुछ तथ्यों का उपयोग करता है <math>f(y)</math> तथा <math>\mathcal{F}f (\xi) = \int_{\mathbb{R}^n} e^{-2\pi i y\cdot\xi} f(y)\,dy</math>.


# यदि <math>x \in \mathbb R^n</math> तथा <math>g(\xi) = e^{2 \pi \mathrm{i}x \cdot \xi} \psi(\xi)</math>, फिर <math>(\mathcal{F}g)(y) = (\mathcal{F}\psi)(y - x)</math>.
# यदि <math>x \in \mathbb R^n</math> तथा <math>g(\xi) = e^{2 \pi \mathrm{i}x \cdot \xi} \psi(\xi)</math>, फिर <math>(\mathcal{F}g)(y) = (\mathcal{F}\psi)(y - x)</math>.
# यदि <math>\varepsilon \in \mathbb R</math> तथा <math>\psi(\xi) = \varphi(\varepsilon\xi)</math>, फिर <math>(\mathcal{F}\psi)(y) = (\mathcal{F}\varphi)(y/\varepsilon)/|\varepsilon|</math>.
# यदि <math>\varepsilon \in \mathbb R</math> तथा <math>\psi(\xi) = \varphi(\varepsilon\xi)</math>, फिर <math>(\mathcal{F}\psi)(y) = (\mathcal{F}\varphi)(y/\varepsilon)/|\varepsilon|</math>.
# के लिये <math>f, g \in L^1(\mathbb R^n)</math>, फुबिनी का सिद्धांत इसे पूरा करता है <math>\textstyle\int g(\xi) \cdot (\mathcal{F}f)(\xi)\,d\xi = \int(\mathcal{F}g)(y) \cdot f(y)\,dy</math>.
# <math>f, g \in L^1(\mathbb R^n)</math> के लिये, फुबिनी का सिद्धांत इसे पूरा करता है <math>\textstyle\int g(\xi) \cdot (\mathcal{F}f)(\xi)\,d\xi = \int(\mathcal{F}g)(y) \cdot f(y)\,dy</math>.
# परिभाषित करना <math>\varphi(\xi) = e^{-\pi \vert \xi \vert^2}</math>; फिर <math>(\mathcal{F}\varphi)(y) = \varphi(y)</math>.
# परिभाषित किया गया है कि जब<math>\varphi(\xi) = e^{-\pi \vert \xi \vert^2}</math>; तो फिर <math>(\mathcal{F}\varphi)(y) = \varphi(y)</math>.
# परिभाषित करना <math>\varphi_\varepsilon(y) = \varphi(y/\varepsilon)/\varepsilon^n</math>. फिर साथ <math>\ast</math> कनवल्शन को दर्शाते हुए, <math>\varphi_\varepsilon</math> एक नवजात डेल्टा फलन है: किसी भी सतत के लिए <math>f \in L^1(\mathbb R^n)</math> और बिंदु <math>x \in \mathbb R^n</math>, <math>\lim_{\varepsilon \to 0} (\varphi_\varepsilon \ast f)(x) = f(x)</math> (जहां अभिसरण बिंदुवार है)।
# परिभाषित किया गया है कि <math>\varphi_\varepsilon(y) = \varphi(y/\varepsilon)/\varepsilon^n</math>. फिर साथ <math>\ast</math> कनवल्शन को दर्शाते हुए, <math>\varphi_\varepsilon</math> एक नवजात डेल्टा फलन है: किसी भी सतत के लिए <math>f \in L^1(\mathbb R^n)</math> और बिंदु <math>x \in \mathbb R^n</math>, <math>\lim_{\varepsilon \to 0} (\varphi_\varepsilon \ast f)(x) = f(x)</math>(जहां अभिसरण बिंदुवार है)।
चूंकि, धारणा से, <math>\mathcal{F}f\in L^1(\mathbb{R}^n)</math>, तो यह वर्चस्व वाले अभिसरण प्रमेय का अनुसरण करता है
चूंकि, धारणा से, <math>\mathcal{F}f\in L^1(\mathbb{R}^n)</math>, तो यह प्रमुख अभिसरण प्रमेय का अनुसरण करता है


:<math>\int_{\mathbb{R}^n} e^{2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \lim_{\varepsilon \to 0}\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi.</math>
:<math>\int_{\mathbb{R}^n} e^{2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \lim_{\varepsilon \to 0}\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi.</math>
Line 186: Line 185:


:<math>\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \int_{\mathbb{R}^n} \frac{1}{\varepsilon^n}e^{-\frac{\pi}{\varepsilon^2}|x - y|^2} f(y)\,dy = (\varphi_\varepsilon * f)(x),</math>
:<math>\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \int_{\mathbb{R}^n} \frac{1}{\varepsilon^n}e^{-\frac{\pi}{\varepsilon^2}|x - y|^2} f(y)\,dy = (\varphi_\varepsilon * f)(x),</math>
का कनवल्शन <math>f</math> अनुमानित पहचान के साथ। लेकिन जबसे <math>f \in L^1(\mathbb R^n)</math>, तथ्य 5 कहता है
<math>f</math> का संवलन अनुमानित पहचान के साथ है। लेकिन जबसे <math>f \in L^1(\mathbb R^n)</math>, तथ्य 5 कहता है


:<math>\lim_{\varepsilon\to 0}(\varphi_{\varepsilon} * f) (x) = f(x).</math>
:<math>\lim_{\varepsilon\to 0}(\varphi_{\varepsilon} * f) (x) = f(x).</math>
Line 195: Line 194:


==टिप्पणियाँ==
==टिप्पणियाँ==
{{Reflist|group=note}}
एक परिचालक एक परिवर्तन है जो फलन को चित्रित करता है। फ्लिप परिचालक, फूरियर रूपांतरण, उलटा फूरियर रूपांतरण और पहचान परिवर्तन सभी परिचालकों के उदाहरण हैं।
 
 
 
==इस पेज में लापता आंतरिक लिंक की सूची==


==संदर्भ==
==संदर्भ==
Line 205: Line 200:
* {{cite book|last=Folland|first=G. B.|authorlink=Gerald Folland|year=1992|title=Fourier Analysis and its Applications|publisher=Wadsworth|location=Belmont, CA, USA|isbn=0-534-17094-3}}
* {{cite book|last=Folland|first=G. B.|authorlink=Gerald Folland|year=1992|title=Fourier Analysis and its Applications|publisher=Wadsworth|location=Belmont, CA, USA|isbn=0-534-17094-3}}
* {{cite book|last=Folland|first=G. B.|authorlink=Gerald Folland|year=1995|title=Introduction to Partial Differential Equations|edition=2nd|publisher=Princeton Univ. Press|location=Princeton, USA|isbn=978-0-691-04361-6}}
* {{cite book|last=Folland|first=G. B.|authorlink=Gerald Folland|year=1995|title=Introduction to Partial Differential Equations|edition=2nd|publisher=Princeton Univ. Press|location=Princeton, USA|isbn=978-0-691-04361-6}}
[[Category: सामान्यीकृत कार्य]]
[[Category:फूरियर विश्लेषण में प्रमेय]]




[[Category: Machine Translated Page]]
 
 
 
 
 
<references group="note" />
 
[[Category:All articles lacking in-text citations]]
[[Category:Articles lacking in-text citations from January 2013]]
[[Category:Articles with invalid date parameter in template]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 26/11/2022]]
[[Category:Created On 26/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Pages that use a deprecated format of the math tags]]
[[Category:फूरियर विश्लेषण में प्रमेय]]
[[Category:सामान्यीकृत कार्य]]

Latest revision as of 16:26, 19 October 2023

गणित की फूरियर व्युत्क्रम प्रमेय के अनुसार, कई प्रकार के फलनों के लिए किसी फलन को उसके फूरियर रूपांतरण से पुनर्प्राप्त करना संभव है। सहज रूप से इसे इस कथन के रूप में देखा जा सकता है कि यदि हम तरंगों की सभी आवृत्ति और कला(तरंगों) की जानकारी के विषय में जानते हैं तो हम मूल तरंग का ठीक-ठीक पुनर्निर्माण कर सकते हैं।

प्रमेय कहता है कि यदि हमारे पास कोई फलन है कुछ प्रतिबन्धों को पूरा करते हैं, और हम फूरियर रूपांतरण के लिए अन्य सम्मेलनों का उपयोग करते हैं

फिर

दूसरे शब्दों में, प्रमेय कहता है कि

इस अंतिम समीकरण को फूरियर समाकलन प्रमेय कहा जाता है।

प्रमेय को बताने का दूसरा तरीका यह है कि अगर फ्लिप परिचालक है अर्थात , फिर

प्रमेय धारण करता है यदि दोनों और इसके फूरियर रूपांतरण पूरी तरह से समाकलन फलन हैं(लेबेसेग एकीकरण में) और बिंदु पर सतत है, हालाँकि, अधिक सामान्य परिस्थितियों में भी फूरियर व्युत्क्रम प्रमेय के संस्करण लागू होते हैं। इन मामलों में उपरोक्त समाकल सामान्य अर्थों में अभिसरित नहीं हो सकते हैं।

कथन

इस खंड में हम मानते हैं एक समाकलन सतत फलन है। फूरियर रूपांतरण सम्मेलन का प्रयोग करें

इसके अलावा, हम मानते हैं कि फूरियर रूपांतरण भी पूर्णांक है।

व्युत्क्रम फूरियर रूपांतरण समाकलन के रूप में

फूरियर व्युत्क्रम प्रमेय का सबसे सामान्य कथन व्युत्क्रम परिवर्तन को एक समाकलन के रूप में बताना है। किसी भी समाकलन फलन के लिए और सभी समूह

फिर सभी के लिए अपने पास

फूरियर समाकलन प्रमेय

प्रमेय के रूप में पुनर्स्थापित किया जा सकता है

यदि f वास्तविक मूल्य है तो उपरोक्त के प्रत्येक पक्ष का वास्तविक भाग लेने से हम प्राप्त करते हैं

फ्लिप परिचालक के पदों में व्युत्क्रम रूपांतरण

किसी समारोह के लिए फ्लिप परिचालक को परिभाषित करें[note 1]

तब हम इसके अतिरिक्त परिभाषित कर सकते हैं

यह फूरियर रूपांतरण और फ्लिप परिचालक की परिभाषा से स्पष्ट है कि दोनों तथा की समाकलन परिभाषा से मेल खाता है , और विशेष रूप से एक दूसरे के बराबर हैं और संतुष्ट हैं .

तब से अपने पास तथा


द्वि-पक्षीय व्युत्क्रम

ऊपर वर्णित फूरियर व्युत्क्रम प्रमेय का सामान्य रूप, इस प्रकार का है,

दूसरे शब्दों में, फूरियर रूपांतरण के लिए एक बायां प्रतिलोम है। हालाँकि यह फूरियर रूपांतरण के लिए एक सही व्युत्क्रम भी है अर्थात

तब से के समान है , यह फूरियर व्युत्क्रम प्रमेय(बदलते चर) से बहुत आसानी से अनुसरण करता है ):

वैकल्पिक रूप से, इसे और फ्लिप परिचालक के मध्य संबंध से देखा जा सकता है और साथ ही साथ फलन संरचना की सहयोगिता के रूप में भी देखा जा सकता है इस प्रकार, चूंकि


फलन पर प्रतिबन्ध

जब भौतिकी और इंजीनियरिंग में उपयोग किया जाता है, तो फूरियर व्युत्क्रम प्रमेय सदैव इस धारणा के आधार पर प्रयोग किया जाता है कि सब कुछ भली प्रकार से व्यवहार करता है। गणित में इस तरह के अनुमानित तर्कों की अनुमति नहीं है, और फूरियर व्युत्क्रम प्रमेय में एक स्पष्ट विनिर्देश सम्मिलित है कि किस वर्ग के फलनों को अनुमति दी जा रही है। हालांकि, फूरियर व्युत्क्रम प्रमेय के इतने सारे रूपों पर विचार करने के लिए फलनों का कोई सर्वश्रेष्ठ वर्ग मौजूद नहीं है, यद्यपि संगत निष्कर्ष के साथ।

श्वार्ट्ज फलन

फूरियर व्युत्क्रम प्रमेय सभी श्वार्ट्ज फलनों के लिए मान्य है(सामान्य रूप से बताया जाये तो, सतत फलन जो जल्दी से क्षय हो जाते हैं और जिनके सभी अवकलन जल्दी से क्षय हो जाते हैं)। इस स्थिति का लाभ यह है कि यह फलन के विषय में एक प्राथमिक प्रत्यक्ष कथन है(इसके फूरियर रूपांतरण पर एक प्रतिबन्ध लगाने के विपरीत), और समाकलन जो फूरियर रूपांतरण और इसके व्युत्क्रम को परिभाषित करता है, बिल्कुल पूर्णांक हैं। प्रमेय के इस संस्करण का उपयोग संस्कारित वितरण के लिए फूरियर व्युत्क्रम प्रमेय के प्रमाण में किया जाता है(नीचे देखें)।

पूर्णांक फूरियर रूपांतरण के साथ एकीकृत फलन

फूरियर व्युत्क्रम प्रमेय उन सभी सतत फलनों के लिए है जो बिल्कुल पूर्णांक हैं(अर्थात ) बिल्कुल पूर्णांक फूरियर रूपांतरण के साथ। इसमें श्वार्ट्ज के सभी फलन सम्मिलित हैं, इसलिए यह प्रमेय पूर्व में लिखी प्रमेय से अधिक प्रबल रूप है। यह प्रतिबन्ध वही है जो उपरोक्त दिए कथन में प्रयोग की गई है।

एक सामान्य संस्करण उस स्थिति को त्यागना है कि फलन सतत हो लेकिन फिर भी आवश्यकता है कि यह और इसका फूरियर रूपांतरण पूरी तरह से एकीकृत हो। फिर लगभग हर जगह जहां g एक सतत फलन है, और प्रत्येक के लिए .

एक विमीय समाकलनीय फलन

खंडो में सुचारु; एक विमीय

यदि फलन एक विमा में पूरी तरह से समाकलनीय है(अर्थात ) और खंडो के र्रोप में सुचारु है तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण लागू होता है। इस सम्बन्ध को हम परिभाषित करते हैं

फिर सभी के लिए

अर्थात। की बाएँ और दाएँ सीमा औसतन बराबर है पर . जिन बिंदुओं पर सतत है यह केवल के बराबर है .

प्रमेय के इस रूप का एक उच्च-विमीय अनुरूप भी है, लेकिन फोलैंड(1992) के अनुसार यह उत्कृष्ट है और बहुत उपयोगी नहीं है।

खंडो में सतत; एक विमीय

यदि फलन एक विमा में पूरी तरह से पूर्णांक है(अर्थात ) लेकिन केवल खंडो में सतत है तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण अभी भी बना रहता है । इस सम्बन्ध में व्युत्क्रम फूरियर रूपांतरण में समाकलन को एक तेज प्राचीर फलन के बजाय एक सुचारु फलन की सहायता से परिभाषित किया गया है; विशेष रूप से हम परिभाषित करते हैं

प्रमेय का निष्कर्ष तब वही होता है जैसा ऊपर चर्चा की गई टुकड़े-टुकड़े सुचारु सम्बन्ध के लिए होता है।

सतत; किसी भी संख्या में विमा

यदि सतत और पूर्णतः समाकलनीय है तब फूरियर व्युत्क्रम प्रमेय अभी भी तब तक कायम रहता है जब तक कि हम फिर से व्युत्क्रम परिवर्तन को एक सुचारु प्राचीर फलन के साथ परिभाषित करते हैं अर्थात

निष्कर्ष अब बस इतना ही है कि सभी के लिए

कोई नियमितता की स्थिति नहीं; कोई भी विमीय संख्या

यदि हम(टुकड़ेवार) की सततता के विषय में सभी धारणाओं को छोड़ दें,और मान लें कि यह पूरी तरह से पूर्णांक है, तो प्रमेय का एक संस्करण अभी भी कायम है। व्युत्क्रम परिवर्तन को फिर से सुचारु प्राचीर के साथ परिभाषित किया गया है, लेकिन इस निष्कर्ष के साथ कि

लगभग हर के लिए [1]


वर्ग पूर्णांक फलन

इस सम्बन्ध में फूरियर रूपांतरण को सीधे एक समाकलन के रूप में परिभाषित नहीं किया जा सकता है क्योंकि यह बिल्कुल अभिसरण नहीं हो सकता है, इसलिए इसे घनत्व तर्क द्वारा परिभाषित किया गया है। उदाहरण के लिए,

हम सेट कर सकते हैं जहां सीमा में लिया जाता है -आदर्श। व्युत्क्रम परिवर्तन को घनत्व द्वारा उसी तरह परिभाषित किया जा सकता है या इसे फूरियर रूपांतरण और फ्लिप परिचालक के संदर्भ में परिभाषित किया जा सकता है। हमारे पास तब है

एलपी अंतरिक्ष में। एक विमा(और केवल एक विमा) में, यह भी दिखाया जा सकता है कि यह लगभग हर एक के लिए अभिसरण करता है x∈ℝ- यह कार्लसन का प्रमेय है, लेकिन माध्य वर्ग मानदंड में अभिसरण की तुलना में सिद्ध करना बहुत कठिन है।

टेम्पर्ड वितरण

फूरियर रूपांतरण टेम्पर्ड वितरण के पदों में श्वार्ट्ज फलनों के स्थान पर फूरियर रूपांतरण के द्वैत द्वारा परिभाषित किया जा सकता है । विशेष तौर पर और सभी परीक्षण फलनों के लिए हमलोग तैयार हैं

कहाँ पे समाकलन सूत्र का उपयोग करके परिभाषित किया गया है। यदि तो यह सामान्य परिभाषा से सहमत है। हम व्युत्क्रम परिवर्तन को परिभाषित कर सकते हैं , या तो उसी तरह श्वार्ट्ज फलनों पर व्युत्क्रम परिवर्तन से द्वैत द्वारा, या इसे फ्लिप परिचालक के संदर्भ में परिभाषित करके(जहां फ्लिप परिचालक द्वैत द्वारा परिभाषित किया गया है)। हमारे पास तब है


फूरियर श्रृंखला से संबंध

फूरियर व्युत्क्रम प्रमेय फूरियर श्रृंखला के अभिसरण के अनुरूप है। हमारे पास फूरियर रूपांतरण के सम्बन्ध में,

फूरियर श्रृंखला के सम्बन्ध में हमारे पास इसके अतिरिक्त है

विशेष रूप से, एक विमा में और योग से चलता है प्रति .

अनुप्रयोग

फूरियर रूपांतरण लागू होने पर कुछ समस्याएं, जैसे कुछ अंतर समीकरण, हल करना आसान हो जाता है। उस सम्बन्ध में व्युत्क्रमफूरियर रूपांतरण का उपयोग करके मूल समस्या का समाधान पुनर्प्राप्त किया जाता है।

फूरियर रूपांतरण,अनुप्रयोगों में फूरियर व्युत्क्रमप्रमेय सदैव एक महत्वपूर्ण भूमिका निभाता है। कई स्थितियों में मूल रणनीति फूरियर रूपांतरण को लागू करना है, कुछ संचालन या सरलीकरण करना है, और फिर व्युत्क्रमफूरियर रूपांतरण लागू करना है।

अधिक संक्षेप में, फूरियर व्युत्क्रमप्रमेय एक परिचालक(गणित) के रूप में फूरियर रूपांतरण के विषय में एक प्रमाण है( फलन क्षेत्र में फूरियर रूपांतरण देखें)। उदाहरण के लिए, फूरियर व्युत्क्रम प्रमेय पर दिखाता है कि फूरियर रूपांतरण एक एकात्मक संकारक है .

व्युत्क्रम परिवर्तन के गुण

व्युत्क्रमफूरियर रूपांतरण मूल फूरियर रूपांतरण के समान ही है: जैसा कि ऊपर बताया गया है, यह केवल फ्लिप परिचालक के आवेदन में भिन्न है। फूरियर रूपांतरण के गुण के कारण यह व्युत्क्रम फूरियर रूपांतरण के लिए लागू होता है, जैसे कि कनवल्शन प्रमेय और रीमैन-लेबेस्गु लेम्मा।

फूरियर रूपांतरण तालिकाएं,महत्वपूर्ण फूरियर रूपांतरणों को आसानी से व्युत्क्रम फूरियर रूपांतरण के लिए फ्लिप परिचालक के साथ लुक-अप फलन की रचना करके उपयोग की जा सकती हैं। उदाहरण के लिए, रेक्ट फलन के फूरियर रूपांतरण को देखते हुए हम देखते हैं

तो व्युत्क्रम परिवर्तन के लिए संगत तथ्य है


प्रमाण

प्रमाण दिए गए कुछ तथ्यों का उपयोग करता है तथा .

  1. यदि तथा , फिर .
  2. यदि तथा , फिर .
  3. के लिये, फुबिनी का सिद्धांत इसे पूरा करता है .
  4. परिभाषित किया गया है कि जब; तो फिर .
  5. परिभाषित किया गया है कि . फिर साथ कनवल्शन को दर्शाते हुए, एक नवजात डेल्टा फलन है: किसी भी सतत के लिए और बिंदु , (जहां अभिसरण बिंदुवार है)।

चूंकि, धारणा से, , तो यह प्रमुख अभिसरण प्रमेय का अनुसरण करता है

परिभाषित करना . तथ्यों 1, 2 और 4 को बार-बार लागू करके, यदि आवश्यक हो, तो हम प्राप्त करते हैं

तथ्य 3 का उपयोग करना तथा , प्रत्येक के लिए , अपने पास

का संवलन अनुमानित पहचान के साथ है। लेकिन जबसे , तथ्य 5 कहता है

उपरोक्त को एक साथ रखकर हमने दिखाया है


टिप्पणियाँ

एक परिचालक एक परिवर्तन है जो फलन को चित्रित करता है। फ्लिप परिचालक, फूरियर रूपांतरण, उलटा फूरियर रूपांतरण और पहचान परिवर्तन सभी परिचालकों के उदाहरण हैं।

संदर्भ

  • Folland, G. B. (1992). Fourier Analysis and its Applications. Belmont, CA, USA: Wadsworth. ISBN 0-534-17094-3.
  • Folland, G. B. (1995). Introduction to Partial Differential Equations (2nd ed.). Princeton, USA: Princeton Univ. Press. ISBN 978-0-691-04361-6.




  1. An operator is a transformation that maps functions to functions. The flip operator, the Fourier transform, the inverse Fourier transform and the identity transform are all examples of operators.
  1. "DMat0101, नोट्स 3: फूरियर L^1 पर रूपांतरित होता है". I Woke Up In A Strange Place (in English). 2011-03-10. Retrieved 2018-02-12.