अर्ध-भिन्नता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[गणना]] में, [[वास्तविक संख्या]]-मूल्यवान फलन ''f'' की एकांगी अवकलनीयता और '''अर्ध-विभेद्यता''' की धारणा [[अवकलनीयता]] से कमजोर होती है। विशेष रूप से, फलन'' f '' को बिंदु ''a ''पर सही विभेदक कहा जाता है, मोटे तौर पर बोलते हुए, [[व्युत्पन्न (गणित)]] को फलन'' x ''के रूप में परिभाषित किया जा सकता है,''अगर व्युत्पन्न को ''x ''के रूप में परिभाषित किया जा सकता है, तो वह बाईं ओर से ''a ''तक जाता है।''
[[गणना]] में, [[वास्तविक संख्या]]-मूल्यवान फलन ''f'' की एकांगी अवकलनीयता और '''अर्ध-विभेद्यता''' की धारणा [[अवकलनीयता]] से कमजोर होती है। विशेष रूप से, फलन'' f '' को बिंदु ''a ''पर सही विभेदक कहा जाता है, मोटे तौर पर बोलते हुए, [[व्युत्पन्न (गणित)|व्युत्पन्न(गणित)]] को फलन'' x ''के रूप में परिभाषित किया जा सकता है,''अगर व्युत्पन्न को ''x ''के रूप में परिभाषित किया जा सकता है, तो वह बाईं ओर से ''a ''तक जाता है।''


== एक-आयामी कारक ==
== एक-आयामी कारक ==
[[File:Right-continuous.svg|thumb|right|इस फलनका चिह्नित बिंदु पर व्युत्पन्न नहीं है, क्योंकि फलनवहां [[निरंतर कार्य]] नहीं करता है। हालाँकि, इसका सभी बिंदुओं पर एक सही व्युत्पन्न है <math>\partial_+f(a)</math> लगातार 0 के बराबर।]]गणित में, बाएं व्युत्पन्न और दाहिने व्युत्पन्न एक फलन के तर्क द्वारा केवल एक दिशा में (बाएं या दाएं; यानी, कम या उच्च मूल्यों के लिए) गति के लिए परिभाषित एक [[यौगिक]] (फलन के परिवर्तन की दर) हैं।
[[File:Right-continuous.svg|thumb|right|इस फलन का चिह्नित बिंदु पर व्युत्पन्न नहीं है, क्योंकि फलन वहां [[निरंतर कार्य]] नहीं करता है। हालाँकि, इसका सभी बिंदुओं पर एक सही व्युत्पन्न है <math>\partial_+f(a)</math> लगातार 0 के बराबर।]]गणित में, बाएं व्युत्पन्न और दाहिने व्युत्पन्न एक फलन के तर्क द्वारा केवल एक दिशा में(बाएं या दाएं; यानी, कम या उच्च मूल्यों के लिए) गति के लिए परिभाषित एक [[यौगिक]](फलन के परिवर्तन की दर) हैं।


=== परिभाषाएं ===
=== परिभाषाएं ===


मान लीजिए f वास्तविक संख्याओं के उपसमुच्चय I पर परिभाषित वास्तविक-मूल्यवान फलन को निरूपित करता है।
मान लीजिए f वास्तविक संख्याओं के उपसमुच्चय पर परिभाषित वास्तविक-मूल्यवान फलन को निरूपित करता है।


यदि {{math|''a''&nbsp;&isin;&nbsp;''I''}} का [[सीमा बिंदु]] है {{math|''I''&nbsp;∩}} {{closed-open|''a'',∞}} और [[एक तरफा सीमा]] है।
यदि {{math|''a''&nbsp;&isin;&nbsp;''I''}} का [[सीमा बिंदु]] है {{math|''I''&nbsp;∩}} {{closed-open|''a'',∞}} और [[एक तरफा सीमा]] है।


:<math>\partial_+f(a):=\lim_{{\scriptstyle x\to a^+\atop\scriptstyle x\in I}}\frac{f(x)-f(a)}{x-a}</math>
:<math>\partial_+f(a):=\lim_{{\scriptstyle x\to a^+\atop\scriptstyle x\in I}}\frac{f(x)-f(a)}{x-a}</math>
एक वास्तविक संख्या के रूप में मौजूद है, तो ''f को a'' पर '''सही अवकलनीय''' कहा जाता है और सीमा ''∂'' <sub>+</sub> ''f'' ( ''a'' ) को ''a'' पर ''f'' का '''सही व्युत्पन्न''' कहा जाता है ।
एक वास्तविक संख्या के रूप में मौजूद है, तो ''f को a'' पर '''सही अवकलनीय''' कहा जाता है और सीमा ''∂'' <sub>+</sub> ''f''( ''a'' ) को ''a'' पर ''f'' का '''सही व्युत्पन्न''' कहा जाता है ।


यदि {{math|''a''&nbsp;&isin;&nbsp;''I''}} का सीमा बिंदु है {{math|''I''&nbsp;∩}} {{open-closed|–∞,''a''}} और एक तरफा सीमा है।
यदि {{math|''a''&nbsp;&isin;&nbsp;''I''}} का सीमा बिंदु है {{math|''I''&nbsp;∩}} {{open-closed|–∞,''a''}} और एक तरफा सीमा है।


:<math>\partial_-f(a):=\lim_{{\scriptstyle x\to a^-\atop\scriptstyle x\in I}}\frac{f(x)-f(a)}{x-a}</math>
:<math>\partial_-f(a):=\lim_{{\scriptstyle x\to a^-\atop\scriptstyle x\in I}}\frac{f(x)-f(a)}{x-a}</math>
एक वास्तविक संख्या के रूप में मौजूद है, तो ''f को a'' पर '''बायाँ अवकलनीय''' कहा जाता है और सीमा ''∂'' <sub>–</sub> ''f'' ( ''a'' ) को ''a'' पर ''f'' का '''बायाँ अवकलज''' कहा जाता है ।
एक वास्तविक संख्या के रूप में मौजूद है, तो ''f को a'' पर '''बायाँ अवकलनीय''' कहा जाता है और सीमा ''∂'' <sub>–</sub> ''f''( ''a'' ) को ''a'' पर ''f'' का '''बायाँ अवकलज''' कहा जाता है ।


यदि {{math|''a''&nbsp;&isin;&nbsp;''I''}} का सीमा बिंदु है {{math|''I''&nbsp;∩}} {{closed-open|''a'',∞}} तथा {{math|''I''&nbsp;∩&nbsp;{{open-closed|–∞,''a''}}}} और यदि f, a पर बाएँ और दाएँ अवकलनीय है, तो f को a पर 'अर्द्ध अवकलनीय' कहा जाता है।
यदि {{math|''a''&nbsp;&isin;&nbsp;''I''}} का सीमा बिंदु है {{math|''I''&nbsp;∩}} {{closed-open|''a'',∞}} तथा {{math|''I''&nbsp;∩&nbsp;{{open-closed|–∞,''a''}}}} और यदि f, a पर बाएँ और दाएँ अवकलनीय है, तो f को a पर 'अर्द्ध अवकलनीय' कहा जाता है।


यदि बाएँ और दाएँ व्युत्पन्न समान हैं, तो उनका मान सामान्य (द्विदिश) व्युत्पन्न के समान है। कोई एक [[सममित व्युत्पन्न]] को भी परिभाषित कर सकता है, जो बाएं और दाएं व्युत्पन्न के अंकगणितीय माध्य के बराबर होता है (जब वे दोनों मौजूद होते हैं), इसलिए सामान्य व्युत्पन्न नहीं होने पर सममित व्युत्पन्न मौजूद हो सकता है।<ref name="Mercer2014">{{cite book|author=Peter R. Mercer|title=एकल चर का अधिक पथरी|year=2014|publisher=Springer|isbn=978-1-4939-1926-0|page=173}}</ref>
यदि बाएँ और दाएँ व्युत्पन्न समान हैं, तो उनका मान सामान्य(द्विदिश) व्युत्पन्न के समान है। कोई एक [[सममित व्युत्पन्न]] को भी परिभाषित कर सकता है, जो बाएं और दाएं व्युत्पन्न के अंकगणितीय माध्य के बराबर होता है(जब वे दोनों मौजूद होते हैं), इसलिए सामान्य व्युत्पन्न नहीं होने पर सममित व्युत्पन्न मौजूद हो सकता है।<ref name="Mercer2014">{{cite book|author=Peter R. Mercer|title=एकल चर का अधिक पथरी|year=2014|publisher=Springer|isbn=978-1-4939-1926-0|page=173}}</ref>
===टिप्पणी और उदाहरण ===
===टिप्पणी और उदाहरण ===


Line 26: Line 26:
* एक अर्ध-विभेदक फलन का एक उदाहरण, जो अवकलनीय नहीं है, पर निरपेक्ष मान फलन है <math> f(x)=|x| </math>, a = 0। हम आसानी से खोज लेते हैं <math> \partial_-f(0)=-1, \partial_+f(0)=1. </math>
* एक अर्ध-विभेदक फलन का एक उदाहरण, जो अवकलनीय नहीं है, पर निरपेक्ष मान फलन है <math> f(x)=|x| </math>, a = 0। हम आसानी से खोज लेते हैं <math> \partial_-f(0)=-1, \partial_+f(0)=1. </math>
* यदि कोई फलन बिंदु a पर अर्ध विभेदनीय है, तो इसका तात्पर्य है कि यह a पर सतत है।
* यदि कोई फलन बिंदु a पर अर्ध विभेदनीय है, तो इसका तात्पर्य है कि यह a पर सतत है।
* [[सूचक समारोह]] 1<sub><nowiki>[</nowiki>0,∞)</sub> प्रत्येक a पर अलग-अलग होने योग्य है, लेकिन शून्य पर बंद है (ध्यान दें कि यह संकेतक फलन शून्य पर अलग-अलग नहीं छोड़ा गया है)।
* [[सूचक समारोह]] 1<sub><nowiki>[</nowiki>0,∞)</sub> प्रत्येक a पर अलग-अलग होने योग्य है, लेकिन शून्य पर बंद है(ध्यान दें कि यह संकेतक फलन शून्य पर अलग-अलग नहीं छोड़ा गया है)।


=== उपयोग ===
=== उपयोग ===
Line 40: Line 40:
== उच्च-आयामी कारक ==
== उच्च-आयामी कारक ==


इस उपरोक्त परिभाषा को 'R' के सबसेट पर परिभाषित वास्तविक-मूल्य वाले कार्यों के लिए सामान्यीकृत किया जा सकता है।<sup>n</sup> दिशात्मक डेरिवेटिव के कमज़ोर संस्करण का उपयोग करके। मान लीजिए a, f के प्रांत का एक आंतरिक बिंदु है। फिर बिंदु a पर f को सेमी-डिफ़रेंशिएबल कहा जाता है यदि हर दिशा के लिए u ∈ 'R'<sup>n</sup> सीमा
इस उपरोक्त परिभाषा को दिशात्मक व्युत्पन्न के कमज़ोर संस्करण का उपयोग करके सबसेट ''''R'''<sup>''n''</sup> ' पर वास्तविक-मूल्य वाले कार्यों के लिए परिभाषित किया जा सकता है। मान लीजिए a, f के कार्यक्षेत्र का आंतरिक बिंदु है तब बिंदु a पर f को सेमी-डिफ़रेंशिएबल कहा जाता है यदि हर दिशा के लिए u ∈ 'R'<sup>n</sup> सीमा है 


:<math>\partial_uf(a)=\lim_{h\to 0^+}\frac{f(a+h\, u)-f(a)}{h}</math>
:<math>\partial_uf(a)=\lim_{h\to 0^+}\frac{f(a+h\, u)-f(a)}{h}</math>
साथ <math> h \in </math> R एक वास्तविक संख्या के रूप में मौजूद है।
साथ <math> h \in </math> R एक वास्तविक संख्या के रूप में मौजूद है।


अर्ध-भिन्नता इस प्रकार [[व्युत्पन्न केक]] की तुलना में कमजोर है, जिसके लिए कोई भी ''एच'' → 0 से ऊपर की सीमा में 'एच'' को केवल सकारात्मक मूल्यों तक सीमित किए बिना लेता है।
अर्ध-भिन्नता इस प्रकार [[व्युत्पन्न केक|व्युत्पन्न]] की तुलना में कमजोर है, जिसके लिए कोई भी ''h''→ 0 से ऊपर की सीमा में 'h' ''को केवल सकारात्मक मूल्यों तक सीमित किए बिना लेता है।''


उदाहरण के लिए, समारोह <math>f(x, y) = \sqrt{x^2 + y^2}</math> पर अर्द्धविभेद्य है <math>(0, 0)</math>, लेकिन वहाँ गैटॉक्स अलग-अलग नहीं है। वास्तव में,
उदाहरण के लिए, समारोह <math>f(x, y) = \sqrt{x^2 + y^2}</math> पर अर्द्धविभेद्य है <math>(0, 0)</math>, लेकिन वहाँ गैटॉक्स अलग-अलग नहीं है। वास्तव में,
Line 53: Line 53:
== गुण ==
== गुण ==


* आर के उत्तल खुले सेट पर कोई उत्तल कार्य<sup>n</sup> सेमी-डिफ़रेंशिएबल है।
* '''R'''<sup>''n''</sup> के उत्तल खुले सेट पर कोई उत्तल कार्य अर्द्धविभेद्य है।
* जबकि एक चर का प्रत्येक अर्ध-अवकलनीय फलन सतत होता है; यह अब कई चरों के लिए सत्य नहीं है।
* जबकि एक चर का प्रत्येक अर्ध-अवकलनीय फलन सतत होता है; यह अब कई चरों के लिए सत्य नहीं है।


== सामान्यीकरण ==
== सामान्यीकरण ==


वास्तविक-मूल्यवान कार्यों के बजाय, आर में मान लेने वाले कार्यों पर विचार किया जा सकता है<sup>n</sup> या [[बनच स्थान]] में।
वास्तविक-मूल्यवान कार्यों के बजाय, '''R''' <sup>''n''</sup> या एक [[बनच स्थान]] में मान लेने वाले कार्यों पर विचार किया जा सकता है


== यह भी देखें ==
== यह भी देखें ==
Line 67: Line 67:
* गेटॉक्स व्युत्पन्न
* गेटॉक्स व्युत्पन्न
* फ्रेचेट व्युत्पन्न
* फ्रेचेट व्युत्पन्न
* [[व्युत्पन्न (सामान्यीकरण)]]
* [[व्युत्पन्न (सामान्यीकरण)|व्युत्पन्न(सामान्यीकरण)]]
* फेज स्पेस फॉर्मूलेशन # स्टार उत्पाद
* चरण स्थान सूत्रीकरण
* [[दीनी व्युत्पन्न]]
* [[दीनी व्युत्पन्न]]
==इस पेज में लापता आंतरिक लिंक की सूची==
*अंक शास्त्र
*समारोह (गणित)
*अंकगणित औसत
*निरपेक्ष मूल्य
*किसी फलन का डोमेन
*औसत मूल्य प्रमेय
*दिशात्मक व्युत्पन्न
*उत्तल समारोह
*खुला सेट
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
* {{cite journal |last1=Preda |first1=V. |last2=Chiţescu |first2=I. |title=On Constraint Qualification in Multiobjective Optimization Problems: Semidifferentiable Case |journal=J. Optim. Theory Appl. |volume=100 |year=1999 |issue=2 |pages=417–433 |doi=10.1023/A:1021794505701 |s2cid=119868047 }}
* {{cite journal |last1=Preda |first1=V. |last2=Chiţescu |first2=I. |title=On Constraint Qualification in Multiobjective Optimization Problems: Semidifferentiable Case |journal=J. Optim. Theory Appl. |volume=100 |year=1999 |issue=2 |pages=417–433 |doi=10.1023/A:1021794505701 |s2cid=119868047 }}
[[Category:Created On 25/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:कार्य और मानचित्रण]]
[[Category:वास्तविक विश्लेषण]]
[[Category:वास्तविक विश्लेषण]]
[[Category:विभेदक कलन]]
[[Category:विभेदक कलन]]
[[Category:साक्ष्य युक्त लेख]]
[[Category:साक्ष्य युक्त लेख]]
[[Category: कार्य और मानचित्रण]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/11/2022]]

Latest revision as of 09:36, 28 December 2022

गणना में, वास्तविक संख्या-मूल्यवान फलन f की एकांगी अवकलनीयता और अर्ध-विभेद्यता की धारणा अवकलनीयता से कमजोर होती है। विशेष रूप से, फलन f को बिंदु a पर सही विभेदक कहा जाता है, मोटे तौर पर बोलते हुए, व्युत्पन्न(गणित) को फलन x के रूप में परिभाषित किया जा सकता है,अगर व्युत्पन्न को x के रूप में परिभाषित किया जा सकता है, तो वह बाईं ओर से a तक जाता है।

एक-आयामी कारक

इस फलन का चिह्नित बिंदु पर व्युत्पन्न नहीं है, क्योंकि फलन वहां निरंतर कार्य नहीं करता है। हालाँकि, इसका सभी बिंदुओं पर एक सही व्युत्पन्न है लगातार 0 के बराबर।

गणित में, बाएं व्युत्पन्न और दाहिने व्युत्पन्न एक फलन के तर्क द्वारा केवल एक दिशा में(बाएं या दाएं; यानी, कम या उच्च मूल्यों के लिए) गति के लिए परिभाषित एक यौगिक(फलन के परिवर्तन की दर) हैं।

परिभाषाएं

मान लीजिए f वास्तविक संख्याओं के उपसमुच्चय पर परिभाषित वास्तविक-मूल्यवान फलन को निरूपित करता है।

यदि a ∈ I का सीमा बिंदु है I ∩ [a,∞) और एक तरफा सीमा है।

एक वास्तविक संख्या के रूप में मौजूद है, तो f को a पर सही अवकलनीय कहा जाता है और सीमा + f( a ) को a पर f का सही व्युत्पन्न कहा जाता है ।

यदि a ∈ I का सीमा बिंदु है I ∩ (–∞,a] और एक तरफा सीमा है।

एक वास्तविक संख्या के रूप में मौजूद है, तो f को a पर बायाँ अवकलनीय कहा जाता है और सीमा f( a ) को a पर f का बायाँ अवकलज कहा जाता है ।

यदि a ∈ I का सीमा बिंदु है I ∩ [a,∞) तथा I ∩ (–∞,a] और यदि f, a पर बाएँ और दाएँ अवकलनीय है, तो f को a पर 'अर्द्ध अवकलनीय' कहा जाता है।

यदि बाएँ और दाएँ व्युत्पन्न समान हैं, तो उनका मान सामान्य(द्विदिश) व्युत्पन्न के समान है। कोई एक सममित व्युत्पन्न को भी परिभाषित कर सकता है, जो बाएं और दाएं व्युत्पन्न के अंकगणितीय माध्य के बराबर होता है(जब वे दोनों मौजूद होते हैं), इसलिए सामान्य व्युत्पन्न नहीं होने पर सममित व्युत्पन्न मौजूद हो सकता है।[1]

टिप्पणी और उदाहरण

  • कोई फलन किसी फलन के आंतरिक बिंदु a पर व्युत्पन्न होता है यदि यह a पर अर्ध-विभेद्य हो और बायाँ अवकलज दाएँ अवकलज के बराबर हो।
  • एक अर्ध-विभेदक फलन का एक उदाहरण, जो अवकलनीय नहीं है, पर निरपेक्ष मान फलन है , a = 0। हम आसानी से खोज लेते हैं
  • यदि कोई फलन बिंदु a पर अर्ध विभेदनीय है, तो इसका तात्पर्य है कि यह a पर सतत है।
  • सूचक समारोह 1[0,∞) प्रत्येक a पर अलग-अलग होने योग्य है, लेकिन शून्य पर बंद है(ध्यान दें कि यह संकेतक फलन शून्य पर अलग-अलग नहीं छोड़ा गया है)।

उपयोग

यदि एक वास्तविक-मूल्यवान, अवकलनीय फलन f, जो वास्तविक रेखा के अंतराल पर परिभाषित है, का हर जगह शून्य व्युत्पन्न है, तो यह स्थिर है, जैसा कि माध्य मान प्रमेय के एक अनुप्रयोग से पता चलता है। भिन्नता की धारणा निरंतरता और f की एकतरफा भिन्नता के लिए कमजोर हो सकती है। अलग-अलग कार्यों के लिए संस्करण नीचे दिया गया है, अलग-अलग कार्यों के संस्करण समान हैं।

Theorem — मान लीजिए f एक वास्तविक-मूल्यवान, सतत फलन है, जो वास्तविक रेखा के स्वेच्छ अंतराल पर परिभाषित है, यदि f प्रत्येक बिंदु a ∈ I पर सही अवकलनीय है, जो अंतराल का सर्वोच्च नहीं है, तब व्युत्पन्न हमेशा शून्य है, तो f स्थिर है ।

बाएँ या दाएँ कार्य करने वाले विभेदक संकारक

सामान्य उपयोग इंफिक्स नोटेशन में द्विआधारी संक्रिया के रूप में अभिक्रियित किए गए व्युत्पन्न का वर्णन करना है, जिसमें व्युत्पन्न को या तो बाएं या दाएं ओपेरंड पर लागू किया जाना है। यह उपयोगी है, उदाहरण के लिए, पॉइसन ब्रैकेट के सामान्यीकरण को परिभाषित करते समय कार्यों की एक जोड़ी f और g के लिए, बाएँ और दाएँ व्युत्पन्न क्रमशः परिभाषित किए गए हैं

ब्रा-केट नोटेशन में, व्युत्पन्न संकारक सही संकार्य पर नियमित व्युत्पन्न के रूप में बाईं या नकारात्मक व्युत्पन्न के रूप में कार्य कर सकता है।[2]

उच्च-आयामी कारक

इस उपरोक्त परिभाषा को दिशात्मक व्युत्पन्न के कमज़ोर संस्करण का उपयोग करके सबसेट 'Rn ' पर वास्तविक-मूल्य वाले कार्यों के लिए परिभाषित किया जा सकता है। मान लीजिए a, f के कार्यक्षेत्र का आंतरिक बिंदु है तब बिंदु a पर f को सेमी-डिफ़रेंशिएबल कहा जाता है यदि हर दिशा के लिए u ∈ 'R'n सीमा है

साथ R एक वास्तविक संख्या के रूप में मौजूद है।

अर्ध-भिन्नता इस प्रकार व्युत्पन्न की तुलना में कमजोर है, जिसके लिए कोई भी h→ 0 से ऊपर की सीमा में 'h' को केवल सकारात्मक मूल्यों तक सीमित किए बिना लेता है।

उदाहरण के लिए, समारोह पर अर्द्धविभेद्य है , लेकिन वहाँ गैटॉक्स अलग-अलग नहीं है। वास्तव में,

 साथ 

(ध्यान दें कि यह सामान्यीकरण n = 1 की मूल परिभाषा के समतुल्य नहीं है क्योंकि एक तरफा सीमा बिंदुओं की अवधारणा को आंतरिक बिंदुओं की मजबूत अवधारणा से बदल दिया गया है।)

गुण

  • Rn के उत्तल खुले सेट पर कोई उत्तल कार्य अर्द्धविभेद्य है।
  • जबकि एक चर का प्रत्येक अर्ध-अवकलनीय फलन सतत होता है; यह अब कई चरों के लिए सत्य नहीं है।

सामान्यीकरण

वास्तविक-मूल्यवान कार्यों के बजाय, R n या एक बनच स्थान में मान लेने वाले कार्यों पर विचार किया जा सकता है

यह भी देखें

संदर्भ

  1. Peter R. Mercer (2014). एकल चर का अधिक पथरी. Springer. p. 173. ISBN 978-1-4939-1926-0.
  2. Dirac, Paul (1982) [1930]. क्वांटम यांत्रिकी के सिद्धांत. USA: Oxford University Press. ISBN 978-0198520115.
  • Preda, V.; Chiţescu, I. (1999). "On Constraint Qualification in Multiobjective Optimization Problems: Semidifferentiable Case". J. Optim. Theory Appl. 100 (2): 417–433. doi:10.1023/A:1021794505701. S2CID 119868047.