बायोसिरेमिक: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[File:Cam Bioceramics Large Porous Granule.png|thumb|300px|कैम बायोसेरामिक्स द्वारा निर्मित ऑर्थोबायोलॉजिकल कैल्शियम संरचना का | [[File:Cam Bioceramics Large Porous Granule.png|thumb|300px|कैम बायोसेरामिक्स द्वारा निर्मित ऑर्थोबायोलॉजिकल कैल्शियम संरचना का छिद्रपूर्ण बायोसेरामिक कण।]]बायोसिरेमिक्स और [[बायोग्लास]] सिरेमिक पदार्थ हैं जो [[जैव]] संगत हैं।<ref>P. Ducheyne, G. W. Hastings (editors) (1984) ''CRC metal and ceramic biomaterials'' vol 1 {{ISBN|0-8493-6261-X}}</ref> बायोसिरेमिक्स [[बायोमैटिरियल्स|जैव पदार्थ]] का एक महत्वपूर्ण उपसमुच्चय है।<ref name="Shackelford">J. F. Shackelford (editor)(1999) ''MSF bioceramics applications of ceramic and glass materials in medicine'' {{ISBN|0-87849-822-2}}</ref><ref>H. Oonishi, H. Aoki, K. Sawai (editors) (1988) ''Bioceramics'' vol. 1 {{ISBN|0-912791-82-9}}</ref> बायोसिरेमिक्स में सिरेमिक [[आक्साइड|ऑक्साइड]] से जैव अनुकूलता होती है, जो निकाय में अक्रिय होती हैं, रिसोर्बेबल पदार्थ के दूसरे चरम तक, जो अंततः मरम्मत में सहायता करने के बाद निकाय द्वारा प्रतिस्थापित कर दिए जाते हैं। बायोसिरेमिक्स का उपयोग कई प्रकार की चिकित्सा प्रक्रियाओं में किया जाता है। बायोसिरेमिक्स प्रायः शल्य चिकित्सा प्रत्यारोपण में कठोर पदार्थ के रूप में उपयोग किए जाते हैं, हालांकि कुछ बायोसेरामिक्स लचीले होते हैं। उपयोग किए जाने वाले सिरेमिक पदार्थ चीनी मिट्टी के बरतन प्रकार के सिरेमिक पदार्थ के समान नहीं है। बल्कि, बायोसिरेमिक या तो निकाय के अपने पदार्थों से निकटता से संबंधित हैं या अत्यंत टिकाऊ [[मिश्रित धातु ऑक्साइड|धातु ऑक्साइड]] हैं। | ||
== इतिहास == | == इतिहास == | ||
1925 से पहले, | 1925 से पहले, प्रत्यारोपण शल्य चिकित्सा में प्रयुक्त पदार्थ मुख्य रूप से अपेक्षाकृत शुद्ध धातु थी। अपेक्षाकृत प्राचीन शल्य चिकित्सा तकनीकों पर विचार करते हुए इन पदार्थों की सफलता आश्चर्यजनक थी। 1930 के दशक ने बेहतर शल्य चिकित्सा तकनीकों के युग के प्रारम्भ के साथ-साथ [[विटालियम]] जैसे मिश्र धातुओं का पहला उपयोग चिह्नित किया। | ||
1969 में, एल. एल. हेन्च और अन्य ने पता लगाया कि विभिन्न प्रकार के कांच और | 1969 में, एल. एल. हेन्च और अन्य ने पता लगाया कि विभिन्न प्रकार के कांच और सिरेमिक जीवित हड्डी से जुड़ सकते हैं।<ref>{{cite journal|url=https://www.ualberta.ca/~hanifi/Bioceramics%20-%20Hench.pdf|doi=10.1111/j.1151-2916.1991.tb07132.x|title=बायोसेरामिक्स: अवधारणा से क्लिनिक तक|year=1991|last1=Hench|first1=Larry L.|journal=Journal of the American Ceramic Society|volume=74|issue=7|pages=1487–1510|citeseerx=10.1.1.204.2305}}</ref><ref>T. Yamamuro, L. L. Hench, J. Wilson (editors) (1990) ''CRC Handbook of bioactive ceramics'' vol II {{ISBN|0-8493-3242-7}}</ref> हेन्च पदार्थ पर एक सम्मेलन के लिए अपने रास्ते पर विचार से प्रेरित थे। वह एक कर्नल के पास बैठे थे जो अभी-अभी वियतनाम युद्ध से लौटा थे। कर्नल ने साझा किया कि चोट लगने के बाद सैनिकों के शरीर प्राय़ः प्रत्यारोपण को अस्वीकार कर देते हैं। हेन्च को दिलचस्पी हुई और उन्होंने उन पदार्थों की जांच प्रारम्भ की जो जैव-संगत होंगी। अंतिम उत्पाद एक नया पदार्थ था जिसे उन्होंने बायोग्लास कहा गया। इस कार्य ने बायोसिरेमिक नामक एक नए क्षेत्र को प्रेरित किया।<ref name=Kassinger>Kassinger, Ruth. ''Ceramics: From Magic Pots to Man-Made Bones''. Brookfield, CT: Twenty-First Century Books, 2003, {{ISBN|978-0761325857}}</ref> बायोग्लास की खोज के साथ, बायोसेरामिक्स में रुचि तेजी से बढ़ी। | ||
26 अप्रैल, 1988 को क्योटो, जापान में बायोसेरामिक्स पर पहली अंतर्राष्ट्रीय संगोष्ठी आयोजित की गई थी।<ref name="OonishiBio89">{{cite book |url=https://books.google.com/books?id=mivfMQEACAAJ |title=बायोकेरामिक्स: प्रथम अंतर्राष्ट्रीय बायोसेरामिक संगोष्ठी की कार्यवाही|author1=Oonishi, H. |author2=Aoki, H. |editor=Sawai, K. |publisher=Ishiyaku Euroamerica |pages=443 |year=1989 |isbn=978-0912791821 |accessdate=17 February 2016}}</ref> | 26 अप्रैल, 1988 को क्योटो, जापान में बायोसेरामिक्स पर पहली अंतर्राष्ट्रीय संगोष्ठी आयोजित की गई थी।<ref name="OonishiBio89">{{cite book |url=https://books.google.com/books?id=mivfMQEACAAJ |title=बायोकेरामिक्स: प्रथम अंतर्राष्ट्रीय बायोसेरामिक संगोष्ठी की कार्यवाही|author1=Oonishi, H. |author2=Aoki, H. |editor=Sawai, K. |publisher=Ishiyaku Euroamerica |pages=443 |year=1989 |isbn=978-0912791821 |accessdate=17 February 2016}}</ref> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
[[File:Hip prosthesis.jpg|thumb|right|एक सिरेमिक सिर और पॉलीइथाइलीन | [[File:Hip prosthesis.jpg|thumb|right|एक सिरेमिक सिर और पॉलीइथाइलीन प्याले के आकार के कप के साथ एक टाइटेनियम कूल्हे का कृत्रिम अंग]][[दंत प्रत्यारोपण]] और [[हड्डी]] प्रत्यारोपण के रूप में अब सिरेमिक का प्रायः चिकित्सा क्षेत्रों में उपयोग किया जाता है।<ref>D. Muster (editor) (1992) ''Biomaterials hard tissue repair and replacement'' {{ISBN|0-444-88350-9}}</ref><ref>{{cite journal|doi=10.1002/jbm.a.31943|pmid=18431760|title=SiO<sub>2</sub>-आधारित बहुकार्यात्मक बायोसेरामिक्स के लिए जीवाणु पालन|year=2008|last1=Kinnari|first1=Teemu J.|last2=Esteban|first2=Jaime|last3=Gomez-Barrena|first3=Enrique|last4=Zamora|first4=Nieves|last5=Fernandez-Roblas|first5=Ricardo|last6=Nieto|first6=Alejandra|last7=Doadrio|first7=Juan C.|last8=López-Noriega|first8=Adolfo|last9=Ruiz-Hernández|first9=Eduardo|last10=Arcos|first10=Daniel|last11=Vallet-Regí|first11=María|journal=Journal of Biomedical Materials Research Part A|volume=89|issue=1|pages=215–23}}</ref> सर्जिकल सरमेट नियमित रूप से उपयोग किया जाता है। जोड़ प्रतिस्थापन को प्रायः घिसाव और सूजन प्रतिक्रिया को कम करने के लिए बायोकेरामिक पदार्थ के साथ लेपित किया जाता है। बायोसिरेमिक के चिकित्सा उपयोग के अन्य उदाहरण [[पेसमेकर|गतिचालक (पेसमेकर)]], किडनी डायलिसिस मशीन और श्वासयंत्र में हैं।<ref name=Kassinger/> 2010 में चिकित्सा सिरेमिक और सिरेमिक घटकों की वैश्विक मांग लगभग 9.8 बिलियन अमेरिकी डॉलर थी। अगले वर्षों में 6 से 7 प्रतिशत की वार्षिक वृद्धि होने का अनुमान लगाया गया था, साथ ही विश्व बाजार मूल्य 2015 तक बढ़कर 15.3 बिलियन अमेरिकी डॉलर तक पहुंचने और 2018 तक 18.5 बिलियन अमेरिकी डॉलर पहुंच जाने का अनुमान था। <ref>{{cite book|year=2011 | title = मार्केट रिपोर्ट: वर्ल्ड मेडिकल सेरामिक्स मार्केट| publisher = Acmite Market Intelligence | url = http://www.acmite.com/market-reports/materials/world-medical-ceramics-market.html }}</ref> | ||
=== यांत्रिक गुण और संरचना === | |||
बायोसेरामिक्स का उपयोग एक्स्ट्राकॉर्पोरियल परिसंचरण तंत्र (उदाहरण के लिए [[किडनी डायलिसिस|डायलिसिस]]) या इंजीनियर बायोरिएक्टर में किया जाता है हालांकि, वे प्रत्यारोपण के रूप में सबसे सामान्य हैं।<ref name="Boch">Boch, Philippe, Niepce, Jean-Claude. (2010) Ceramic Materials: Processes, Properties and Applications. {{doi| 10.1002/9780470612415.ch12}}</ref> मिट्टी के पात्र अपने भौतिक-रासायनिक गुणों के कारण जैव पदार्थों के रूप में कई अनुप्रयोगों को दिखाते हैं। उनके पास मानव शरीर में निष्क्रिय होने का लाभ है, और उनकी कठोरता और घर्षण के प्रति प्रतिरोध उन्हें हड्डियों और दांतों के प्रतिस्थापन के लिए उपयोगी बनाता है। कुछ सिरेमिक में घर्षण के लिए उत्कृष्ट प्रतिरोध भी होता है, जो उन्हें खराब [[जोड़|जोड़ों]] के लिए प्रतिस्थापन पदार्थ के रूप में उपयोगी बनाता है। विशिष्ट जैव चिकित्सा अनुप्रयोगों के लिए उपस्थिति और विद्युत रोधन जैसे गुण भी चिंता का विषय हैं। | |||
कुछ बायोसेरामिक्स में [[अल्यूमिनियम ऑक्साइड|एल्युमिनियम ऑक्साइड]] (एल्यूमिना) (Al<sub>2</sub>O<sub>3</sub>) सम्मिलित होता है क्योंकि उनका जीवनकाल रोगी की तुलना में लंबा होता है। पदार्थ का उपयोग मध्य कान के अस्थि-पंजर, नेत्र कृत्रिम अंग, पेसमेकर के लिए विद्युत रोधन, मूत्रनलिका छिद्रों और प्रत्यारोपण प्रणाली के कई आदिप्ररूपों जैसे कार्डियक पंप में किया जा सकता है।<ref name="Thamaraiselvi">Thamaraiselvi, T. V., and S. Rajeswari. "Biological evaluation of bioceramic materials-a review." Carbon 24.31 (2004): 172.</ref> | |||
[[Aluminosilicate|एल्युमिनोसिलिकेट्स]] का उपयोग प्रायः दंत कृत्रिम अंग, शुद्ध या सिरेमिक-बहुलक सम्मिश्रण में किया जाता है। सिरेमिक-बहुलक सम्मिश्रण विषाक्त प्रभाव वाले संदेहास्पद मिश्रणों की जगह गुहाओं को भरने का एक संभावित तरीका है। एल्युमिनोसिलिकेट्स में भी एक कांच की संरचना होती है। राल में कृत्रिम दांतों के विपरीत, दंत सिरेमिक का रंग स्थिर रहता है<ref name="Boch" /><ref name="Hench">Hench LL. Bioceramics: From concept to clinic. J Amer CeramSoc 1991;74(7):1487–510.</ref> ईट्रियम ऑक्साइड के साथ डोप किए गए ज़िरकोनिया को ऑस्टियोआर्टिकुलर कृत्रिम अंग के लिए एल्यूमिना के विकल्प के रूप में प्रस्तावित किया गया है। मुख्य लाभ अधिक विफलता शक्ति और थकान के लिए अच्छा प्रतिरोध है। | |||
[[कांच का कार्बन|विट्रियस कार्बन]] का भी उपयोग किया जाता है क्योंकि यह हल्का, पहनने के लिए प्रतिरोधी और रक्त के अनुकूल होता है। इसका उपयोग ज्यादातर कार्डियक वाल्व प्रतिस्थापन में किया जाता है। हीरे का उपयोग समान अनुप्रयोग के लिए किया जा सकता है, लेकिन लेप के रूप में।<ref name="Thamaraiselvi" /> | |||
[[ | [[कैल्शियम फॉस्फेट]]-आधारित सिरेमिक वर्तमान में, आर्थोपेडिक और मैक्सिलोफेशियल अनुप्रयोगों में पसंदीदा हड्डी प्रतिस्थापी पदार्थ है, क्योंकि वे संरचना और रासायनिक संरचना में हड्डी के मुख्य खनिज चरण के समान हैं। इस तरह के सिंथेटिक हड्डी प्रतिस्थापी या आलंबी पदार्थ पर छिद्रपूर्ण होती है, जो एक बढ़ी हुई सतह क्षेत्र प्रदान करती है जो ऑसियोइंटीग्रेशन को प्रोत्साहित करती है, जिसमें सेल उपनिवेशीकरण और पुनरोद्धार सम्मिलित है। हालांकि, ऐसा छिद्रपूर्ण पदार्थ प्रायः हड्डी की तुलना में कम यांत्रिक शक्ति प्रदर्शित करता है, जिससे अत्यधिक छिद्रपूर्ण प्रत्यारोपण बहुत नाजुक हो जाते हैं। चूंकि सिरेमिक पदार्थ के लोचदार मापांक मान प्रायः आसपास के हड्डी के ऊतकों की तुलना में अधिक होते हैं, इसलिए प्रत्यारोपण हड्डी के अंतरापृष्ठ पर यांत्रिक तनाव पैदा कर सकता है।<ref name="Boch" /> प्रायः बायोसिरेमिक्स में पाए जाने वाले कैल्शियम फॉस्फेट में हाइड्रॉक्सीऐपाटाइट (HAP) Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2,</sub> ट्राईकैल्शियम फॉस्फेट β (β TCP): Ca<sub>3</sub> (PO<sub>4</sub>)<sub>2,</sub> और HAP और β TCP का मिश्रण सम्मिलित हैं। | ||
तालिका 1: बायोसेरामिक्स के अनुप्रयोग<ref name="Thamaraiselvi" /> | |||
तालिका 1: | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! उपकरण !! कार्य !! जैव पदार्थ | ||
|- | |- | ||
| | | कृत्रिम कुल कूल्हे, घुटने, कंधे, कोहनी, कलाई || गठिया या खंडित जोड़ों का पुनर्निर्माण करें || उच्च घनत्व एल्यूमिना, धातु बायोग्लास लेप | ||
|- | |- | ||
| | | हड्डी की प्लेटें, पेंच, तार || फ्रैक्चर की मरम्मत करें || बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण | ||
|- | |- | ||
| | | अंतर्मज्जा नाखून || फ्रैक्चर संरेखित करें || बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण | ||
|- | |- | ||
| | | हैरिंगटन की छड़ें || दीर्घकालिक रीढ़ सम्बन्धी वक्रता को ठीक करें || बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण | ||
|- | |- | ||
| | | स्थायी रूप से प्रत्यारोपित कृत्रिम अंग || अनुपस्थित हाथ-पैर प्रतिस्थापित करें || बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण | ||
|- | |- | ||
| | | कशेरुक अंतरालको और प्रसारको || जन्मजात विकृतियों को ठीक करें || Al<sub>2</sub>O<sub>3</sub> | ||
|- | |- | ||
| | | रीढ़ की हड्डी का संलयन || रीढ़ की हड्डी की रक्षा के लिए कशेरुकाओं को स्थिर करें || बायोग्लास | ||
|- | |- | ||
| | | वायुकोशीय अस्थि प्रतिस्थापन, जबड़े का पुनर्निर्माण || कृत्रिम दांतों की फ़िट में सुधार करने के लिए वायुकोशीय रिज को पुनर्स्थापित करें || पॉलीटेट्रा फ्लोरो एथिलीन ([[Polytetrafluoroethylene|PTFE]]) - कार्बन मिश्रित, छिद्रपूर्ण Al<sub>2</sub>O<sub>3</sub>, बायोग्लास, सघन-एपेटाइट | ||
|- | |- | ||
| | | अंत हड्डीवाला दांत प्रतिस्थापन प्रत्यारोपण || रोगग्रस्त, क्षतिग्रस्त या ढीले दांतों को बदलें || Al<sub>2</sub>O<sub>3</sub>, बायोग्लास, सघन हाइड्रॉक्सीएपेटाइट, विट्रियस कार्बन | ||
|- | |- | ||
| | | ऑर्थोडॉन्टिक एंकर || विकृतियों को बदलने के लिए आवश्यक तनाव अनुप्रयोग के लिए पद प्रदान करें || बायोग्लास-लेपित Al<sub>2</sub>O<sub>3</sub>, बायोग्लास लेपित विटालियम | ||
|} | |} | ||
तालिका 2: सिरेमिक | तालिका 2: सिरेमिक जैव पदार्थ के यांत्रिक गुण<ref name="Thamaraiselvi" /> | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! पदार्थ !!यंग मापांक (GPa)!! संपीडन प्रबलता (MPa) !! बंधन शक्ति (GPa) !! दृढ़ता !! घनत्व (g/cm<sup>3</sup>) | ||
|- | |- | ||
| | | अक्रिय Al<sub>2</sub>O<sub>3</sub> ||380||4000||300-400||2000-3000(एचवी)||>3.9 | ||
|- | |- | ||
| ZrO<sub>2</sub> (PS)||150-200 ||2000||200-500|| 1000-3000( | | ZrO<sub>2</sub> (PS)||150-200 ||2000||200-500|| 1000-3000(एचवी)|| ≈6.0 | ||
|- | |- | ||
| | | ग्रेफ़ाइट ||20-25||138||एनए||एनए||1.5-1.9 | ||
|- | |- | ||
| ( | | (एलटीआई)पायरोलिटिक कार्बन||17-28||900||270-500||एनए||1.7-2.2 | ||
|- | |- | ||
| | | विट्रियस कार्बन||24-31||172||70-207||150-200(डीपीएच)||1.4-1.6 | ||
|- | |- | ||
| | | जैव सक्रिय एचएपी (HAP)||73-117||600||120||350||3.1 | ||
|- | |- | ||
| | | बायोग्लास||≈75||1000||50||एनए||2.5 | ||
|- | |- | ||
| AW | | एडब्ल्यू (AW) ग्लास सिरेमिक||118||1080||215||680||2.8 | ||
|- | |- | ||
| | |हड्डी||3-30||130-180||60-160||एनए||एनए | ||
|} | |} | ||
=== बहुउद्देशीय === | === बहुउद्देशीय === | ||
कई प्रत्यारोपित सिरेमिक वास्तव में विशिष्ट | कई प्रत्यारोपित सिरेमिक वास्तव में विशिष्ट जैव चिकित्सा अनुप्रयोगों के लिए डिज़ाइन नहीं किए गए हैं। हालांकि, वे अपने गुणों और अपनी अच्छी जैव-अनुकूलता के कारण विभिन्न प्रत्यारोपण योग्य प्रणालियों में अपना रास्ता खोजने में कामयाब होते हैं। इन सिरेमिक में, हम सिलिकॉन [[कार्बाइड]], [[टाइटेनियम नाइट्राइड]] और कार्बाइड और [[बोरॉन नाइट्राइड]] का उल्लेख दे सकते हैं। TiN को कूल्हा कृत्रिम अंग में घर्षण सतह के रूप में सुझाया गया है। जबकि कोशिका संवर्धन परीक्षण एक अच्छी जैव-अनुकूलता दिखाते हैं, प्रत्यारोपण का विश्लेषण TiN परत के परिसीमन से संबंधित महत्वपूर्ण घिसाव को दर्शाता है। सिलिकॉन कार्बाइड एक अन्य आधुनिक-दिन का सिरेमिक है जो अच्छी जैव अनुकूलता प्रदान करता है और हड्डी के प्रत्यारोपण में प्रयोग किया जा सकता है।<ref name=" Boch " /> | ||
=== विशिष्ट उपयोग === | === विशिष्ट उपयोग === | ||
उनके पारंपरिक गुणों के लिए उपयोग किए जाने के अलावा, | उनके पारंपरिक गुणों के लिए उपयोग किए जाने के अलावा, जैव सक्रियता सिरेमिक्स ने अपनी [[जैविक गतिविधि]] के कारण विशिष्ट उपयोग देखा है। कैल्शियम फॉस्फेट, ऑक्साइड और [[हाइड्रॉक्साइड]] इसके सामान्य उदाहरण हैं। अन्य प्राकृतिक पदार्थ - प्रायः पशु उत्पत्ति की - जैसे कि बायोग्लास और अन्य मिश्रित खनिज-कार्बनिक मिश्रित पदार्थ जैसे कि HAP, एल्यूमिना, या टाइटेनियम डाइऑक्साइड के साथ जैव संगत बहुलक (पॉलीमिथाइलमेथाक्रिलेट)- PMMA, पॉली (L-लैक्टिक) एसिड- PLLA, पॉली (एथिलीन) का संयोजन पेश करते हैं। सम्मिश्रों को बायोरेसोरेबल या गैर-बायोरेसोरबल के रूप में विभेदित किया जा सकता है, बाद वाला एक गैर-बायोरेसोरेबल [[पॉलीमर|बहुलक]] (पीएमएमए, पीई) के साथ बायोरेसोरेबल कैल्शियम फॉस्फेट (एचएपी) के संयोजन का परिणाम है। ये पदार्थ भविष्य में हड्डी के समान यांत्रिक गुणों के साथ जैविक गतिविधि के संयोजन की कई संयोजन संभावनाओं और उनकी योग्यता के कारण और अधिक व्यापक हो सकते हैं।<ref name="Thamaraiselvi" /> | ||
== जैव अनुकूलता == | |||
बायोसिरेमिक के जंगरोधी,जैव संगत और सौंदर्य संबंधी होने के गुण उन्हें चिकित्सा उपयोग के लिए काफी उपयुक्त बनाते हैं। [[zirconia|ज़िरकोनिया]] सिरेमिक में जैव अक्रियता और गैरसाइटोटोक्सिसिटी है। हड्डी के समान यांत्रिक गुणों के साथ कार्बन एक अन्य विकल्प है, और इसमें रक्त अनुकूलता, कोई ऊतक प्रतिक्रिया नहीं, और कोशिकाओं के लिए गैर-विषाक्तता भी सम्मिलित है। जैव अक्रिय सिरेमिक्स हड्डी के साथ बंधन प्रदर्शित नहीं करते हैं, जिसे ऑसियोइंटीग्रेशन कहा जाता है। हालांकि, जैव सक्रिय सिरेमिक के साथ सम्मिश्रण बनाकर जैव अक्रिय सिरेमिक की जैव सक्रियता हासिल की जा सकती है। बायोग्लास सहित जैव सक्रिय सिरेमिक गैर-विषैले होने चाहिए, और हड्डी के साथ एक बंधन बनाते हैं। हड्डी की मरम्मत के अनुप्रयोगों में, यानी हड्डी के पुनर्जनन के लिए आलंबी, बायोकेरामिक्स की घुलनशीलता एक महत्वपूर्ण पैरामीटर है, और हड्डी की वृद्धि दर के सापेक्ष अधिकांश बायोसेरामिक्स की धीमी विघटन दर उनके उपचारात्मक उपयोग में एक चुनौती बनी हुई है। अप्रत्याशित रूप से, बायोकेरामिक्स के यांत्रिक गुणों को बनाए रखने या सुधारने के दौरान उनके विघटन विशेषताओं में सुधार करने पर अधिक ध्यान दिया जाता है। क्रिस्टलीय पदार्थ के सापेक्ष उच्च विघटन दर के साथ ग्लास सिरेमिक ऑस्टियोइंडक्टिव गुण प्राप्त करते हैं, जबकि क्रिस्टलीय कैल्शियम फॉस्फेट सिरेमिक भी ऊतकों और बायोरेसोरशन के लिए गैर-विषाक्तता प्रदर्शित करते हैं। सिरेमिक कण सुदृढीकरण ने प्रत्यारोपण अनुप्रयोगों के लिए अधिक पदार्थ का चयन किया है जिसमें सिरेमिक/सिरेमिक, सिरेमिक/बहुलक, और सिरेमिक/धातु सम्मिश्र सम्मिलित हैं। इन सम्मिश्रणों में सेरामिक/बहुलक सम्मिश्रण आस-पास के ऊतकों में विषैले तत्व मुक्त करते पाए गए हैं। [[धातुओं]] को संक्षारण संबंधी समस्याओं का सामना करना पड़ता है, और धातु के प्रत्यारोपण पर सिरेमिक लेप लंबे समय तक अनुप्रयोगों के दौरान समय के साथ ख़राब हो जाती हैं। सिरेमिक/सिरेमिक सम्मिश्रण अस्थि खनिजों की समानता के कारण श्रेष्ठता का आनंद लेते हैं, जैव-अनुकूलता प्रदर्शित करते हैं और आकार देने की तैयारी करते हैं। बायोसिरेमिक्स की जैविक गतिविधि को विभिन्न कृत्रिम परिवेशीय और अंतर्जीव अध्ययनों के तहत विचार किया जाना है। प्रत्यारोपण की विशेष स्थान के अनुसार प्रदर्शन की जरूरतों पर विचार किया जाना चाहिए।<ref name="Thamaraiselvi" /> | |||
== | |||
बायोसिरेमिक के | |||
== प्रसंस्करण == | == प्रसंस्करण == | ||
तकनीकी रूप से, | तकनीकी रूप से, सिरेमिक कच्चे माल जैसे पाउडर और प्राकृतिक या कृत्रिम [[रासायनिक योजक]] से बने होते हैं, जो या तो संघनन (गर्म, ठंडा या समस्थितिक), समायोजन (हाइड्रोलिक या रासायनिक) के पक्ष में होते हैं, या [[सिंटरिंग|निसादन]] प्रक्रियाओं को तेज करते हैं। उपयोग की जाने वाली सूत्रीकरण और आकार देने की प्रक्रिया के अनुसार, बायोसिरेमिक घनत्व और [[सरंध्रता]] में [[सीमेंट्स|सीमेंट]], सिरेमिक निक्षेपण, या सिरेमिक सम्मिश्रण के रूप में भिन्न हो सकते हैं। सरंध्रता प्रायः बायोसेरामिक्स में वांछित होती है जिसमें बायोग्लास भीसम्मिलित हैंं। प्रतिरोपित छिद्रपूर्ण बायोसेरामिक्स के प्रदर्शन में सुधार की दिशा में, सरंध्रता, छिद्र आकार वितरण और छिद्र संरेखण के नियंत्रण के लिए कई प्रसंस्करण तकनीकें उपलब्ध हैं। क्रिस्टलीय पदार्थ के लिए, अनाज के आकार और क्रिस्टलीय दोष जैव अवक्रमण और ऑसियोइंटीग्रेशन को बढ़ाने के लिए और मार्ग प्रदान करते हैं, जो प्रभावी हड्डी निरोपण और हड्डी प्रत्यारोपण पदार्थ के लिए महत्वपूर्ण हैं।<ref name="Boch" /> यह अनाज शोधन करने वाले अपमिश्रक को सम्मिलित करके और विभिन्न भौतिक साधनों के माध्यम से क्रिस्टलीय संरचना में दोष लगाकर प्राप्त किया जा सकता है। | ||
बायोमिमेटिक प्रक्रियाओं पर आधारित एक विकासशील पदार्थ प्रसंस्करण तकनीक का उद्देश्य प्राकृतिक और जैविक प्रक्रियाओं की नकल करना है और परंपरागत या जलतापीय प्रक्रियाओं [GRO 96] के बजाय परिवेश के तापमान पर बायोसिरेमिक बनाने की संभावना प्रदान करना है। इन अपेक्षाकृत कम प्रसंस्करण तापमानों का उपयोग करने की संभावना प्रोटीन और जैविक रूप से सक्रिय अणुओं (विकास कारक, प्रतिजैविक, एंटी-ट्यूमर अभिकर्मक, आदि) के अतिरिक्त जैविक गुणों के साथ खनिज कार्बनिक संयोजनों के लिए संभावनाएं खोलती है। हालांकि, इन पदार्थों में खराब यांत्रिक गुण होते हैं, जिन्हें बंधन प्रोटीन के साथ जोड़कर, आंशिक रूप से सुधारा जा सकता है।<ref name="Boch" /> | |||
== वाणिज्यिक उपयोग == | == वाणिज्यिक उपयोग == | ||
क्लिनिकल उपयोग के लिए व्यावसायिक रूप से उपलब्ध सामान्य | क्लिनिकल उपयोग के लिए व्यावसायिक रूप से उपलब्ध सामान्य जैव सक्रिय पदार्थों में 45S5 जैव सक्रिय ग्लास, A/W जैव सक्रिय ग्लास सिरेमिक, घने कृत्रिम HA और जैव सक्रिय मिश्रण जैसे [[polyethylene|पॉलीइथाइलीन]]-HA मिश्रण सम्मिलित हैं। ये सभी पदार्थ आसन्न ऊतक के साथ एक अंतरापृष्ठीय बंधन बनाते हैं।<ref name=" Hench " /> | ||
उच्च शुद्धता वाले एल्यूमिना बायोसेरामिक्स वर्तमान में विभिन्न उत्पादकों के पास व्यावसायिक रूप से उपलब्ध हैं। यू.के. के निर्माता मॉर्गन एडवांस्ड सेरामिक्स (मैक) ने 1985 में आर्थोपेडिक उपकरणों का निर्माण प्रारम्भ किया और जल्द ही यह कूल्हा प्रतिस्थापन के लिए सिरेमिक ऊर्विका सिर का एक मान्यता प्राप्त आपूर्तिकर्ता बन गया। मैक बायोसेरामिक्स का 1985 से HIP Vitox® एल्यूमिना का निर्माण करते हुए, एल्यूमिना सिरेमिक पदार्थ के लिए सबसे लंबा क्लिनिकल इतिहास है।<ref name="Kokubo">Kokubo, T. Bioceramics and Their Clinical Applications, Woodhead Publishing Limited, Cambridge, England, 2008 {{ISBN|978-1-84569-204-9}}</ref> एपेटाइट संरचना वाले कुछ कैल्शियम-कमी वाले फॉस्फेट को इस प्रकार "ट्राईकैल्शियम फॉस्फेट" के रूप में व्यावसायीकरण किया गया, भले ही उन्होंने ट्राइकैल्शियम फॉस्फेट की अपेक्षित क्रिस्टलीय संरचना का प्रदर्शन नहीं किया।<ref name="Kokubo" /> | |||
वर्तमान में, एचए (HA) के रूप में वर्णित कई वाणिज्यिक उत्पाद विभिन्न भौतिक रूपों में उपलब्ध हैं (उदाहरण के लिए कणिकाओं, विशिष्ट अनुप्रयोगों के लिए विशेष रूप से डिज़ाइन किए गए ब्लॉक)। HA/बहुलक मिश्रण (HA/पॉलीइथाइलीन, HAPEXTM) आर्थोपेडिक और दंत प्रत्यारोपण के लिए कान के प्रत्यारोपण, अपघर्षक और प्लाज्मा-स्प्रे लेप के लिए भी व्यावसायिक रूप से उपलब्ध है।<ref name="Kokubo" /> | |||
== भविष्य | कैनबिस या डेल्टा 8 उपकरणों में बायोसिरेमिक्स का उपयोग ऐसे अर्क के वाष्पीकरण के लिए बाती के रूप में किया जाता है।{{citation needed|date=March 2022}} | ||
== भविष्य प्रवृत्तियां == | |||
बायोसिरेमिक्स को [[कैंसर]] के संभावित उपचार के रूप में प्रस्तावित किया गया है। उपचार के दो तरीके प्रस्तावित किए गए हैं- [[अतिताप]] और [[रेडियोथेरेपी|विकिरण चिकित्सा (रेडियोथेरेपी)]]। [[हाइपरथर्मिया उपचार|अतिताप उपचार]] में एक जैव-सिरेमिक पदार्थ का प्रत्यारोपण सम्मिलित है जिसमें फेराइट या अन्य चुंबकीय पदार्थ होते है।<ref>{{Cite journal|last1=John|first1=Łukasz|last2=Janeta|first2=Mateusz|last3=Szafert|first3=Sławomir|title=हाइड्रॉक्सीपाटाइट्स द्वारा कवर किए गए कार्यात्मक मेथैक्रिलेट नेटवर्क पर आधारित मैक्रोपोरस मैग्नेटिक बायोस्कैफोल्ड की डिजाइनिंग और संभावित कैंसर हाइपरथर्मिया थेरेपी के लिए नैनो-एमजीएफई 2 ओ 4 के साथ डोप किया गया|journal=Materials Science and Engineering: C|volume=78|pages=901–911|doi=10.1016/j.msec.2017.04.133|year=2017|pmid=28576066}}</ref> इसके बाद क्षेत्र को एक वैकल्पिक चुंबकीय क्षेत्र के संपर्क में लाया जाता है, जिससे प्रत्यारोपण और आसपास के क्षेत्र गर्म हो जाते हैं। वैकल्पिक रूप से, बायोसिरेमिक पदार्थ को β-उत्सर्जन पदार्थ से डोप किया जा सकता है और कैंसर वाले क्षेत्र में प्रत्यारोपित किया जा सकता है।<ref name=Shackelford/> | |||
अन्य प्रवृत्तियों में विशिष्ट कार्यों के लिए अभियांत्रिकी बायोसेरामिक्स सम्मिलित हैं। चल रहे शोध में पदार्थों की जैव-अनुकूलता में सुधार के लिए रसायन शास्त्र, संरचना, और सूक्ष्म और नैनोसंरचना सम्मिलित हैं।<ref>{{cite journal |doi=10.1038/sj.mt.6300084 |title=स्टेम सेल के विस्तार और प्रत्यक्ष विभेदन के लिए बायोमैटेरियल्स दृष्टिकोण|year=2007 |last1=Chai |first1=Chou |last2=Leong |first2=Kam W |journal=Molecular Therapy |volume=15 |issue=3 |pages=467–80 |pmid=17264853 |pmc=2365728}}</ref><ref>{{cite journal |doi=10.1159/000081089 |title=टाइटेनियम सतहों के माइक्रोन- और सबमाइक्रोन-स्केल झरझरा संरचनाओं के लिए ओस्टियोब्लास्ट्स की सेलुलर प्रतिक्रियाएं|year=2004 |last1=Zhu |first1=Xiaolong |last2=Chen |first2=Jun |last3=Scheideler |first3=Lutz |last4=Altebaeumer |first4=Thomas |last5=Geis-Gerstorfer |first5=Juergen |last6=Kern |first6=Dieter |journal=Cells Tissues Organs |volume=178 |pages=13–22 |pmid=15550756 |issue=1|s2cid=20977233 }}</ref><ref>{{cite journal |pmid=15965741 |year=2005 |last1=Hao |first1=L |last2=Lawrence |first2=J |last3=Chian |first3=KS |title=एक लेजर संशोधित जिरकोनिया आधारित बायोसेरामिक पर ओस्टियोब्लास्ट सेल आसंजन|volume=16 |issue=8 |pages=719–26 |doi=10.1007/s10856-005-2608-3 |journal=Journal of Materials Science: Materials in Medicine|s2cid=20642576 }}</ref> | |||
== यह भी देखें == | == यह भी देखें == | ||
*सिरेमिक-गर्भवती | *सिरेमिक-गर्भवती कपड़े। | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist|35em}} | {{reflist|35em}} | ||
<!---Place all category tags here--> | <!---Place all category tags here--> | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with unsourced statements from March 2022]] | |||
[[Category:Created On 10/12/2022]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:अकार्बनिक रसायन]] | |||
[[Category:ओरल और मैक्सिलोफेशियल सर्जरी]] | |||
[[Category:जैव सामग्री]] | [[Category:जैव सामग्री]] | ||
[[Category:प्रत्यारोपण (चिकित्सा)]] | [[Category:प्रत्यारोपण (चिकित्सा)]] | ||
[[Category: | [[Category:प्रोस्थेटिक्स]] | ||
[[Category: | [[Category:बायोमेडिकल इंजीनियरिंग]] | ||
[[Category:भौतिक रसायन]] | |||
[[Category:मुंह की सर्जरी]] | [[Category:मुंह की सर्जरी]] | ||
[[Category:रिस्टोरेटिव डेंटिस्ट्री]] | |||
[[Category:सामग्री विज्ञान]] | |||
[[Category: रिस्टोरेटिव डेंटिस्ट्री]] | [[Category:सिरेमिक इंजीनियरिंग]] | ||
[[Category: | |||
[[Category: |
Latest revision as of 09:59, 17 December 2022
बायोसिरेमिक्स और बायोग्लास सिरेमिक पदार्थ हैं जो जैव संगत हैं।[1] बायोसिरेमिक्स जैव पदार्थ का एक महत्वपूर्ण उपसमुच्चय है।[2][3] बायोसिरेमिक्स में सिरेमिक ऑक्साइड से जैव अनुकूलता होती है, जो निकाय में अक्रिय होती हैं, रिसोर्बेबल पदार्थ के दूसरे चरम तक, जो अंततः मरम्मत में सहायता करने के बाद निकाय द्वारा प्रतिस्थापित कर दिए जाते हैं। बायोसिरेमिक्स का उपयोग कई प्रकार की चिकित्सा प्रक्रियाओं में किया जाता है। बायोसिरेमिक्स प्रायः शल्य चिकित्सा प्रत्यारोपण में कठोर पदार्थ के रूप में उपयोग किए जाते हैं, हालांकि कुछ बायोसेरामिक्स लचीले होते हैं। उपयोग किए जाने वाले सिरेमिक पदार्थ चीनी मिट्टी के बरतन प्रकार के सिरेमिक पदार्थ के समान नहीं है। बल्कि, बायोसिरेमिक या तो निकाय के अपने पदार्थों से निकटता से संबंधित हैं या अत्यंत टिकाऊ धातु ऑक्साइड हैं।
इतिहास
1925 से पहले, प्रत्यारोपण शल्य चिकित्सा में प्रयुक्त पदार्थ मुख्य रूप से अपेक्षाकृत शुद्ध धातु थी। अपेक्षाकृत प्राचीन शल्य चिकित्सा तकनीकों पर विचार करते हुए इन पदार्थों की सफलता आश्चर्यजनक थी। 1930 के दशक ने बेहतर शल्य चिकित्सा तकनीकों के युग के प्रारम्भ के साथ-साथ विटालियम जैसे मिश्र धातुओं का पहला उपयोग चिह्नित किया।
1969 में, एल. एल. हेन्च और अन्य ने पता लगाया कि विभिन्न प्रकार के कांच और सिरेमिक जीवित हड्डी से जुड़ सकते हैं।[4][5] हेन्च पदार्थ पर एक सम्मेलन के लिए अपने रास्ते पर विचार से प्रेरित थे। वह एक कर्नल के पास बैठे थे जो अभी-अभी वियतनाम युद्ध से लौटा थे। कर्नल ने साझा किया कि चोट लगने के बाद सैनिकों के शरीर प्राय़ः प्रत्यारोपण को अस्वीकार कर देते हैं। हेन्च को दिलचस्पी हुई और उन्होंने उन पदार्थों की जांच प्रारम्भ की जो जैव-संगत होंगी। अंतिम उत्पाद एक नया पदार्थ था जिसे उन्होंने बायोग्लास कहा गया। इस कार्य ने बायोसिरेमिक नामक एक नए क्षेत्र को प्रेरित किया।[6] बायोग्लास की खोज के साथ, बायोसेरामिक्स में रुचि तेजी से बढ़ी।
26 अप्रैल, 1988 को क्योटो, जापान में बायोसेरामिक्स पर पहली अंतर्राष्ट्रीय संगोष्ठी आयोजित की गई थी।[7]
अनुप्रयोग
दंत प्रत्यारोपण और हड्डी प्रत्यारोपण के रूप में अब सिरेमिक का प्रायः चिकित्सा क्षेत्रों में उपयोग किया जाता है।[8][9] सर्जिकल सरमेट नियमित रूप से उपयोग किया जाता है। जोड़ प्रतिस्थापन को प्रायः घिसाव और सूजन प्रतिक्रिया को कम करने के लिए बायोकेरामिक पदार्थ के साथ लेपित किया जाता है। बायोसिरेमिक के चिकित्सा उपयोग के अन्य उदाहरण गतिचालक (पेसमेकर), किडनी डायलिसिस मशीन और श्वासयंत्र में हैं।[6] 2010 में चिकित्सा सिरेमिक और सिरेमिक घटकों की वैश्विक मांग लगभग 9.8 बिलियन अमेरिकी डॉलर थी। अगले वर्षों में 6 से 7 प्रतिशत की वार्षिक वृद्धि होने का अनुमान लगाया गया था, साथ ही विश्व बाजार मूल्य 2015 तक बढ़कर 15.3 बिलियन अमेरिकी डॉलर तक पहुंचने और 2018 तक 18.5 बिलियन अमेरिकी डॉलर पहुंच जाने का अनुमान था। [10]
यांत्रिक गुण और संरचना
बायोसेरामिक्स का उपयोग एक्स्ट्राकॉर्पोरियल परिसंचरण तंत्र (उदाहरण के लिए डायलिसिस) या इंजीनियर बायोरिएक्टर में किया जाता है हालांकि, वे प्रत्यारोपण के रूप में सबसे सामान्य हैं।[11] मिट्टी के पात्र अपने भौतिक-रासायनिक गुणों के कारण जैव पदार्थों के रूप में कई अनुप्रयोगों को दिखाते हैं। उनके पास मानव शरीर में निष्क्रिय होने का लाभ है, और उनकी कठोरता और घर्षण के प्रति प्रतिरोध उन्हें हड्डियों और दांतों के प्रतिस्थापन के लिए उपयोगी बनाता है। कुछ सिरेमिक में घर्षण के लिए उत्कृष्ट प्रतिरोध भी होता है, जो उन्हें खराब जोड़ों के लिए प्रतिस्थापन पदार्थ के रूप में उपयोगी बनाता है। विशिष्ट जैव चिकित्सा अनुप्रयोगों के लिए उपस्थिति और विद्युत रोधन जैसे गुण भी चिंता का विषय हैं।
कुछ बायोसेरामिक्स में एल्युमिनियम ऑक्साइड (एल्यूमिना) (Al2O3) सम्मिलित होता है क्योंकि उनका जीवनकाल रोगी की तुलना में लंबा होता है। पदार्थ का उपयोग मध्य कान के अस्थि-पंजर, नेत्र कृत्रिम अंग, पेसमेकर के लिए विद्युत रोधन, मूत्रनलिका छिद्रों और प्रत्यारोपण प्रणाली के कई आदिप्ररूपों जैसे कार्डियक पंप में किया जा सकता है।[12]
एल्युमिनोसिलिकेट्स का उपयोग प्रायः दंत कृत्रिम अंग, शुद्ध या सिरेमिक-बहुलक सम्मिश्रण में किया जाता है। सिरेमिक-बहुलक सम्मिश्रण विषाक्त प्रभाव वाले संदेहास्पद मिश्रणों की जगह गुहाओं को भरने का एक संभावित तरीका है। एल्युमिनोसिलिकेट्स में भी एक कांच की संरचना होती है। राल में कृत्रिम दांतों के विपरीत, दंत सिरेमिक का रंग स्थिर रहता है[11][13] ईट्रियम ऑक्साइड के साथ डोप किए गए ज़िरकोनिया को ऑस्टियोआर्टिकुलर कृत्रिम अंग के लिए एल्यूमिना के विकल्प के रूप में प्रस्तावित किया गया है। मुख्य लाभ अधिक विफलता शक्ति और थकान के लिए अच्छा प्रतिरोध है।
विट्रियस कार्बन का भी उपयोग किया जाता है क्योंकि यह हल्का, पहनने के लिए प्रतिरोधी और रक्त के अनुकूल होता है। इसका उपयोग ज्यादातर कार्डियक वाल्व प्रतिस्थापन में किया जाता है। हीरे का उपयोग समान अनुप्रयोग के लिए किया जा सकता है, लेकिन लेप के रूप में।[12]
कैल्शियम फॉस्फेट-आधारित सिरेमिक वर्तमान में, आर्थोपेडिक और मैक्सिलोफेशियल अनुप्रयोगों में पसंदीदा हड्डी प्रतिस्थापी पदार्थ है, क्योंकि वे संरचना और रासायनिक संरचना में हड्डी के मुख्य खनिज चरण के समान हैं। इस तरह के सिंथेटिक हड्डी प्रतिस्थापी या आलंबी पदार्थ पर छिद्रपूर्ण होती है, जो एक बढ़ी हुई सतह क्षेत्र प्रदान करती है जो ऑसियोइंटीग्रेशन को प्रोत्साहित करती है, जिसमें सेल उपनिवेशीकरण और पुनरोद्धार सम्मिलित है। हालांकि, ऐसा छिद्रपूर्ण पदार्थ प्रायः हड्डी की तुलना में कम यांत्रिक शक्ति प्रदर्शित करता है, जिससे अत्यधिक छिद्रपूर्ण प्रत्यारोपण बहुत नाजुक हो जाते हैं। चूंकि सिरेमिक पदार्थ के लोचदार मापांक मान प्रायः आसपास के हड्डी के ऊतकों की तुलना में अधिक होते हैं, इसलिए प्रत्यारोपण हड्डी के अंतरापृष्ठ पर यांत्रिक तनाव पैदा कर सकता है।[11] प्रायः बायोसिरेमिक्स में पाए जाने वाले कैल्शियम फॉस्फेट में हाइड्रॉक्सीऐपाटाइट (HAP) Ca10(PO4)6(OH)2, ट्राईकैल्शियम फॉस्फेट β (β TCP): Ca3 (PO4)2, और HAP और β TCP का मिश्रण सम्मिलित हैं।
तालिका 1: बायोसेरामिक्स के अनुप्रयोग[12]
उपकरण | कार्य | जैव पदार्थ |
---|---|---|
कृत्रिम कुल कूल्हे, घुटने, कंधे, कोहनी, कलाई | गठिया या खंडित जोड़ों का पुनर्निर्माण करें | उच्च घनत्व एल्यूमिना, धातु बायोग्लास लेप |
हड्डी की प्लेटें, पेंच, तार | फ्रैक्चर की मरम्मत करें | बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण |
अंतर्मज्जा नाखून | फ्रैक्चर संरेखित करें | बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण |
हैरिंगटन की छड़ें | दीर्घकालिक रीढ़ सम्बन्धी वक्रता को ठीक करें | बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण |
स्थायी रूप से प्रत्यारोपित कृत्रिम अंग | अनुपस्थित हाथ-पैर प्रतिस्थापित करें | बायोग्लास-धातु तन्तु मिश्रण, पॉलीसल्फोन-कार्बन तन्तु मिश्रण |
कशेरुक अंतरालको और प्रसारको | जन्मजात विकृतियों को ठीक करें | Al2O3 |
रीढ़ की हड्डी का संलयन | रीढ़ की हड्डी की रक्षा के लिए कशेरुकाओं को स्थिर करें | बायोग्लास |
वायुकोशीय अस्थि प्रतिस्थापन, जबड़े का पुनर्निर्माण | कृत्रिम दांतों की फ़िट में सुधार करने के लिए वायुकोशीय रिज को पुनर्स्थापित करें | पॉलीटेट्रा फ्लोरो एथिलीन (PTFE) - कार्बन मिश्रित, छिद्रपूर्ण Al2O3, बायोग्लास, सघन-एपेटाइट |
अंत हड्डीवाला दांत प्रतिस्थापन प्रत्यारोपण | रोगग्रस्त, क्षतिग्रस्त या ढीले दांतों को बदलें | Al2O3, बायोग्लास, सघन हाइड्रॉक्सीएपेटाइट, विट्रियस कार्बन |
ऑर्थोडॉन्टिक एंकर | विकृतियों को बदलने के लिए आवश्यक तनाव अनुप्रयोग के लिए पद प्रदान करें | बायोग्लास-लेपित Al2O3, बायोग्लास लेपित विटालियम |
तालिका 2: सिरेमिक जैव पदार्थ के यांत्रिक गुण[12]
पदार्थ | यंग मापांक (GPa) | संपीडन प्रबलता (MPa) | बंधन शक्ति (GPa) | दृढ़ता | घनत्व (g/cm3) |
---|---|---|---|---|---|
अक्रिय Al2O3 | 380 | 4000 | 300-400 | 2000-3000(एचवी) | >3.9 |
ZrO2 (PS) | 150-200 | 2000 | 200-500 | 1000-3000(एचवी) | ≈6.0 |
ग्रेफ़ाइट | 20-25 | 138 | एनए | एनए | 1.5-1.9 |
(एलटीआई)पायरोलिटिक कार्बन | 17-28 | 900 | 270-500 | एनए | 1.7-2.2 |
विट्रियस कार्बन | 24-31 | 172 | 70-207 | 150-200(डीपीएच) | 1.4-1.6 |
जैव सक्रिय एचएपी (HAP) | 73-117 | 600 | 120 | 350 | 3.1 |
बायोग्लास | ≈75 | 1000 | 50 | एनए | 2.5 |
एडब्ल्यू (AW) ग्लास सिरेमिक | 118 | 1080 | 215 | 680 | 2.8 |
हड्डी | 3-30 | 130-180 | 60-160 | एनए | एनए |
बहुउद्देशीय
कई प्रत्यारोपित सिरेमिक वास्तव में विशिष्ट जैव चिकित्सा अनुप्रयोगों के लिए डिज़ाइन नहीं किए गए हैं। हालांकि, वे अपने गुणों और अपनी अच्छी जैव-अनुकूलता के कारण विभिन्न प्रत्यारोपण योग्य प्रणालियों में अपना रास्ता खोजने में कामयाब होते हैं। इन सिरेमिक में, हम सिलिकॉन कार्बाइड, टाइटेनियम नाइट्राइड और कार्बाइड और बोरॉन नाइट्राइड का उल्लेख दे सकते हैं। TiN को कूल्हा कृत्रिम अंग में घर्षण सतह के रूप में सुझाया गया है। जबकि कोशिका संवर्धन परीक्षण एक अच्छी जैव-अनुकूलता दिखाते हैं, प्रत्यारोपण का विश्लेषण TiN परत के परिसीमन से संबंधित महत्वपूर्ण घिसाव को दर्शाता है। सिलिकॉन कार्बाइड एक अन्य आधुनिक-दिन का सिरेमिक है जो अच्छी जैव अनुकूलता प्रदान करता है और हड्डी के प्रत्यारोपण में प्रयोग किया जा सकता है।[11]
विशिष्ट उपयोग
उनके पारंपरिक गुणों के लिए उपयोग किए जाने के अलावा, जैव सक्रियता सिरेमिक्स ने अपनी जैविक गतिविधि के कारण विशिष्ट उपयोग देखा है। कैल्शियम फॉस्फेट, ऑक्साइड और हाइड्रॉक्साइड इसके सामान्य उदाहरण हैं। अन्य प्राकृतिक पदार्थ - प्रायः पशु उत्पत्ति की - जैसे कि बायोग्लास और अन्य मिश्रित खनिज-कार्बनिक मिश्रित पदार्थ जैसे कि HAP, एल्यूमिना, या टाइटेनियम डाइऑक्साइड के साथ जैव संगत बहुलक (पॉलीमिथाइलमेथाक्रिलेट)- PMMA, पॉली (L-लैक्टिक) एसिड- PLLA, पॉली (एथिलीन) का संयोजन पेश करते हैं। सम्मिश्रों को बायोरेसोरेबल या गैर-बायोरेसोरबल के रूप में विभेदित किया जा सकता है, बाद वाला एक गैर-बायोरेसोरेबल बहुलक (पीएमएमए, पीई) के साथ बायोरेसोरेबल कैल्शियम फॉस्फेट (एचएपी) के संयोजन का परिणाम है। ये पदार्थ भविष्य में हड्डी के समान यांत्रिक गुणों के साथ जैविक गतिविधि के संयोजन की कई संयोजन संभावनाओं और उनकी योग्यता के कारण और अधिक व्यापक हो सकते हैं।[12]
जैव अनुकूलता
बायोसिरेमिक के जंगरोधी,जैव संगत और सौंदर्य संबंधी होने के गुण उन्हें चिकित्सा उपयोग के लिए काफी उपयुक्त बनाते हैं। ज़िरकोनिया सिरेमिक में जैव अक्रियता और गैरसाइटोटोक्सिसिटी है। हड्डी के समान यांत्रिक गुणों के साथ कार्बन एक अन्य विकल्प है, और इसमें रक्त अनुकूलता, कोई ऊतक प्रतिक्रिया नहीं, और कोशिकाओं के लिए गैर-विषाक्तता भी सम्मिलित है। जैव अक्रिय सिरेमिक्स हड्डी के साथ बंधन प्रदर्शित नहीं करते हैं, जिसे ऑसियोइंटीग्रेशन कहा जाता है। हालांकि, जैव सक्रिय सिरेमिक के साथ सम्मिश्रण बनाकर जैव अक्रिय सिरेमिक की जैव सक्रियता हासिल की जा सकती है। बायोग्लास सहित जैव सक्रिय सिरेमिक गैर-विषैले होने चाहिए, और हड्डी के साथ एक बंधन बनाते हैं। हड्डी की मरम्मत के अनुप्रयोगों में, यानी हड्डी के पुनर्जनन के लिए आलंबी, बायोकेरामिक्स की घुलनशीलता एक महत्वपूर्ण पैरामीटर है, और हड्डी की वृद्धि दर के सापेक्ष अधिकांश बायोसेरामिक्स की धीमी विघटन दर उनके उपचारात्मक उपयोग में एक चुनौती बनी हुई है। अप्रत्याशित रूप से, बायोकेरामिक्स के यांत्रिक गुणों को बनाए रखने या सुधारने के दौरान उनके विघटन विशेषताओं में सुधार करने पर अधिक ध्यान दिया जाता है। क्रिस्टलीय पदार्थ के सापेक्ष उच्च विघटन दर के साथ ग्लास सिरेमिक ऑस्टियोइंडक्टिव गुण प्राप्त करते हैं, जबकि क्रिस्टलीय कैल्शियम फॉस्फेट सिरेमिक भी ऊतकों और बायोरेसोरशन के लिए गैर-विषाक्तता प्रदर्शित करते हैं। सिरेमिक कण सुदृढीकरण ने प्रत्यारोपण अनुप्रयोगों के लिए अधिक पदार्थ का चयन किया है जिसमें सिरेमिक/सिरेमिक, सिरेमिक/बहुलक, और सिरेमिक/धातु सम्मिश्र सम्मिलित हैं। इन सम्मिश्रणों में सेरामिक/बहुलक सम्मिश्रण आस-पास के ऊतकों में विषैले तत्व मुक्त करते पाए गए हैं। धातुओं को संक्षारण संबंधी समस्याओं का सामना करना पड़ता है, और धातु के प्रत्यारोपण पर सिरेमिक लेप लंबे समय तक अनुप्रयोगों के दौरान समय के साथ ख़राब हो जाती हैं। सिरेमिक/सिरेमिक सम्मिश्रण अस्थि खनिजों की समानता के कारण श्रेष्ठता का आनंद लेते हैं, जैव-अनुकूलता प्रदर्शित करते हैं और आकार देने की तैयारी करते हैं। बायोसिरेमिक्स की जैविक गतिविधि को विभिन्न कृत्रिम परिवेशीय और अंतर्जीव अध्ययनों के तहत विचार किया जाना है। प्रत्यारोपण की विशेष स्थान के अनुसार प्रदर्शन की जरूरतों पर विचार किया जाना चाहिए।[12]
प्रसंस्करण
तकनीकी रूप से, सिरेमिक कच्चे माल जैसे पाउडर और प्राकृतिक या कृत्रिम रासायनिक योजक से बने होते हैं, जो या तो संघनन (गर्म, ठंडा या समस्थितिक), समायोजन (हाइड्रोलिक या रासायनिक) के पक्ष में होते हैं, या निसादन प्रक्रियाओं को तेज करते हैं। उपयोग की जाने वाली सूत्रीकरण और आकार देने की प्रक्रिया के अनुसार, बायोसिरेमिक घनत्व और सरंध्रता में सीमेंट, सिरेमिक निक्षेपण, या सिरेमिक सम्मिश्रण के रूप में भिन्न हो सकते हैं। सरंध्रता प्रायः बायोसेरामिक्स में वांछित होती है जिसमें बायोग्लास भीसम्मिलित हैंं। प्रतिरोपित छिद्रपूर्ण बायोसेरामिक्स के प्रदर्शन में सुधार की दिशा में, सरंध्रता, छिद्र आकार वितरण और छिद्र संरेखण के नियंत्रण के लिए कई प्रसंस्करण तकनीकें उपलब्ध हैं। क्रिस्टलीय पदार्थ के लिए, अनाज के आकार और क्रिस्टलीय दोष जैव अवक्रमण और ऑसियोइंटीग्रेशन को बढ़ाने के लिए और मार्ग प्रदान करते हैं, जो प्रभावी हड्डी निरोपण और हड्डी प्रत्यारोपण पदार्थ के लिए महत्वपूर्ण हैं।[11] यह अनाज शोधन करने वाले अपमिश्रक को सम्मिलित करके और विभिन्न भौतिक साधनों के माध्यम से क्रिस्टलीय संरचना में दोष लगाकर प्राप्त किया जा सकता है।
बायोमिमेटिक प्रक्रियाओं पर आधारित एक विकासशील पदार्थ प्रसंस्करण तकनीक का उद्देश्य प्राकृतिक और जैविक प्रक्रियाओं की नकल करना है और परंपरागत या जलतापीय प्रक्रियाओं [GRO 96] के बजाय परिवेश के तापमान पर बायोसिरेमिक बनाने की संभावना प्रदान करना है। इन अपेक्षाकृत कम प्रसंस्करण तापमानों का उपयोग करने की संभावना प्रोटीन और जैविक रूप से सक्रिय अणुओं (विकास कारक, प्रतिजैविक, एंटी-ट्यूमर अभिकर्मक, आदि) के अतिरिक्त जैविक गुणों के साथ खनिज कार्बनिक संयोजनों के लिए संभावनाएं खोलती है। हालांकि, इन पदार्थों में खराब यांत्रिक गुण होते हैं, जिन्हें बंधन प्रोटीन के साथ जोड़कर, आंशिक रूप से सुधारा जा सकता है।[11]
वाणिज्यिक उपयोग
क्लिनिकल उपयोग के लिए व्यावसायिक रूप से उपलब्ध सामान्य जैव सक्रिय पदार्थों में 45S5 जैव सक्रिय ग्लास, A/W जैव सक्रिय ग्लास सिरेमिक, घने कृत्रिम HA और जैव सक्रिय मिश्रण जैसे पॉलीइथाइलीन-HA मिश्रण सम्मिलित हैं। ये सभी पदार्थ आसन्न ऊतक के साथ एक अंतरापृष्ठीय बंधन बनाते हैं।[13]
उच्च शुद्धता वाले एल्यूमिना बायोसेरामिक्स वर्तमान में विभिन्न उत्पादकों के पास व्यावसायिक रूप से उपलब्ध हैं। यू.के. के निर्माता मॉर्गन एडवांस्ड सेरामिक्स (मैक) ने 1985 में आर्थोपेडिक उपकरणों का निर्माण प्रारम्भ किया और जल्द ही यह कूल्हा प्रतिस्थापन के लिए सिरेमिक ऊर्विका सिर का एक मान्यता प्राप्त आपूर्तिकर्ता बन गया। मैक बायोसेरामिक्स का 1985 से HIP Vitox® एल्यूमिना का निर्माण करते हुए, एल्यूमिना सिरेमिक पदार्थ के लिए सबसे लंबा क्लिनिकल इतिहास है।[14] एपेटाइट संरचना वाले कुछ कैल्शियम-कमी वाले फॉस्फेट को इस प्रकार "ट्राईकैल्शियम फॉस्फेट" के रूप में व्यावसायीकरण किया गया, भले ही उन्होंने ट्राइकैल्शियम फॉस्फेट की अपेक्षित क्रिस्टलीय संरचना का प्रदर्शन नहीं किया।[14]
वर्तमान में, एचए (HA) के रूप में वर्णित कई वाणिज्यिक उत्पाद विभिन्न भौतिक रूपों में उपलब्ध हैं (उदाहरण के लिए कणिकाओं, विशिष्ट अनुप्रयोगों के लिए विशेष रूप से डिज़ाइन किए गए ब्लॉक)। HA/बहुलक मिश्रण (HA/पॉलीइथाइलीन, HAPEXTM) आर्थोपेडिक और दंत प्रत्यारोपण के लिए कान के प्रत्यारोपण, अपघर्षक और प्लाज्मा-स्प्रे लेप के लिए भी व्यावसायिक रूप से उपलब्ध है।[14]
कैनबिस या डेल्टा 8 उपकरणों में बायोसिरेमिक्स का उपयोग ऐसे अर्क के वाष्पीकरण के लिए बाती के रूप में किया जाता है।[citation needed]
भविष्य प्रवृत्तियां
बायोसिरेमिक्स को कैंसर के संभावित उपचार के रूप में प्रस्तावित किया गया है। उपचार के दो तरीके प्रस्तावित किए गए हैं- अतिताप और विकिरण चिकित्सा (रेडियोथेरेपी)। अतिताप उपचार में एक जैव-सिरेमिक पदार्थ का प्रत्यारोपण सम्मिलित है जिसमें फेराइट या अन्य चुंबकीय पदार्थ होते है।[15] इसके बाद क्षेत्र को एक वैकल्पिक चुंबकीय क्षेत्र के संपर्क में लाया जाता है, जिससे प्रत्यारोपण और आसपास के क्षेत्र गर्म हो जाते हैं। वैकल्पिक रूप से, बायोसिरेमिक पदार्थ को β-उत्सर्जन पदार्थ से डोप किया जा सकता है और कैंसर वाले क्षेत्र में प्रत्यारोपित किया जा सकता है।[2]
अन्य प्रवृत्तियों में विशिष्ट कार्यों के लिए अभियांत्रिकी बायोसेरामिक्स सम्मिलित हैं। चल रहे शोध में पदार्थों की जैव-अनुकूलता में सुधार के लिए रसायन शास्त्र, संरचना, और सूक्ष्म और नैनोसंरचना सम्मिलित हैं।[16][17][18]
यह भी देखें
- सिरेमिक-गर्भवती कपड़े।
संदर्भ
- ↑ P. Ducheyne, G. W. Hastings (editors) (1984) CRC metal and ceramic biomaterials vol 1 ISBN 0-8493-6261-X
- ↑ 2.0 2.1 J. F. Shackelford (editor)(1999) MSF bioceramics applications of ceramic and glass materials in medicine ISBN 0-87849-822-2
- ↑ H. Oonishi, H. Aoki, K. Sawai (editors) (1988) Bioceramics vol. 1 ISBN 0-912791-82-9
- ↑ Hench, Larry L. (1991). "बायोसेरामिक्स: अवधारणा से क्लिनिक तक" (PDF). Journal of the American Ceramic Society. 74 (7): 1487–1510. CiteSeerX 10.1.1.204.2305. doi:10.1111/j.1151-2916.1991.tb07132.x.
- ↑ T. Yamamuro, L. L. Hench, J. Wilson (editors) (1990) CRC Handbook of bioactive ceramics vol II ISBN 0-8493-3242-7
- ↑ 6.0 6.1 Kassinger, Ruth. Ceramics: From Magic Pots to Man-Made Bones. Brookfield, CT: Twenty-First Century Books, 2003, ISBN 978-0761325857
- ↑ Oonishi, H.; Aoki, H. (1989). Sawai, K. (ed.). बायोकेरामिक्स: प्रथम अंतर्राष्ट्रीय बायोसेरामिक संगोष्ठी की कार्यवाही. Ishiyaku Euroamerica. p. 443. ISBN 978-0912791821. Retrieved 17 February 2016.
- ↑ D. Muster (editor) (1992) Biomaterials hard tissue repair and replacement ISBN 0-444-88350-9
- ↑ Kinnari, Teemu J.; Esteban, Jaime; Gomez-Barrena, Enrique; Zamora, Nieves; Fernandez-Roblas, Ricardo; Nieto, Alejandra; Doadrio, Juan C.; López-Noriega, Adolfo; Ruiz-Hernández, Eduardo; Arcos, Daniel; Vallet-Regí, María (2008). "SiO2-आधारित बहुकार्यात्मक बायोसेरामिक्स के लिए जीवाणु पालन". Journal of Biomedical Materials Research Part A. 89 (1): 215–23. doi:10.1002/jbm.a.31943. PMID 18431760.
- ↑ मार्केट रिपोर्ट: वर्ल्ड मेडिकल सेरामिक्स मार्केट. Acmite Market Intelligence. 2011.
- ↑ 11.0 11.1 11.2 11.3 11.4 11.5 Boch, Philippe, Niepce, Jean-Claude. (2010) Ceramic Materials: Processes, Properties and Applications. doi:10.1002/9780470612415.ch12
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 Thamaraiselvi, T. V., and S. Rajeswari. "Biological evaluation of bioceramic materials-a review." Carbon 24.31 (2004): 172.
- ↑ 13.0 13.1 Hench LL. Bioceramics: From concept to clinic. J Amer CeramSoc 1991;74(7):1487–510.
- ↑ 14.0 14.1 14.2 Kokubo, T. Bioceramics and Their Clinical Applications, Woodhead Publishing Limited, Cambridge, England, 2008 ISBN 978-1-84569-204-9
- ↑ John, Łukasz; Janeta, Mateusz; Szafert, Sławomir (2017). "हाइड्रॉक्सीपाटाइट्स द्वारा कवर किए गए कार्यात्मक मेथैक्रिलेट नेटवर्क पर आधारित मैक्रोपोरस मैग्नेटिक बायोस्कैफोल्ड की डिजाइनिंग और संभावित कैंसर हाइपरथर्मिया थेरेपी के लिए नैनो-एमजीएफई 2 ओ 4 के साथ डोप किया गया". Materials Science and Engineering: C. 78: 901–911. doi:10.1016/j.msec.2017.04.133. PMID 28576066.
- ↑ Chai, Chou; Leong, Kam W (2007). "स्टेम सेल के विस्तार और प्रत्यक्ष विभेदन के लिए बायोमैटेरियल्स दृष्टिकोण". Molecular Therapy. 15 (3): 467–80. doi:10.1038/sj.mt.6300084. PMC 2365728. PMID 17264853.
- ↑ Zhu, Xiaolong; Chen, Jun; Scheideler, Lutz; Altebaeumer, Thomas; Geis-Gerstorfer, Juergen; Kern, Dieter (2004). "टाइटेनियम सतहों के माइक्रोन- और सबमाइक्रोन-स्केल झरझरा संरचनाओं के लिए ओस्टियोब्लास्ट्स की सेलुलर प्रतिक्रियाएं". Cells Tissues Organs. 178 (1): 13–22. doi:10.1159/000081089. PMID 15550756. S2CID 20977233.
- ↑ Hao, L; Lawrence, J; Chian, KS (2005). "एक लेजर संशोधित जिरकोनिया आधारित बायोसेरामिक पर ओस्टियोब्लास्ट सेल आसंजन". Journal of Materials Science: Materials in Medicine. 16 (8): 719–26. doi:10.1007/s10856-005-2608-3. PMID 15965741. S2CID 20642576.