परमेश्वर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
परमेश्वर (1360-1455 सीई), केरल के सबसे प्रमुख अवलोकन खगोलविदों में से माधव के एक शिष्य थे। वह एक विपुल लेखक थे, जिनके क्रेडिट में लगभग 30 रचनाएँ थीं। वह 50 से अधिक वर्षों से अपने निरंतर खगोलीय अवलोकन के लिए जाने जाते थे। उन्होंने आर्यभटीय और लीलावती सहित कई खगोलीय कार्यों पर टिप्पणियां लिखीं। वह केरल के अलाथुर गाँव के थे जो नीला नदी (भारतपुड़ा नदी) के उत्तरी तट पर स्थित था।
परमेश्वर (1380-1460 सीई)<ref>"परमेश्वर_नंबूदिरी"([[:en:Parameshvara_Nambudiri|Parameshvara_Nambudiri)]]</ref> संगमग्राम के [[माधव]] द्वारा स्थापित केरल के खगोल विज्ञान और गणित स्कूल के एक प्रमुख भारतीय गणितज्ञ और खगोलशास्त्री थे। परमेश्वर का जन्म एक नामपुति ब्राह्मण परिवार में हुआ था जो ज्योतिषी और खगोलविद थे। उन्होंने 14वीं शताब्दी के अंत में और 15वीं शताब्दी के पूर्वार्द्ध में केरल में हुए गणित के उल्लेखनीय विकास में महत्वपूर्ण भूमिका निभाई थी।<ref>[https://udayabhaaskarbulusu.wordpress.com/ancient-indian-mathematicians/ "प्राचीन भारतीय गणितज्ञ"("Ancient Indian Mathematicians")]</ref> आर्यभट ने आर्यभटीय में एक खंभे की छाया की लंबाई से उसकी ऊंचाई निर्धारित करने के लिए एक नियम दिया। परमेश्वर ने आर्यभटीय पर अपनी टिप्पणी में इस पद्धति के कई उदाहरण दिए।
 
परमेश्वर को नारायण पंडित के शिष्य और संगमग्राम के माधव के रूप में जाना जाता है, जिनके बारे में माना जाता है कि वे एक महत्वपूर्ण प्रभाव रखते थे।<ref>[https://hindupost.in/history/mathematicians-of-kerala-part-ii/ "केरल के गणितज्ञ"("Mathematicians of Kerala")]</ref>
 
परमेश्वर ने खगोलीय मापदंडों के लिए कई सुधार प्रस्तावित किए जो [[आर्यभट]] के समय से उनके ग्रहण अवलोकनों के आधार पर उपयोग किए जा रहे थे। मापदंडों के संशोधित नियमित(रेवाइजड़ सेट) के आधार पर अभिकलनी योजना(कम्प्यूटेशनल योजना) को ड्रिक प्रणाली के रूप में जाना जाता है। दृग्गनिता इस प्रणाली के आधार पर रचित पाठ है।
 
वृत्त की त्रिज्या के लिए अभिव्यक्ति जिसमें एक चक्रीय चतुर्भुज अंकित/उत्कीर्ण हुआ है, चतुर्भुज की भुजाओं के संदर्भ में दिया गया है, आमतौर पर 1782 में लुहिलियर को जिम्मेदार ठहराया जाता है। हालांकि परमेश्वर ने 350 साल पहले नियम का वर्णन किया था। यदि चक्रीय चतुर्भुज की भुजाएँ a, b, c और d हैं तो परिबद्ध वृत्त की त्रिज्या r, परमेश्वर द्वारा इस प्रकार दी गई थी:
 
r<sup>2</sup> = x/y जहां
 
x = (ab + cd) (ac + bd) (ad + bc)
 
and y = (a + b + c – d) (b + c + d – a) (c + d + a – b) (d + a + b – c)


उनके कार्यों का उल्लेख नीचे किया गया है।
उनके कार्यों का उल्लेख नीचे किया गया है।


* ''भटादीपिका'' - आर्यभट प्रथम के आर्यभट्य पर भाष्य
* ''भट्दीपिका'' - [[आर्यभट्ट|आर्यभट]] प्रथम के आर्यभट्य पर भाष्य


* ''कर्मदीपिका'' - भास्कर प्रथम के महाभास्करिया पर भाष्य
* ''कर्मदीपिका''<ref>[[परमेश्वर]]([https://mathshistory.st-andrews.ac.uk/Biographies/Paramesvara/ "Parameśvara")]</ref> - [[भास्कर प्रथम]] के महाभास्करिया पर भाष्य


* ''परमेश्वरी'' - भास्कर प्रथम के लघुभास्करिया पर भाष्य
* ''परमेश्वरी'' - भास्कर प्रथम के लघुभास्करिया पर भाष्य
Line 11: Line 23:
* ''सिद्धांतदीपिका'' - गोविंदस्वामी के महाभास्करियाभाष्य पर भाष्य
* ''सिद्धांतदीपिका'' - गोविंदस्वामी के महाभास्करियाभाष्य पर भाष्य


* ''विवरण'' - सूर्य सिद्धांत और लीलावती पर भाष्य
* ''विवरण'' - [[सूर्य सिद्धांत]] और [[लीलावती]] पर भाष्य


* ''द्रिगणित'' /दृगगणित - ड्रिक प्रणाली का विवरण (1431 सीई में बना)
* ''दिग्गणित''  - ड्रिक प्रणाली / दृक-पद्धति  का विवरण (1431 सीई में बना)


* ''गोलादीपिका'' - गोलाकार ज्यामिति और खगोल विज्ञान (1443 सीई में रचित)
* ''गोलादीपिका'' - गोलीय ज्यामिति और खगोल विज्ञान (1443 सीई में रचित)


* ''ग्रहणमंडन'' - ग्रहणों की गणना (इसका युग 15 जुलाई 1411 सीई है।)
* ''ग्रहणमण्डन'' - ग्रहणों की गणना (इसका युग 15 जुलाई 1411 सीई है।)


* ''ग्रहणव्याख्यादीपिका'' - ग्रहण के सिद्धांत के तर्क पर
* ''ग्रहणव्याख्यादीपिका'' - ग्रहण के सिद्धांत के तर्क पर


* ''वाक्याकरण'' - कई खगोलीय तालिकाओं की व्युत्पत्ति के लिए तरी
* ''वाक्यकरण'' - कई खगोलीय तालिकाओं की व्युत्पत्ति के लिए तरी
 
== बाहरी संपर्क ==
 
* [https://mathshistory.st-andrews.ac.uk/Biographies/Paramesvara/ Parameśvara]
* [[:en:Govindasvāmi|Govindasvāmi]]
 
== यह भी देखें ==
[[Parameśvara]]
 
== संदर्भ ==
 
 
<references />
 
[[Category:Organic Articles]]
[[Category:गणित]]
[[Category:भारतीय गणितज्ञ]]
[[Category:भारतीय गणितज्ञ]]

Latest revision as of 10:01, 16 December 2022

परमेश्वर (1380-1460 सीई)[1] संगमग्राम के माधव द्वारा स्थापित केरल के खगोल विज्ञान और गणित स्कूल के एक प्रमुख भारतीय गणितज्ञ और खगोलशास्त्री थे। परमेश्वर का जन्म एक नामपुति ब्राह्मण परिवार में हुआ था जो ज्योतिषी और खगोलविद थे। उन्होंने 14वीं शताब्दी के अंत में और 15वीं शताब्दी के पूर्वार्द्ध में केरल में हुए गणित के उल्लेखनीय विकास में महत्वपूर्ण भूमिका निभाई थी।[2] आर्यभट ने आर्यभटीय में एक खंभे की छाया की लंबाई से उसकी ऊंचाई निर्धारित करने के लिए एक नियम दिया। परमेश्वर ने आर्यभटीय पर अपनी टिप्पणी में इस पद्धति के कई उदाहरण दिए।

परमेश्वर को नारायण पंडित के शिष्य और संगमग्राम के माधव के रूप में जाना जाता है, जिनके बारे में माना जाता है कि वे एक महत्वपूर्ण प्रभाव रखते थे।[3]

परमेश्वर ने खगोलीय मापदंडों के लिए कई सुधार प्रस्तावित किए जो आर्यभट के समय से उनके ग्रहण अवलोकनों के आधार पर उपयोग किए जा रहे थे। मापदंडों के संशोधित नियमित(रेवाइजड़ सेट) के आधार पर अभिकलनी योजना(कम्प्यूटेशनल योजना) को ड्रिक प्रणाली के रूप में जाना जाता है। दृग्गनिता इस प्रणाली के आधार पर रचित पाठ है।

वृत्त की त्रिज्या के लिए अभिव्यक्ति जिसमें एक चक्रीय चतुर्भुज अंकित/उत्कीर्ण हुआ है, चतुर्भुज की भुजाओं के संदर्भ में दिया गया है, आमतौर पर 1782 में लुहिलियर को जिम्मेदार ठहराया जाता है। हालांकि परमेश्वर ने 350 साल पहले नियम का वर्णन किया था। यदि चक्रीय चतुर्भुज की भुजाएँ a, b, c और d हैं तो परिबद्ध वृत्त की त्रिज्या r, परमेश्वर द्वारा इस प्रकार दी गई थी:

r2 = x/y जहां

x = (ab + cd) (ac + bd) (ad + bc)

and y = (a + b + c – d) (b + c + d – a) (c + d + a – b) (d + a + b – c)

उनके कार्यों का उल्लेख नीचे किया गया है।

  • भट्दीपिका - आर्यभट प्रथम के आर्यभट्य पर भाष्य
  • परमेश्वरी - भास्कर प्रथम के लघुभास्करिया पर भाष्य
  • सिद्धांतदीपिका - गोविंदस्वामी के महाभास्करियाभाष्य पर भाष्य
  • दिग्गणित - ड्रिक प्रणाली / दृक-पद्धति का विवरण (1431 सीई में बना)
  • गोलादीपिका - गोलीय ज्यामिति और खगोल विज्ञान (1443 सीई में रचित)
  • ग्रहणमण्डन - ग्रहणों की गणना (इसका युग 15 जुलाई 1411 सीई है।)
  • ग्रहणव्याख्यादीपिका - ग्रहण के सिद्धांत के तर्क पर
  • वाक्यकरण - कई खगोलीय तालिकाओं की व्युत्पत्ति के लिए तरी

बाहरी संपर्क

यह भी देखें

Parameśvara

संदर्भ