कर्षण मोटर: Difference between revisions

From Vigyanwiki
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 2: Line 2:
[[File:ZQDR-410 traction motor.jpg|thumb|एक ZQDR-410 ट्रैक्शन मोटर (छोटे झरोखों वाली वस्तु)]]कर्षण मोटर एक [[विद्युत मोटर]] है जिसका उपयोग किसी वाहन के प्रणोदन के लिए किया जाता है, जैसे [[लोकोमोटिव]], [[विद्युतीय वाहन]] या [[हाइड्रोजन वाहन]], लिफ्ट या [[इलेक्ट्रिक मल्टीपल यूनिट]]।
[[File:ZQDR-410 traction motor.jpg|thumb|एक ZQDR-410 ट्रैक्शन मोटर (छोटे झरोखों वाली वस्तु)]]कर्षण मोटर एक [[विद्युत मोटर]] है जिसका उपयोग किसी वाहन के प्रणोदन के लिए किया जाता है, जैसे [[लोकोमोटिव]], [[विद्युतीय वाहन]] या [[हाइड्रोजन वाहन]], लिफ्ट या [[इलेक्ट्रिक मल्टीपल यूनिट]]।


कर्षण मोटर का उपयोग विद्युत चालित रेल वाहनों (इलेक्ट्रिक मल्टीपल यूनिट्स) और अन्य इलेक्ट्रिक वाहनों में किया जाता है, जिसमें [[बिजली का दूध तैरता है]]्स, लिफ्ट, [[रोलर कॉस्टर]], [[कन्वेयर]] और [[trolleybus]] शामिल हैं, साथ ही इलेक्ट्रिकल ट्रांसमिशन सिस्टम वाले वाहन (डीजल-इलेक्ट्रिक लोकोमोटिव, इलेक्ट्रिक [[हाइब्रिड वाहन]]), और [[बैटरी इलेक्ट्रिक वाहन]]
कर्षण मोटर का उपयोग विद्युत चालित रेल वाहनों (इलेक्ट्रिक मल्टीपल यूनिट्स) और अन्य इलेक्ट्रिक वाहनों में किया जाता है, जिसमें [[बिजली का दूध तैरता है|इलेक्ट्रिक मिल्क फ्लोट]], लिफ्ट, [[रोलर कॉस्टर]], [[कन्वेयर]] और [[trolleybus|ट्राली बस]] सम्मिलित हैं, साथ ही इलेक्ट्रिकल ट्रांसमिशन सिस्टम वाले वाहन (डीजल-इलेक्ट्रिक लोकोमोटिव, इलेक्ट्रिक [[हाइब्रिड वाहन]]), और [[बैटरी इलेक्ट्रिक वाहन]] भी इसके प्रमुख उदाहरण हैं।
{{toclimit|3}}
{{toclimit|3}}




== मोटर प्रकार और नियंत्रण ==
== मोटर प्रकार और नियंत्रण ==
[[डीसी यंत्र]] | सीरीज [[फील्ड कॉइल]] वाली डायरेक्ट-करंट मोटर सबसे पुरानी प्रकार की ट्रैक्शन मोटर हैं। ये प्रणोदन के लिए उपयोगी गति-टोक़ विशेषता प्रदान करते हैं, वाहन के त्वरण के लिए कम गति पर उच्च टोक़ प्रदान करते हैं, और गति में वृद्धि के रूप में टोक़ में गिरावट आती है। कई नलों के साथ फील्ड वाइंडिंग की व्यवस्था करके, गति की विशेषता को विविध किया जा सकता है, जिससे त्वरण का अपेक्षाकृत सुचारू ऑपरेटर नियंत्रण हो सकता है। [[श्रृंखला-समानांतर नियंत्रण]] में वाहन पर मोटरों के जोड़े का उपयोग करके नियंत्रण का एक और उपाय प्रदान किया जाता है; धीमे संचालन या भारी भार के लिए, दो मोटरों को प्रत्यक्ष-वर्तमान आपूर्ति से श्रृंखला में चलाया जा सकता है। जहां उच्च गति की आवश्यकता होती है, इन मोटरों को समानांतर में संचालित किया जा सकता है, जिससे प्रत्येक मोटर पर उच्च वोल्टेज उपलब्ध हो जाता है और इसलिए उच्च गति की अनुमति मिलती है। एक रेल प्रणाली के हिस्से अलग-अलग वोल्टेज का उपयोग कर सकते हैं, स्टेशनों के बीच लंबे समय तक चलने वाले उच्च वोल्टेज और स्टेशनों के पास कम वोल्टेज जहां केवल धीमी गति से संचालन की आवश्यकता होती है।
[[डीसी यंत्र]] शृंखला [[फील्ड कॉइल]] वाली डायरेक्ट-करंट मोटर सबसे पुरानी प्रकार की ट्रैक्शन मोटर हैं। ये प्रणोदन के लिए उपयोगी गति-टोक़ विशेषता प्रदान करते हैं, वाहन के त्वरण के लिए कम गति पर उच्च टोक़ प्रदान करते हैं, और गति में वृद्धि के रूप में टोक़ में गिरावट आती है। कई नलों के साथ फील्ड वाइंडिंग की व्यवस्था करके, गति की विशेषता को विविध किया जा सकता है, जिससे त्वरण का अपेक्षाकृत सुचारू ऑपरेटर नियंत्रण हो सकता है। [[श्रृंखला-समानांतर नियंत्रण]] में वाहन पर मोटरों के जोड़े का उपयोग करके नियंत्रण का एक और उपाय प्रदान किया जाता है; धीमे संचालन या भारी भार के लिए, दो मोटरों को प्रत्यक्ष-वर्तमान आपूर्ति से श्रृंखला में चलाया जा सकता है। जहां उच्च गति की आवश्यकता होती है, इन मोटरों को समानांतर में संचालित किया जा सकता है, जिससे प्रत्येक मोटर पर उच्च वोल्टेज उपलब्ध हो जाता है और इसलिए उच्च गति की अनुमति मिलती है। एक रेल प्रणाली के हिस्से अलग-अलग वोल्टेज का उपयोग कर सकते हैं, स्टेशनों के बीच लंबे समय तक चलने वाले उच्च वोल्टेज और स्टेशनों के पास कम वोल्टेज जहां केवल धीमी गति से संचालन की आवश्यकता होती है।


डीसी प्रणाली का एक प्रकार ऐसी श्रृंखला मोटर है, जिसे सार्वभौमिक मोटर के रूप में भी जाना जाता है, जो अनिवार्य रूप से एक ही उपकरण है लेकिन [[प्रत्यावर्ती धारा]] पर संचालित होता है। चूंकि आर्मेचर और फील्ड करंट दोनों एक ही समय में रिवर्स होते हैं, इसलिए मोटर का व्यवहार वैसा ही होता है, जब डायरेक्ट करंट से सक्रिय होता है। बेहतर परिचालन स्थितियों को प्राप्त करने के लिए रेलवे को अक्सर सामान्य प्रकाश व्यवस्था और बिजली के लिए उपयोग की जाने वाली वाणिज्यिक आपूर्ति की तुलना में कम [[उपयोगिता आवृत्ति]] पर करंट की आपूर्ति की जाती है; विशेष कर्षण वर्तमान बिजली स्टेशनों का उपयोग किया जाता है, या [[रोटरी कनवर्टर]]्स  के लिए उपयोग की जाने वाली 50 या 60 हर्ट्ज वाणिज्यिक शक्ति को 25 हर्ट्ज या {{frac|16|2|3}}हर्ट्ज आवृत्ति में परिवर्तित करने के लिए रोटरी कन्वर्टर्स का उपयोग किया जाता है। क्योंकि यह [[ट्रांसफार्मर]]के सरल उपयोग की अनुमति देता है, ऐसी प्रणाली रेल लाइन की लंबाई के नीचे बिजली के कुशल वितरण की अनुमति देती है,और वाहन पर स्विचगियर के साथ गति नियंत्रण की भी अनुमति देती है।
डीसी प्रणाली का एक प्रकार ऐसी श्रृंखला मोटर है, जिसे सार्वभौमिक मोटर के रूप में भी जाना जाता है, जो अनिवार्य रूप से एक ही उपकरण है लेकिन [[प्रत्यावर्ती धारा]] पर संचालित होता है। चूंकि आर्मेचर और फील्ड करंट दोनों एक ही समय में रिवर्स होते हैं, इसलिए मोटर का व्यवहार वैसा ही होता है, जो कि डायरेक्ट करंट से सक्रिय होता है। बेहतर परिचालन स्थितियों को प्राप्त करने के लिए रेलवे को प्रायः सामान्य प्रकाश व्यवस्था और बिजली के लिए उपयोग की जाने वाली वाणिज्यिक आपूर्ति की तुलना में कम [[उपयोगिता आवृत्ति]] पर करंट की आपूर्ति के लिए विशेष कर्षण वर्तमान बिजली स्टेशनों का उपयोग किया जाता है, या [[रोटरी कनवर्टर]] के लिए उपयोग की जाने वाली 50 या 60 हर्ट्ज वाणिज्यिक शक्ति को 25 हर्ट्ज या {{frac|16|2|3}}हर्ट्ज आवृत्ति में परिवर्तित करने के लिए रोटरी कन्वर्टर्स का उपयोग किया जाता है। क्योंकि यह [[ट्रांसफार्मर]] के सरल उपयोग की अनुमति देता है, ऐसी प्रणाली रेल लाइन की लंबाई के नीचे बिजली के कुशल वितरण की अनुमति देती है,और वाहन पर स्विचगियर के साथ गति नियंत्रण की भी अनुमति देती है।


[[एसी प्रेरण मोटर]]्स और [[तुल्यकालिक मोटर]]्स सरल और कम रख रखाव वाले होते हैं, लेकिन [[पावर सेमीकंडक्टर डिवाइस]] के आगमन तक, उनकी निश्चित गति विशेषता के कारण ट्रैक्शन मोटर्स के लिए आवेदन करना अजीब था। एक ऐसी इंडक्शन मोटर अपने निर्माण और बिजली आपूर्ति की आवृत्ति द्वारा निर्धारित एक संकीर्ण गति सीमा पर ही उपयोगी मात्रा में बिजली उत्पन्न करती है। शक्ति अर्धचालकों के आगमन ने लोकोमोटिव पर एक [[चर आवृत्ति ड्राइव]] को फिट करना संभव बना दिया है; यह गति की एक विस्तृत श्रृंखला,  ऐसी पॉवर ट्रांसमिशन, और मज़बूत इंडक्शन मोटर्स के उपयोग की अनुमति देता है जिसमें ब्रश और कम्यूटेटर जैसे पुर्जे नहीं होते हैं।<ref name="AS08">Andreas Steimel ''Electric Traction - Motive Power and Energy Supply: Basics and Practical Experience '' Oldenbourg Industrieverlag, 2008 {{ISBN|3835631322}} ; Chapter 6 "Induction Traction Motors and Their Control"</ref>
[[एसी प्रेरण मोटर]] और [[तुल्यकालिक मोटर]] सरल और कम रख रखाव वाले होते हैं, लेकिन [[पावर सेमीकंडक्टर डिवाइस]] के आगमन तक उनकी निश्चित गति विशेषता के कारण ट्रैक्शन मोटर्स के लिए आवेदन करना अद्वितीय था। एक ऐसी इंडक्शन मोटर अपने निर्माण और बिजली आपूर्ति की आवृत्ति द्वारा निर्धारित एक संकीर्ण गति सीमा पर ही उपयोगी मात्रा में बिजली उत्पन्न करती है। शक्ति अर्धचालकों के आगमन ने लोकोमोटिव पर एक [[चर आवृत्ति ड्राइव]] को फिट करना संभव बना दिया है; यह गति की एक विस्तृत श्रृंखला, ऐसी पॉवर ट्रांसमिशन, और मज़बूत इंडक्शन मोटर्स के उपयोग की अनुमति देता है जिसमें ब्रश और कम्यूटेटर जैसे पुर्जे नहीं होते हैं।<ref name="AS08">Andreas Steimel ''Electric Traction - Motive Power and Energy Supply: Basics and Practical Experience '' Oldenbourg Industrieverlag, 2008 {{ISBN|3835631322}} ; Chapter 6 "Induction Traction Motors and Their Control"</ref>




Line 19: Line 19:
{{see also|हाइब्रिड इलेक्ट्रिक वाहन|बैटरी इलेक्ट्रिक वाहन}}
{{see also|हाइब्रिड इलेक्ट्रिक वाहन|बैटरी इलेक्ट्रिक वाहन}}


परंपरागत रूप से सड़क वाहनों (कारों, बसों और ट्रकों) ने एक यांत्रिक या हाइड्रोलिक ट्रांसमिशन सिस्टम के साथ डीजल और पेट्रोल इंजन का इस्तेमाल किया है। 20वीं शताब्दी के उत्तरार्ध में, विद्युत संचरण प्रणाली वाले वाहन ([[आंतरिक दहन इंजन]],बैटरी या ईंधन कोशिकाओं से संचालित) विकसित होने लगे - विद्युत मशीनों का उपयोग करने का एक फायदा यह है कि विशिष्ट प्रकार ऊर्जा को पुन: उत्पन्न कर सकते हैं (अर्थात एक पुनर्योजी के रूप में कार्य करते हैं)और बैटरी पैक चार्ज करके मंदी प्रदान करने के साथ-साथ समग्र दक्षता में वृद्धि।
परंपरागत रूप से सड़क वाहनों (कारों, बसों और ट्रकों) ने एक यांत्रिक या हाइड्रोलिक ट्रांसमिशन सिस्टम के साथ डीजल और पेट्रोल इंजन का उपयोग किया है। 20वीं शताब्दी के उत्तरार्ध में, विद्युत संचरण प्रणाली वाले वाहन ([[आंतरिक दहन इंजन]],बैटरी या ईंधन कोशिकाओं से संचालित) विकसित होने लगे किन्तु विद्युत मशीनों का उपयोग करने का एक लाभ यह है कि विशिष्ट प्रकार से ऊर्जा को पुन: उत्पन्न कर सकते हैं (अर्थात एक पुनर्योजी के रूप में कार्य करते हैं) और बैटरी पैक चार्ज करके क्षय प्रदान करने के साथ-साथ समग्र दक्षता में वृद्धि के रूप में कार्य करते हैं।


===रेलवे ===
===रेलवे ===
[[File:Ge 6-6 I 407 Krokodil.jpeg|thumb|स्विस रेहेटियन रेलवे जीई 6/6 I [[मगरमच्छ (लोकोमोटिव)]] लोकोमोटिव, प्रत्येक बोगी के ऊपर एक बड़ी कर्षण मोटर के साथ, कपलिंग रॉड द्वारा ड्राइव के साथ।]]परंपरागत रूप से, ये यूनिवर्सल मोटर|श्रृंखला-घाव वाले ब्रश डीसी मोटर थे, जो आमतौर पर लगभग 600 वोल्ट पर चलते थे। उच्च शक्ति वाले सेमीकंडक्टर्स ([[thyristors]] और [[आईजीबीटी]]) की उपलब्धता ने अब अतुल्यकालिक ट्रैक्शन मोटर्स के रूप में जाना जाने वाला अधिक सरल, उच्च-विश्वसनीयता अल्टरनेटिंग करंट [[इंडक्शन मोटर]]्स का उपयोग व्यावहारिक बना दिया है। सिंक्रोनस मोटर का भी कभी-कभी उपयोग किया जाता है, जैसे कि फ्रेंच [[टीजीवी]] में।
[[File:Ge 6-6 I 407 Krokodil.jpeg|thumb|स्विस रेहेटियन रेलवे जीई 6/6 I [[मगरमच्छ (लोकोमोटिव)]] लोकोमोटिव, प्रत्येक बोगी के ऊपर एक बड़ी कर्षण मोटर के साथ, कपलिंग रॉड द्वारा ड्राइव के साथ।]]परंपरागत रूप से, ये श्रृंखला-आघात ब्रश डीसी मोटर्स थे, जो व्यापक रूप से लगभग 600 वोल्ट पर चलती थीं। उच्च शक्ति वाले सेमीकंडक्टर्स ([[thyristors|थाइरिस्टर्स]] और [[आईजीबीटी]]) की उपलब्धता ने अब बहुत सरल, उच्च-विश्वसनीयता वाले [[इंडक्शन मोटर]] के उपयोग को व्यावहारिक बना दिया है, जिन्हें अतुल्यकालिकट्रैक्शन मोटर्स कहा जाता है। तुल्यकालिक मोटर ऐसी मोटर्स का भी कभी-कभी उपयोग किया जाता है, जैसा कि फ्रेंच [[टीजीवी]] में होता है।


==== मोटर्स का माउंटिंग ====
==== मोटर्स का माउंटिंग ====
20वीं शताब्दी के मध्य से पहले, कनेक्टिंग रॉड#स्टीम इंजनों के माध्यम से कई ड्राइविंग पहियों को चलाने के लिए अक्सर एक बड़ी मोटर का उपयोग किया जाता था, जो भाप इंजनों में उपयोग किए जाने वाले इंजनों के समान थे। उदाहरण [[पीआरआर डीडी1]], [[पीआरआर एफएफ1]] और [[पीआरआर एल5]] और विभिन्न क्रोकोडाइल (लोकोमोटिव) हैं। गियर ड्राइव के माध्यम से प्रत्येक एक्सल को चलाने वाला एक ट्रैक्शन मोटर प्रदान करना अब मानक अभ्यास है।
20 वीं शताब्दी के मध्य से पहले, एक बड़ी मोटर का उपयोग प्रायः कनेक्टिंग रॉड्स के माध्यम से कई ड्राइविंग पहियों को चलाने के लिए किया जाता था जो भाप इंजनों पर उपयोग होने के समान थे। पेंसिल्वेनिया रेलमार्ग [[पीआरआर डीडी1]], [[पीआरआर एफएफ1]] और [[पीआरआर एल5]] और विभिन्न स्विस क्रोकोडाइल्स इसके उदाहरण हैं। गियर ड्राइव के माध्यम से प्रत्येक एक्सल को एक ट्रैक्शन मोटर प्रदान करना अब मानक अभ्यास है।


[[File:Class 181 traction motor2.jpg|thumb|चेक सीएसडी क्लास ई 669.2|सीडी क्लास 182 लोकोमोटिव के लिए नोज-सस्पेंडेड डीसी ट्रैक्शन मोटर]]आमतौर पर, ट्रैक्शन मोटर [[बोगी]] फ्रेम और संचालित एक्सल के बीच तीन-बिंदु निलंबित होती है; इसे नोज-सस्पेंडेड ट्रैक्शन मोटर कहा जाता है। इस तरह की व्यवस्था के साथ समस्या यह है कि मोटर के वजन का एक हिस्सा [[अनसंग वजन]] है, ट्रैक पर अवांछित ताकतों को बढ़ाता है। प्रसिद्ध पेंसिल्वेनिया रेलरोड [[PRR GG1]] के मामले में, दो फ्रेम-माउंटेड मोटर्स ने [[क्विल ड्राइव]] के माध्यम से प्रत्येक एक्सल को चलाया। [[मिल्वौकी रोड]] वर्ग ईपी-2 | मिल्वौकी रोड के लिए [[जनरल इलेक्ट्रिक]] द्वारा निर्मित द्वि-ध्रुवीय इलेक्ट्रिक लोकोमोटिव में डायरेक्ट ड्राइव मोटर्स थे। मोटर का घूर्णन शाफ्ट भी पहियों के लिए धुरा था। फ्रेंच टीजीवी [[पावर कार]]ों के मामले में, पावर कार के फ्रेम पर लगा एक मोटर प्रत्येक एक्सल को चलाता है; एक तिपाई ड्राइव ड्राइव ट्रेन में लचीलेपन की एक छोटी मात्रा की अनुमति देता है जिससे ट्रक बोगियों को पिवट करने की अनुमति मिलती है। अपेक्षाकृत भारी कर्षण मोटर को बोगी के बजाय सीधे पावर कार के फ्रेम पर चढ़ाने से, बेहतर गतिशीलता प्राप्त होती है, जिससे बेहतर उच्च गति संचालन की अनुमति मिलती है।<ref>{{Cite web|url=http://www.trainweb.org/tgvpages/motrice.html|title=टीजीवीवेब - टीजीवी का "अंडर द हुड"|website=www.trainweb.org|access-date=2017-12-12}}</ref>
[[File:Class 181 traction motor2.jpg|thumb|चेक सीएसडी क्लास ई 669.2|सीडी क्लास 182 लोकोमोटिव के लिए नोज-सस्पेंडेड डीसी ट्रैक्शन मोटर]]व्यापक रूप से, कर्षण मोटर [[बोगी]]फ्रेम और चालित धुरा के बीच तीन-बिंदु निलंबित होती है; इसे "निलंबित कर्षण मोटर" के रूप में जाना जाता है। इस तरह की व्यवस्था के साथ समस्या यह है कि मोटर के वजन का एक हिस्सा [[अनसंग वजन]] हो जाता है, जिससे ट्रैक पर अवांछित ताकतें बढ़ जाती हैं। प्रसिद्ध पेन्सिलवेनिया रेलमार्ग [[PRR GG1]] के मामले में, दो फ्रेम-माउंटेड मोटरों ने [[क्विल ड्राइव]] के माध्यम से प्रत्येक एक्सल को चलाया। [[मिल्वौकी रोड]] वर्ग ईपी-2 मिल्वौकी रोड के लिए [[जनरल इलेक्ट्रिक]] द्वारा निर्मित "द्वि-ध्रुवीय" विद्युत इंजनों में प्रत्यक्ष ड्राइव मोटर थे। मोटर का घूमता हुआ शाफ्ट भी पहियों के लिए धुरी का कार्य करता था। फ्रांसीसी टीजीवी [[पावर कार]] के मामले में, पावर कार के फ्रेम पर लगा एक मोटर प्रत्येक एक्सल को चलाता है; एक "तिपाई" ड्राइव ड्राइव ट्रेन में लचीलेपन की एक छोटी मात्रा की अनुमति देता है जिससे ट्रकों की बोगियों को पिवोट करने की अनुमति मिलती है। अपेक्षाकृत भारी कर्षण मोटर को बोगी के बजाय सीधे पावर कार के फ्रेम पर चढ़ाने से, बेहतर गतिशीलता प्राप्त होती है, जिससे बेहतर उच्च गति संचालन की अनुमति मिलती है।<ref>{{Cite web|url=http://www.trainweb.org/tgvpages/motrice.html|title=टीजीवीवेब - टीजीवी का "अंडर द हुड"|website=www.trainweb.org|access-date=2017-12-12}}</ref>




==== वाइंडिंग्स ====
==== वाइंडिंग्स ====
कई वर्षों तक डीसी मोटर इलेक्ट्रिक और डीजल-इलेक्ट्रिक लोकोमोटिव, स्ट्रीट-कार/ट्राम और डीजल इलेक्ट्रिक ड्रिलिंग रिग पर इलेक्ट्रिक ट्रैक्शन ड्राइव का मुख्य आधार था। इसमें दो भाग होते हैं, एक रोटेटिंग आर्मेचर और एक शाफ्ट के चारों ओर लगे रोटेटिंग आर्मेचर के आसपास फिक्स्ड फील्ड वाइंडिंग। फिक्स्ड फील्ड वाइंडिंग में मोटर केस के अंदर लगे तार के कसकर घाव वाले कॉइल होते हैं। आर्मेचर कॉइल का एक और सेट है जो एक केंद्रीय शाफ्ट के चारों ओर लपेटा जाता है और ब्रश के माध्यम से फील्ड वाइंडिंग से जुड़ा होता है जो [[कम्यूटेटर (बिजली)]] कहे जाने वाले आर्मेचर के विस्तार के खिलाफ स्प्रिंग-लोडेड संपर्क होते हैं। कम्यूटेटर आर्मेचर कॉइल के सभी टर्मिनेशन को इकट्ठा करता है और करंट प्रवाह के सही क्रम की अनुमति देने के लिए उन्हें एक गोलाकार पैटर्न में वितरित करता है। जब आर्मेचर और फील्ड वाइंडिंग्स श्रृंखला में जुड़े होते हैं, तो पूरी मोटर को श्रृंखला-घाव कहा जाता है। श्रृंखला-घाव डीसी मोटर में कम प्रतिरोध क्षेत्र और आर्मेचर सर्किट होता है। इस कारण जब इसमें वोल्टेज लगाया जाता है तो ओम के नियम के कारण धारा अधिक होती है। उच्च धारा का लाभ यह है कि मोटर के अंदर चुंबकीय क्षेत्र मजबूत होते हैं, उच्च टोक़ (मोड़ बल) उत्पन्न करते हैं, इसलिए यह ट्रेन शुरू करने के लिए आदर्श है। नुकसान यह है कि मोटर में बहने वाली धारा को सीमित करना पड़ता है, अन्यथा आपूर्ति अतिभारित हो सकती है या मोटर और इसकी केबल क्षतिग्रस्त हो सकती है। सबसे अच्छा, टोक़ आसंजन से अधिक होगा और ड्राइविंग पहिए फिसल जाएंगे। परंपरागत रूप से, प्रतिरोधों का उपयोग प्रारंभिक धारा को सीमित करने के लिए किया जाता था।
डीसी मोटर कई वर्षों तक इलेक्ट्रिक और डीजल-इलेक्ट्रिक लोकोमोटिव, स्ट्रीट-कारों/ट्राम और डीजल इलेक्ट्रिक ड्रिलिंग रिग पर इलेक्ट्रिक ट्रैक्शन ड्राइव का मुख्य आधार था। इसमें दो भाग होते हैं, एक रोटेटिंग आर्मेचर और एक शाफ्ट के चारों ओर लगे रोटेटिंग आर्मेचर के आस-पास फिक्स्ड फील्ड वाइंडिंग्स। फिक्स्ड फील्ड वाइंडिंग में मोटर केस के अंदर फिट किए गए तार तार में कसे हुए आघात के कॉइल होते हैं। आर्मेचर कॉइल का एक और सेट है जो एक केंद्रीय शाफ्ट के चारों ओर लपेटा जाता है और "ब्रश" के माध्यम से फील्ड वाइंडिंग से जुड़ा होता है, जो [[कम्यूटेटर (बिजली)]] नामक आर्मेचर के विस्तार के खिलाफ दबाने वाले स्प्रिंग-लोडेड संपर्क हैं। कम्यूटेटर आर्मेचर कॉइल्स के सभी टर्मिनेशन को इकट्ठा करता है और वर्तमान प्रवाह के सही अनुक्रम की अनुमति देने के लिए उन्हें एक गोलाकार पैटर्न में वितरित करता है। जब आर्मेचर और फील्ड वाइंडिंग्स को श्रृंखला में जोड़ा जाता है, तो पूरी मोटर को "श्रृंखला-आघात" कहा जाता है। श्रृंखला-आघात वाली डीसी मोटर में कम प्रतिरोध क्षेत्र और आर्मेचर परिपथ होता है। इसी वजह से जब इसमें वोल्टेज लगाया जाता है तो ओम के नियम के कारण करंट अधिक होता है। उच्च धारा का लाभ यह है कि मोटर के अंदर चुंबकीय क्षेत्र मजबूत होते हैं, उच्च टोक़ (टर्निंग फोर्स) का उत्पादन करते हैं, इसलिए यह ट्रेन प्रारम्भ करने के लिए आदर्श है। नुकसान यह है कि मोटर में प्रवाहित होने वाली धारा को सीमित करना पड़ता है, अन्यथा आपूर्ति अतिभारित हो सकती है या मोटर और उसकी केबल क्षतिग्रस्त हो सकती है। सर्वोत्तम रूप से, टोक़ आसंजन से अधिक होगा और ड्राइविंग पहिए फिसल जाएंगे। परंपरागत रूप से, प्रारंभिक धारा को सीमित करने के लिए प्रतिरोधकों का उपयोग किया जाता था।


==== बिजली पर नियंत्रण ====
==== बिजली पर नियंत्रण ====
जैसे ही डीसी मोटर मुड़ना शुरू करती है, अंदर के चुंबकीय क्षेत्रों की परस्पर क्रिया के कारण यह आंतरिक रूप से एक वोल्टेज उत्पन्न करता है। यह [[काउंटर-इलेक्ट्रोमोटिव बल]] (CEMF) लागू वोल्टेज का विरोध करता है और प्रवाहित होने वाली धारा दोनों के बीच के अंतर से नियंत्रित होती है। जैसे ही मोटर की गति बढ़ती है, आंतरिक रूप से उत्पन्न वोल्टेज बढ़ जाता है, परिणामी EMF गिर जाता है, कम करंट मोटर से गुजरता है और टॉर्क गिर जाता है। जब ट्रेन का ड्रैग मोटरों द्वारा उत्पादित टॉर्क से मेल खाता है तो मोटर स्वाभाविक रूप से गति करना बंद कर देती है। ट्रेन को गति देना जारी रखने के लिए, श्रृंखला प्रतिरोधों को चरण दर चरण स्विच आउट किया जाता है, प्रत्येक चरण प्रभावी वोल्टेज को बढ़ाता है और इस प्रकार वर्तमान और टॉर्क को थोड़ी देर के लिए मोटर पकड़ लेता है। इसे पुरानी डीसी ट्रेनों में फर्श के नीचे गुच्छों की एक श्रृंखला के रूप में सुना और महसूस किया जा सकता है, प्रत्येक त्वरण के एक झटके के साथ होता है क्योंकि वर्तमान के नए उछाल के जवाब में टोक़ अचानक बढ़ जाता है। जब सर्किट में कोई प्रतिरोध नहीं बचा है, तो सीधे मोटर पर पूर्ण लाइन वोल्टेज लगाया जा रहा है। ट्रेन की गति उस बिंदु पर स्थिर रहती है जहां प्रभावी वोल्टेज द्वारा नियंत्रित मोटर का टॉर्क, ड्रैग के बराबर होता है - जिसे कभी-कभी संतुलन गति के रूप में संदर्भित किया जाता है। यदि ट्रेन एक झुकाव पर चढ़ना शुरू करती है, तो गति कम हो जाती है क्योंकि ड्रैग टॉर्क से अधिक होता है और गति में कमी CEMF को गिरने का कारण बनती है और इस प्रकार प्रभावी वोल्टेज बढ़ता है - जब तक कि मोटर के माध्यम से करंट नए ड्रैग से मेल खाने के लिए पर्याप्त टॉर्क पैदा नहीं करता . श्रृंखला प्रतिरोध का उपयोग बेकार था क्योंकि गर्मी के रूप में बहुत सारी ऊर्जा खो गई थी। इन नुकसानों को कम करने के लिए, [[इलेक्ट्रिक लोकोमोटिव]] और ट्रेन ([[बिजली के इलेक्ट्रॉनिक्स]] के आगमन से पहले) आमतौर पर श्रृंखला-समानांतर नियंत्रण के लिए भी सुसज्जित थे।
जैसे ही डीसी मोटर मुड़ना प्रारम्भ करती है, अंदर के चुंबकीय क्षेत्र की परस्पर क्रिया के कारण यह आंतरिक रूप से वोल्टेज उत्पन्न करता है। यह [[काउंटर-इलेक्ट्रोमोटिव बल]] (सीईएमएफ) लागू वोल्टेज का विरोध करता है और बहने वाली धारा दोनों के बीच के अंतर से नियंत्रित होती है। जैसे ही मोटर की गति बढ़ती है, आंतरिक रूप से उत्पन्न वोल्टेज बढ़ जाता है, परिणामी EMF गिर जाता है, मोटर से कम करंट गुजरता है और बल-आघूर्ण गिर जाता है। जब ट्रेन का ड्रैग मोटरों द्वारा उत्पादित बल-आघूर्ण से समानता रखता है तो मोटर स्वाभाविक रूप से तेज होना बंद कर देती है। ट्रेन को गति देना जारी रखने के लिए, श्रृंखला प्रतिरोधों को चरण दर चरण स्विच आउट किया जाता है, प्रत्येक चरण प्रभावी वोल्टेज को बढ़ाता है और इस प्रकार कुछ देर के लिए करंट और बल-आघूर्ण को मोटर पकड़ लेता है। इसे पुरानी डीसी ट्रेनों में फर्श के नीचे गुच्छों की एक श्रृंखला के रूप में सुना और महसूस किया जा सकता है, प्रत्येक त्वरण एक झटके के साथ होता है क्योंकि वर्तमान के नए उछाल की प्रतिक्रिया में बल-आघूर्ण अचानक बढ़ जाता है। जब परिपथ में कोई प्रतिरोध नहीं बचा है, तो सीधे मोटर पर पूर्ण लाइन वोल्टेज लगाया जा रहा है। ट्रेन की गति उस बिंदु पर स्थिर रहती है जहां प्रभावी वोल्टेज द्वारा नियंत्रित मोटर का बल-आघूर्ण ड्रैग के बराबर होता है जिसे कभी-कभी संतुलन गति कहा जाता है। यदि ट्रेन एक ढलान पर चढ़ना प्रारम्भ करती है, तो गति कम हो जाती है क्योंकि ड्रैग बल-आघूर्ण से अधिक होता है और गति में कमी सीईएमएफ को गिरने का कारण बनती है और इस प्रकार प्रभावी वोल्टेज बढ़ता है जब तक कि मोटर के माध्यम से करंट नए ड्रैग से समानता रखने के लिए पर्याप्त बल-आघूर्ण उत्पन्न नहीं करता। श्रृंखला प्रतिरोध का उपयोग बेकार था क्योंकि बहुत सारी ऊर्जा ऊष्मा के रूप में खो गई थी। इन नुकसानों को कम करने के लिए, [[इलेक्ट्रिक लोकोमोटिव]] और ट्रेनें ([[बिजली के इलेक्ट्रॉनिक्स]] के आगमन से पहले) सामान्य रूप से श्रृंखला-समानांतर नियंत्रण के लिए भी सुसज्जित थीं।


लोकोमोटिव जो एसी बिजली स्रोतों (ट्रैक्शन मोटर्स के रूप में यूनिवर्सल मोटर्स का उपयोग करके) से संचालित होते हैं, वे प्रतिरोधों में निहित नुकसान के बिना ट्रैक्शन मोटर्स पर लागू वोल्टेज को बदलने के लिए अपने ट्रांसफॉर्मर पर [[टैप परिवर्तक]]्स का लाभ उठा सकते हैं। [[पेंसिल्वेनिया रेलमार्ग वर्ग GG1]] ऐसे लोकोमोटिव का एक उदाहरण था।
लोकोमोटिव जो एसी बिजली स्रोतों (ट्रैक्शन मोटर्स के रूप में यूनिवर्सल मोटर्स का उपयोग करते हुए) से संचालित होते हैं, वे अपने ट्रांसफॉर्मर पर [[टैप परिवर्तक]] का लाभ उठा सकते हैं।ताकि प्रतिरोधों में निहित नुकसान के बिना ट्रैक्शन मोटर्स पर लागू वोल्टेज को अलग किया जा सके। [[पेंसिल्वेनिया रेलमार्ग वर्ग GG1]] ऐसे लोकोमोटिव का एक उदाहरण था।


==== डायनेमिक ब्रेकिंग ====
==== डायनेमिक ब्रेकिंग ====
यदि ट्रेन एक ग्रेड उतरना शुरू करती है, तो गति बढ़ जाती है क्योंकि (कम) ड्रैग टॉर्क से कम होता है। बढ़ी हुई गति के साथ, आंतरिक रूप से उत्पन्न बैक-ईएमएफ वोल्टेज बढ़ जाता है, टोक़ को तब तक कम करता है जब तक टोक़ फिर से ड्रैग को संतुलित नहीं करता। क्योंकि एक श्रृंखला घाव मोटर में बैक-ईएमएफ द्वारा क्षेत्र की धारा कम हो जाती है, ऐसी कोई गति नहीं होती है जिस पर बैक-ईएमएफ आपूर्ति वोल्टेज से अधिक हो, और इसलिए एक एकल श्रृंखला घाव डीसी ट्रैक्शन मोटर अकेले गतिशील या पुनर्योजी ब्रेकिंग प्रदान नहीं कर सकती है।
यदि ट्रेन एक ग्रेड नीचे उतरना प्रारम्भ करती है, तो गति बढ़ जाती है क्योंकि (कम) ड्रैग बल-आघूर्ण से कम होता है। बढ़ी हुई गति के साथ, आंतरिक रूप से उत्पन्न बैक-ईएमएफ वोल्टेज बढ़ जाता है, टोक़ को तब तक कम कर देता है जब तक टोक़ फिर से ड्रैग को संतुलित नहीं करता। क्योंकि एक श्रृंखला आघात मोटर में बैक-ईएमएफ द्वारा क्षेत्र की धारा कम हो जाती है, ऐसी कोई गति नहीं होती है जिस पर बैक-ईएमएफ आपूर्ति वोल्टेज से अधिक हो, और इसलिए एक एकल श्रृंखला आघात डीसी कर्षण मोटर अकेले गतिशील या पुनर्योजी ब्रेकिंग प्रदान नहीं कर सकती है।


हालाँकि, कर्षण मोटर्स का उपयोग करके एक मंदक बल प्रदान करने के लिए विभिन्न योजनाएँ लागू की जाती हैं। उत्पन्न ऊर्जा को आपूर्ति (पुनर्योजी ब्रेकिंग) में लौटाया जा सकता है, या बोर्ड प्रतिरोधों (गतिशील ब्रेकिंग) द्वारा छितराया जा सकता है। ऐसी प्रणाली लोड को कम गति पर ला सकती है, लोड को पूर्ण विराम पर लाने के लिए अपेक्षाकृत कम घर्षण ब्रेकिंग की आवश्यकता होती है।
हालाँकि, कर्षण मोटर्स का उपयोग करके एक मंदक बल प्रदान करने के लिए विभिन्न योजनाएँ लागू की जाती हैं। उत्पन्न ऊर्जा को आपूर्ति (पुनर्योजी ब्रेकिंग) में लौटाया जा सकता है, या बोर्ड प्रतिरोधों (गतिशील ब्रेकिंग) द्वारा विखंडित किया जा सकता है। इस तरह की प्रणाली लोड को कम गति पर ला सकती है, जिससे लोड को पूर्ण विराम पर लाने के लिए अपेक्षाकृत कम घर्षण ब्रेकिंग की आवश्यकता होती है।


==== स्वचालित त्वरण ====
==== स्वचालित त्वरण ====
इलेक्ट्रिक ट्रेन पर, ट्रेन चालक को मूल रूप से मैन्युअल रूप से प्रतिरोध को काटने को नियंत्रित करना पड़ता था, लेकिन 1914 तक स्वचालित त्वरण का उपयोग किया जा रहा था। यह मोटर सर्किट में एक त्वरित रिले (जिसे अक्सर नॉचिंग रिले कहा जाता है) द्वारा प्राप्त किया गया था, जो प्रतिरोध के प्रत्येक चरण को काट दिए जाने पर करंट के गिरने की निगरानी करता था। सभी ड्राइवर को कम, मध्यम या पूर्ण गति का चयन करना था (जिस तरह से मोटर्स को प्रतिरोध सर्किट में जोड़ा गया था, उससे श्रृंखला, समानांतर और शंट कहा जाता है) और स्वचालित उपकरण बाकी काम करेगा।
एक इलेक्ट्रिक ट्रेन पर, ट्रेन चालक या मोटरमैन को मैन्युअल रूप से प्रतिरोध को काटने के लिए नियंत्रित करना पड़ता था, लेकिन 1914 तक स्वचालित त्वरण का उपयोग किया जा रहा था। यह मोटर परिपथ में एक त्वरित रिले (प्रायः "नॉचिंग रिले" कहा जाता है) द्वारा प्राप्त किया गया था, जिसने प्रतिरोध के प्रत्येक चरण को काट दिया गया, साथ हीवर्तमान के पतन की निगरानी की। सभी ड्राइवर को कम, मध्यम या पूर्ण गति (जिसे "श्रृंखला", "समानांतर" और "शंट" कहा जाता है, जिस तरह से मोटर्स प्रतिरोध परिपथ में जुड़े थे) का चयन करना था और स्वचालित उपकरण बाकी काम करेगा।


== रेटिंग ==
== रेटिंग ==
इलेक्ट्रिक इंजनों में आमतौर पर निरंतर और एक घंटे की रेटिंग होती है। एक घंटे की रेटिंग अधिकतम शक्ति है जो मोटर एक घंटे की अवधि में बिना ज़्यादा गरम किए लगातार विकसित हो सकती है। ऐसा परीक्षण मोटरों के साथ +25 °C पर शुरू होता है (और बाहर की हवा का उपयोग वेंटिलेशन के लिए भी +25 °C पर होता है)। यूएसएसआर में, कक्षा एन इन्सुलेशन के साथ GOST 2582-72 के अनुसार, डीसी मोटर्स के लिए अनुमत अधिकतम तापमान आर्मेचर के लिए 160 डिग्री सेल्सियस, स्टेटर के लिए 180 डिग्री सेल्सियस और कलेक्टर के लिए 105 डिग्री सेल्सियस था।<ref>Сидоров 1980, p.47</ref> एक घंटे की रेटिंग आम तौर पर निरंतर रेटिंग से लगभग दस प्रतिशत अधिक होती है, और मोटर में तापमान वृद्धि से सीमित होती है।
इलेक्ट्रिक लोकोमोटिव की व्यापक रूप से निरंतर और एक घंटे की रेटिंग होती है। एक घंटे की रेटिंग वह अधिकतम शक्ति है जो मोटर बिना ज़्यादा गरम किए एक घंटे की अवधि में लगातार विकसित कर सकती है। इस तरह का परीक्षण मोटर्स के साथ +25 डिग्री सेल्सियस पर प्रारम्भ होता है (और बाहरी हवा का उपयोग वेंटिलेशन के लिए भी +25 डिग्री सेल्सियस पर होता है)। यूएसएसआर में, कक्षा एन इन्सुलेशन के साथ घोस्ट 2582-72 के अनुसार, डीसी मोटरों के लिए अधिकतम तापमान आर्मेचर के लिए 160 डिग्री सेल्सियस, स्टेटर के लिए 180 डिग्री सेल्सियस और कलेक्टर के लिए 105 डिग्री सेल्सियस था।<ref>Сидоров 1980, p.47</ref> एक घंटे की रेटिंग व्यापक रूप से निरंतर रेटिंग की तुलना में लगभग दस प्रतिशत अधिक होती है, और मोटर में तापमान वृद्धि से सीमित होती है।


चूंकि ट्रैक्शन मोटर्स मोटर आर्मेचर से संचालित एक्सल तक टॉर्क ट्रांसफर करने के लिए रिडक्शन गियर सेटअप का उपयोग करती हैं, मोटर पर रखा गया वास्तविक भार गियर अनुपात के साथ बदलता रहता है। अन्यथा समान ट्रैक्शन मोटर्स में काफी भिन्न लोड रेटिंग हो सकती है। एक कम गियर अनुपात के साथ माल ढुलाई के लिए तैयार की गई एक कर्षण मोटर सुरक्षित रूप से एक ही वर्तमान स्तर पर लंबी अवधि के लिए पहियों पर उच्च टोक़ का उत्पादन करेगी क्योंकि निचले गियर मोटर को अधिक यांत्रिक लाभ देते हैं।
चूंकि ट्रैक्शन मोटर्स मोटर आर्मेचर से संचालित एक्सल तक बल-आघूर्ण ट्रांसफर करने के लिए रिडक्शन गियर सेटअप का उपयोग करती हैं, मोटर पर रखा गया वास्तविक लोड गियर अनुपात के साथ बदलता रहता है अन्यथा "समान" ट्रैक्शन मोटर्स में काफी भिन्न लोड रेटिंग हो सकती है। कम गियर अनुपात के साथ माल ढुलाई के लिए तैयार एक कर्षण मोटर सुरक्षित रूप से उसी वर्तमान स्तर पर लंबी अवधि के लिए पहियों पर उच्च टोक़ का उत्पादन करेगा क्योंकि निचले गियर मोटर को अधिक यांत्रिक लाभ देते हैं।


[[डीजल-इलेक्ट्रिक ट्रांसमिशन]]|डीजल-इलेक्ट्रिक और [[गैस टर्बाइन-इलेक्ट्रिक लोकोमोटिव]] में, ट्रैक्शन मोटर्स की [[घोड़े की शक्ति]] रेटिंग आमतौर पर [[प्राइम मूवर (लोकोमोटिव)]] की तुलना में लगभग 81% होती है। यह मानता है कि [[विद्युत जनरेटर]] इंजन के आउटपुट का 90% विद्युत ऊर्जा में परिवर्तित करता है और कर्षण मोटर्स इस विद्युत ऊर्जा का 90% वापस यांत्रिक ऊर्जा में परिवर्तित करता है।{{citation needed|date=November 2018}} गणना: 0.9 × 0.9 = 0.81
[[डीजल-इलेक्ट्रिक ट्रांसमिशन]] डीजल-इलेक्ट्रिक और [[गैस टर्बाइन-इलेक्ट्रिक लोकोमोटिव]] में, ट्रैक्शन मोटर्स की [[घोड़े की शक्ति|अश्व-शक्ति]] रेटिंग व्यापक रूप से [[प्राइम मूवर (लोकोमोटिव)]] की तुलना में लगभग 81% होती है। यह मानता है कि [[विद्युत जनरेटर]] इंजन के आउटपुट का 90% विद्युत ऊर्जा में परिवर्तित करता है और कर्षण मोटर्स इस विद्युत ऊर्जा के 90% को वापस यांत्रिक ऊर्जा में परिवर्तित करता है, उद्धरण वांछित गणना: 0.9 × 0.9 = 0.81।


व्यक्तिगत ट्रैक्शन मोटर रेटिंग आमतौर पर ऊपर की ओर होती है {{cvt|1,600|kW}}.
व्यक्तिगत कर्षण मोटर रेटिंग व्यापक रूप से 1,600 किलोवाट (2,100 एचपी) तक होती है।


एक अन्य महत्वपूर्ण कारक जब ट्रैक्शन मोटर्स को डिज़ाइन या निर्दिष्ट किया जाता है तो वह परिचालन गति है। मोटर आर्मेचर में अधिकतम सुरक्षित घूर्णन गति होती है, जिस पर या उससे कम पर वाइंडिंग सुरक्षित रूप से अपनी जगह पर रहेगी।
एक अन्य महत्वपूर्ण कारक जब कर्षण मोटर्स को डिज़ाइन या निर्दिष्ट किया जाता है, तो वह परिचालन गति कहलाती है। मोटर आर्मेचर में अधिकतम सुरक्षित घूर्णन गति होती है, जिस पर या उससे कम पर वाइंडिंग सुरक्षित रूप से अपने स्थान पर रहेगी।


इस अधिकतम गति से ऊपर आर्मेचर पर केन्द्रापसारक बल वाइंडिंग को बाहर की ओर फेंकने का कारण होगा। गंभीर मामलों में, यह बर्डनेस्टिंग का कारण बन सकता है क्योंकि वाइंडिंग्स मोटर हाउसिंग से संपर्क करती हैं और अंततः आर्मेचर से पूरी तरह से टूट जाती हैं और खुल जाती हैं।
इस अधिकतम गति से ऊपर आर्मेचर पर अभिकेंद्री बल वाइंडिंग को बाहर की ओर फेंक देगा। गंभीर मामलों में, यह "बर्डनेस्टिंग" का कारण बन सकता है क्योंकि घुमावदार मोटर आवास से संपर्क करते हैं और अंत में आर्मेचर से पूरी तरह से टूट जाते हैं और खुल जाते हैं।


ओवरस्पीड के कारण बर्ड-नेस्टिंग (आर्मेचर की वाइंडिंग्स का सेंट्रीफ्यूगल इजेक्शन) या तो पावर्ड लोकोमोटिव के ऑपरेटिंग ट्रैक्शन मोटर्स में या बहुत तेजी से यात्रा करने वाली ट्रेन के भीतर डेड-इन-कंसिस्ट लोकोमोटिव के ट्रैक्शन मोटर्स में हो सकता है। एक अन्य कारण घिसी-पिटी या क्षतिग्रस्त कर्षण मोटरों को उन इकाइयों से बदलना है जो अनुप्रयोग के लिए गलत तरीके से तैयार की गई हैं।
ओवरस्पीड के कारण बर्ड-नेस्टिंग (आर्मेचर की वाइंडिंग का सेंट्रीफ्यूगल इजेक्शन) या तो पावर्ड लोकोमोटिव के ऑपरेटिंग ट्रैक्शन मोटर्स में हो सकता है या बहुत तेजी से यात्रा करने वाली ट्रेन के भीतर डेड-इन-कंसिस्ट लोकोमोटिव के ट्रैक्शन मोटर्स में हो सकता है। एक अन्य कारण घिसी-पिटी या क्षतिग्रस्त ट्रैक्शन मोटरों का उन यूनिटों से प्रतिस्थापन है जो अनुप्रयोग के लिए गलत ढंग से तैयार किए गए हैं।


जब आर्मेचर असेंबली और वाइंडिंग सपोर्ट और रिटेनर पिछले दुरुपयोग से क्षतिग्रस्त हो गए हों, तो ओवरलोडिंग और ओवरहीटिंग से होने वाली क्षति भी रेटेड गति से नीचे पक्षी-घोंसले का कारण बन सकती है।
जब आर्मेचर असेंबली और वाइंडिंग सपोर्ट और रिटेनर पिछले दुरुपयोग से क्षतिग्रस्त हो गए हों, तो ओवरलोडिंग और ओवरहीटिंग से होने वाली क्षति भी रेटेड गति से नीचे बर्ड-नेस्टिंग पैदा कर सकती है।


== शीतलक ==
== शीतलक ==
उच्च शक्ति स्तर शामिल होने के कारण, कर्षण मोटर्स को लगभग हमेशा मजबूर हवा, पानी या एक विशेष ढांकता हुआ तरल का उपयोग करके ठंडा किया जाता है।
उच्च शक्ति स्तर सम्मिलित होने के कारण, कर्षण मोटर्स को लगभग सदैव मजबूर हवा, पानी या एक विशेष ढांकता हुआ तरल का उपयोग करके ठंडा किया जाता है।


एक यूएस डीजल-इलेक्ट्रिक लोकोमोटिव पर विशिष्ट शीतलन प्रणाली में हवा को उड़ाने वाले लोकोमोटिव फ्रेम में एकीकृत मार्ग में एक विद्युत चालित पंखा होता है। रबर कूलिंग डक्ट्स अलग-अलग ट्रैक्शन मोटर्स के मार्ग को जोड़ते हैं और ठंडी हवा वायुमंडल में समाप्त होने से पहले कवच के नीचे जाती है।
एक यूएस डीजल-इलेक्ट्रिक लोकोमोटिव पर विशिष्ट शीतलन प्रणाली में हवा को उड़ाने वाले लोकोमोटिव फ्रेम में एकीकृत मार्ग में एक विद्युत चालित पंखा होता है। रबर कूलिंग डक्ट्स अलग-अलग ट्रैक्शन मोटर्स के मार्ग को जोड़ते हैं और ठंडी हवा वायुमंडल में समाप्त होने से पहले कवच के नीचे जाती है।


== निर्माता ==
== निर्माता ==
{{main|List of traction motor manufacturers}}
{{main|कर्षण मोटर निर्माताओं की सूची}}




Line 110: Line 110:




== बाहरी कड़ियाँ ==
* [https://web.archive.org/web/20120204150932/http://www.associatedrewinds.com/english/deconstructingmotor.html "Deconstructing a trएसीtion motor - Associated Rewinds (Ireland) Limited"]
* [http://www.nycsubway.org/perl/show?7591 Image of a nose mounted trएसीtion motor] on an [[R46 (New York City Subway car)|R46]] New York City Subway car. The motor can be clearly seen behind the axle with the gear box with the writing on it in the center.
* [http://www.nycsubway.org/perl/show?5029 Another nose mounted trएसीtion motor] on a wrecked [[R38 (New York City Subway car)|R38]] Subway car.
* [http://www.nycsubway.org/cars/yards_coney_truck.html Coney Island Truck Repair shop; many pictures regarding trएसीtion motors]
* [http://www.nycsubway.org/perl/show?6149 Detएसीhed truck with Trएसीtion Motors.]
{{Electric motor}}


[[Category:All articles with unsourced statements]]
[[Category:All articles with unsourced statements]]
Line 116: Line 136:
[[Category:Articles with short description]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from November 2018]]
[[Category:Articles with unsourced statements from November 2018]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Commons category link is locally defined]]
[[Category:Created On 26/12/2022]]
[[Category:Created On 26/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes| ]]
 
[[Category:Navigational boxes without horizontal lists]]
== बाहरी कड़ियाँ ==
[[Category:Pages using div col with small parameter]]
{{Commons category|Traction motors (rail transport)|Traction motors}}
[[Category:Pages with script errors]]
* [https://web.archive.org/web/20120204150932/http://www.associatedrewinds.com/english/deconstructingmotor.html "Deconstructing a traction motor - Associated Rewinds (Ireland) Limited"]
[[Category:Short description with empty Wikidata description]]
* [http://www.nycsubway.org/perl/show?7591 Image of a nose mounted traction motor] on an [[R46 (New York City Subway car)|R46]] New York City Subway car. The motor can be clearly seen behind the axle with the gear box with the writing on it in the center.
[[Category:Sidebars with styles needing conversion]]
* [http://www.nycsubway.org/perl/show?5029 Another nose mounted traction motor] on a wrecked [[R38 (New York City Subway car)|R38]] Subway car.
[[Category:Template documentation pages|Documentation/doc]]
* [http://www.nycsubway.org/cars/yards_coney_truck.html Coney Island Truck Repair shop; many pictures regarding traction motors]
[[Category:Templates Vigyan Ready]]
* [http://www.nycsubway.org/perl/show?6149 Detached truck with Traction Motors.]
[[Category:Templates based on the Citation/CS1 Lua module]]
 
[[Category:Templates generating COinS|Cite web]]
{{Electric motor}}
[[Category:Templates generating microformats]]
[[श्रेणी: लोकोमोटिव के पुर्जे]]
[[Category:Templates that add a tracking category]]
[[श्रेणी: इलेक्ट्रिक मोटर्स]]
[[Category:Templates that are not mobile friendly]]
 
[[Category:Templates used by AutoWikiBrowser|Cite web]]
 
[[Category:Templates using TemplateData]]
[[Category: Machine Translated Page]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Created On 26/12/2022]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 10:47, 8 January 2023

एक ZQDR-410 ट्रैक्शन मोटर (छोटे झरोखों वाली वस्तु)

कर्षण मोटर एक विद्युत मोटर है जिसका उपयोग किसी वाहन के प्रणोदन के लिए किया जाता है, जैसे लोकोमोटिव, विद्युतीय वाहन या हाइड्रोजन वाहन, लिफ्ट या इलेक्ट्रिक मल्टीपल यूनिट

कर्षण मोटर का उपयोग विद्युत चालित रेल वाहनों (इलेक्ट्रिक मल्टीपल यूनिट्स) और अन्य इलेक्ट्रिक वाहनों में किया जाता है, जिसमें इलेक्ट्रिक मिल्क फ्लोट, लिफ्ट, रोलर कॉस्टर, कन्वेयर और ट्राली बस सम्मिलित हैं, साथ ही इलेक्ट्रिकल ट्रांसमिशन सिस्टम वाले वाहन (डीजल-इलेक्ट्रिक लोकोमोटिव, इलेक्ट्रिक हाइब्रिड वाहन), और बैटरी इलेक्ट्रिक वाहन भी इसके प्रमुख उदाहरण हैं।


मोटर प्रकार और नियंत्रण

डीसी यंत्र शृंखला फील्ड कॉइल वाली डायरेक्ट-करंट मोटर सबसे पुरानी प्रकार की ट्रैक्शन मोटर हैं। ये प्रणोदन के लिए उपयोगी गति-टोक़ विशेषता प्रदान करते हैं, वाहन के त्वरण के लिए कम गति पर उच्च टोक़ प्रदान करते हैं, और गति में वृद्धि के रूप में टोक़ में गिरावट आती है। कई नलों के साथ फील्ड वाइंडिंग की व्यवस्था करके, गति की विशेषता को विविध किया जा सकता है, जिससे त्वरण का अपेक्षाकृत सुचारू ऑपरेटर नियंत्रण हो सकता है। श्रृंखला-समानांतर नियंत्रण में वाहन पर मोटरों के जोड़े का उपयोग करके नियंत्रण का एक और उपाय प्रदान किया जाता है; धीमे संचालन या भारी भार के लिए, दो मोटरों को प्रत्यक्ष-वर्तमान आपूर्ति से श्रृंखला में चलाया जा सकता है। जहां उच्च गति की आवश्यकता होती है, इन मोटरों को समानांतर में संचालित किया जा सकता है, जिससे प्रत्येक मोटर पर उच्च वोल्टेज उपलब्ध हो जाता है और इसलिए उच्च गति की अनुमति मिलती है। एक रेल प्रणाली के हिस्से अलग-अलग वोल्टेज का उपयोग कर सकते हैं, स्टेशनों के बीच लंबे समय तक चलने वाले उच्च वोल्टेज और स्टेशनों के पास कम वोल्टेज जहां केवल धीमी गति से संचालन की आवश्यकता होती है।

डीसी प्रणाली का एक प्रकार ऐसी श्रृंखला मोटर है, जिसे सार्वभौमिक मोटर के रूप में भी जाना जाता है, जो अनिवार्य रूप से एक ही उपकरण है लेकिन प्रत्यावर्ती धारा पर संचालित होता है। चूंकि आर्मेचर और फील्ड करंट दोनों एक ही समय में रिवर्स होते हैं, इसलिए मोटर का व्यवहार वैसा ही होता है, जो कि डायरेक्ट करंट से सक्रिय होता है। बेहतर परिचालन स्थितियों को प्राप्त करने के लिए रेलवे को प्रायः सामान्य प्रकाश व्यवस्था और बिजली के लिए उपयोग की जाने वाली वाणिज्यिक आपूर्ति की तुलना में कम उपयोगिता आवृत्ति पर करंट की आपूर्ति के लिए विशेष कर्षण वर्तमान बिजली स्टेशनों का उपयोग किया जाता है, या रोटरी कनवर्टर के लिए उपयोग की जाने वाली 50 या 60 हर्ट्ज वाणिज्यिक शक्ति को 25 हर्ट्ज या 16+23हर्ट्ज आवृत्ति में परिवर्तित करने के लिए रोटरी कन्वर्टर्स का उपयोग किया जाता है। क्योंकि यह ट्रांसफार्मर के सरल उपयोग की अनुमति देता है, ऐसी प्रणाली रेल लाइन की लंबाई के नीचे बिजली के कुशल वितरण की अनुमति देती है,और वाहन पर स्विचगियर के साथ गति नियंत्रण की भी अनुमति देती है।

एसी प्रेरण मोटर और तुल्यकालिक मोटर सरल और कम रख रखाव वाले होते हैं, लेकिन पावर सेमीकंडक्टर डिवाइस के आगमन तक उनकी निश्चित गति विशेषता के कारण ट्रैक्शन मोटर्स के लिए आवेदन करना अद्वितीय था। एक ऐसी इंडक्शन मोटर अपने निर्माण और बिजली आपूर्ति की आवृत्ति द्वारा निर्धारित एक संकीर्ण गति सीमा पर ही उपयोगी मात्रा में बिजली उत्पन्न करती है। शक्ति अर्धचालकों के आगमन ने लोकोमोटिव पर एक चर आवृत्ति ड्राइव को फिट करना संभव बना दिया है; यह गति की एक विस्तृत श्रृंखला, ऐसी पॉवर ट्रांसमिशन, और मज़बूत इंडक्शन मोटर्स के उपयोग की अनुमति देता है जिसमें ब्रश और कम्यूटेटर जैसे पुर्जे नहीं होते हैं।[1]


परिवहन अनुप्रयोग

सड़क वाहन

परंपरागत रूप से सड़क वाहनों (कारों, बसों और ट्रकों) ने एक यांत्रिक या हाइड्रोलिक ट्रांसमिशन सिस्टम के साथ डीजल और पेट्रोल इंजन का उपयोग किया है। 20वीं शताब्दी के उत्तरार्ध में, विद्युत संचरण प्रणाली वाले वाहन (आंतरिक दहन इंजन,बैटरी या ईंधन कोशिकाओं से संचालित) विकसित होने लगे किन्तु विद्युत मशीनों का उपयोग करने का एक लाभ यह है कि विशिष्ट प्रकार से ऊर्जा को पुन: उत्पन्न कर सकते हैं (अर्थात एक पुनर्योजी के रूप में कार्य करते हैं) और बैटरी पैक चार्ज करके क्षय प्रदान करने के साथ-साथ समग्र दक्षता में वृद्धि के रूप में कार्य करते हैं।

रेलवे

स्विस रेहेटियन रेलवे जीई 6/6 I मगरमच्छ (लोकोमोटिव) लोकोमोटिव, प्रत्येक बोगी के ऊपर एक बड़ी कर्षण मोटर के साथ, कपलिंग रॉड द्वारा ड्राइव के साथ।

परंपरागत रूप से, ये श्रृंखला-आघात ब्रश डीसी मोटर्स थे, जो व्यापक रूप से लगभग 600 वोल्ट पर चलती थीं। उच्च शक्ति वाले सेमीकंडक्टर्स (थाइरिस्टर्स और आईजीबीटी) की उपलब्धता ने अब बहुत सरल, उच्च-विश्वसनीयता वाले इंडक्शन मोटर के उपयोग को व्यावहारिक बना दिया है, जिन्हें अतुल्यकालिकट्रैक्शन मोटर्स कहा जाता है। तुल्यकालिक मोटर ऐसी मोटर्स का भी कभी-कभी उपयोग किया जाता है, जैसा कि फ्रेंच टीजीवी में होता है।

मोटर्स का माउंटिंग

20 वीं शताब्दी के मध्य से पहले, एक बड़ी मोटर का उपयोग प्रायः कनेक्टिंग रॉड्स के माध्यम से कई ड्राइविंग पहियों को चलाने के लिए किया जाता था जो भाप इंजनों पर उपयोग होने के समान थे। पेंसिल्वेनिया रेलमार्ग पीआरआर डीडी1, पीआरआर एफएफ1 और पीआरआर एल5 और विभिन्न स्विस क्रोकोडाइल्स इसके उदाहरण हैं। गियर ड्राइव के माध्यम से प्रत्येक एक्सल को एक ट्रैक्शन मोटर प्रदान करना अब मानक अभ्यास है।

सीडी क्लास 182 लोकोमोटिव के लिए नोज-सस्पेंडेड डीसी ट्रैक्शन मोटर

व्यापक रूप से, कर्षण मोटर बोगीफ्रेम और चालित धुरा के बीच तीन-बिंदु निलंबित होती है; इसे "निलंबित कर्षण मोटर" के रूप में जाना जाता है। इस तरह की व्यवस्था के साथ समस्या यह है कि मोटर के वजन का एक हिस्सा अनसंग वजन हो जाता है, जिससे ट्रैक पर अवांछित ताकतें बढ़ जाती हैं। प्रसिद्ध पेन्सिलवेनिया रेलमार्ग PRR GG1 के मामले में, दो फ्रेम-माउंटेड मोटरों ने क्विल ड्राइव के माध्यम से प्रत्येक एक्सल को चलाया। मिल्वौकी रोड वर्ग ईपी-2 मिल्वौकी रोड के लिए जनरल इलेक्ट्रिक द्वारा निर्मित "द्वि-ध्रुवीय" विद्युत इंजनों में प्रत्यक्ष ड्राइव मोटर थे। मोटर का घूमता हुआ शाफ्ट भी पहियों के लिए धुरी का कार्य करता था। फ्रांसीसी टीजीवी पावर कार के मामले में, पावर कार के फ्रेम पर लगा एक मोटर प्रत्येक एक्सल को चलाता है; एक "तिपाई" ड्राइव ड्राइव ट्रेन में लचीलेपन की एक छोटी मात्रा की अनुमति देता है जिससे ट्रकों की बोगियों को पिवोट करने की अनुमति मिलती है। अपेक्षाकृत भारी कर्षण मोटर को बोगी के बजाय सीधे पावर कार के फ्रेम पर चढ़ाने से, बेहतर गतिशीलता प्राप्त होती है, जिससे बेहतर उच्च गति संचालन की अनुमति मिलती है।[2]


वाइंडिंग्स

डीसी मोटर कई वर्षों तक इलेक्ट्रिक और डीजल-इलेक्ट्रिक लोकोमोटिव, स्ट्रीट-कारों/ट्राम और डीजल इलेक्ट्रिक ड्रिलिंग रिग पर इलेक्ट्रिक ट्रैक्शन ड्राइव का मुख्य आधार था। इसमें दो भाग होते हैं, एक रोटेटिंग आर्मेचर और एक शाफ्ट के चारों ओर लगे रोटेटिंग आर्मेचर के आस-पास फिक्स्ड फील्ड वाइंडिंग्स। फिक्स्ड फील्ड वाइंडिंग में मोटर केस के अंदर फिट किए गए तार तार में कसे हुए आघात के कॉइल होते हैं। आर्मेचर कॉइल का एक और सेट है जो एक केंद्रीय शाफ्ट के चारों ओर लपेटा जाता है और "ब्रश" के माध्यम से फील्ड वाइंडिंग से जुड़ा होता है, जो कम्यूटेटर (बिजली) नामक आर्मेचर के विस्तार के खिलाफ दबाने वाले स्प्रिंग-लोडेड संपर्क हैं। कम्यूटेटर आर्मेचर कॉइल्स के सभी टर्मिनेशन को इकट्ठा करता है और वर्तमान प्रवाह के सही अनुक्रम की अनुमति देने के लिए उन्हें एक गोलाकार पैटर्न में वितरित करता है। जब आर्मेचर और फील्ड वाइंडिंग्स को श्रृंखला में जोड़ा जाता है, तो पूरी मोटर को "श्रृंखला-आघात" कहा जाता है। श्रृंखला-आघात वाली डीसी मोटर में कम प्रतिरोध क्षेत्र और आर्मेचर परिपथ होता है। इसी वजह से जब इसमें वोल्टेज लगाया जाता है तो ओम के नियम के कारण करंट अधिक होता है। उच्च धारा का लाभ यह है कि मोटर के अंदर चुंबकीय क्षेत्र मजबूत होते हैं, उच्च टोक़ (टर्निंग फोर्स) का उत्पादन करते हैं, इसलिए यह ट्रेन प्रारम्भ करने के लिए आदर्श है। नुकसान यह है कि मोटर में प्रवाहित होने वाली धारा को सीमित करना पड़ता है, अन्यथा आपूर्ति अतिभारित हो सकती है या मोटर और उसकी केबल क्षतिग्रस्त हो सकती है। सर्वोत्तम रूप से, टोक़ आसंजन से अधिक होगा और ड्राइविंग पहिए फिसल जाएंगे। परंपरागत रूप से, प्रारंभिक धारा को सीमित करने के लिए प्रतिरोधकों का उपयोग किया जाता था।

बिजली पर नियंत्रण

जैसे ही डीसी मोटर मुड़ना प्रारम्भ करती है, अंदर के चुंबकीय क्षेत्र की परस्पर क्रिया के कारण यह आंतरिक रूप से वोल्टेज उत्पन्न करता है। यह काउंटर-इलेक्ट्रोमोटिव बल (सीईएमएफ) लागू वोल्टेज का विरोध करता है और बहने वाली धारा दोनों के बीच के अंतर से नियंत्रित होती है। जैसे ही मोटर की गति बढ़ती है, आंतरिक रूप से उत्पन्न वोल्टेज बढ़ जाता है, परिणामी EMF गिर जाता है, मोटर से कम करंट गुजरता है और बल-आघूर्ण गिर जाता है। जब ट्रेन का ड्रैग मोटरों द्वारा उत्पादित बल-आघूर्ण से समानता रखता है तो मोटर स्वाभाविक रूप से तेज होना बंद कर देती है। ट्रेन को गति देना जारी रखने के लिए, श्रृंखला प्रतिरोधों को चरण दर चरण स्विच आउट किया जाता है, प्रत्येक चरण प्रभावी वोल्टेज को बढ़ाता है और इस प्रकार कुछ देर के लिए करंट और बल-आघूर्ण को मोटर पकड़ लेता है। इसे पुरानी डीसी ट्रेनों में फर्श के नीचे गुच्छों की एक श्रृंखला के रूप में सुना और महसूस किया जा सकता है, प्रत्येक त्वरण एक झटके के साथ होता है क्योंकि वर्तमान के नए उछाल की प्रतिक्रिया में बल-आघूर्ण अचानक बढ़ जाता है। जब परिपथ में कोई प्रतिरोध नहीं बचा है, तो सीधे मोटर पर पूर्ण लाइन वोल्टेज लगाया जा रहा है। ट्रेन की गति उस बिंदु पर स्थिर रहती है जहां प्रभावी वोल्टेज द्वारा नियंत्रित मोटर का बल-आघूर्ण ड्रैग के बराबर होता है जिसे कभी-कभी संतुलन गति कहा जाता है। यदि ट्रेन एक ढलान पर चढ़ना प्रारम्भ करती है, तो गति कम हो जाती है क्योंकि ड्रैग बल-आघूर्ण से अधिक होता है और गति में कमी सीईएमएफ को गिरने का कारण बनती है और इस प्रकार प्रभावी वोल्टेज बढ़ता है जब तक कि मोटर के माध्यम से करंट नए ड्रैग से समानता रखने के लिए पर्याप्त बल-आघूर्ण उत्पन्न नहीं करता। श्रृंखला प्रतिरोध का उपयोग बेकार था क्योंकि बहुत सारी ऊर्जा ऊष्मा के रूप में खो गई थी। इन नुकसानों को कम करने के लिए, इलेक्ट्रिक लोकोमोटिव और ट्रेनें (बिजली के इलेक्ट्रॉनिक्स के आगमन से पहले) सामान्य रूप से श्रृंखला-समानांतर नियंत्रण के लिए भी सुसज्जित थीं।

लोकोमोटिव जो एसी बिजली स्रोतों (ट्रैक्शन मोटर्स के रूप में यूनिवर्सल मोटर्स का उपयोग करते हुए) से संचालित होते हैं, वे अपने ट्रांसफॉर्मर पर टैप परिवर्तक का लाभ उठा सकते हैं।ताकि प्रतिरोधों में निहित नुकसान के बिना ट्रैक्शन मोटर्स पर लागू वोल्टेज को अलग किया जा सके। पेंसिल्वेनिया रेलमार्ग वर्ग GG1 ऐसे लोकोमोटिव का एक उदाहरण था।

डायनेमिक ब्रेकिंग

यदि ट्रेन एक ग्रेड नीचे उतरना प्रारम्भ करती है, तो गति बढ़ जाती है क्योंकि (कम) ड्रैग बल-आघूर्ण से कम होता है। बढ़ी हुई गति के साथ, आंतरिक रूप से उत्पन्न बैक-ईएमएफ वोल्टेज बढ़ जाता है, टोक़ को तब तक कम कर देता है जब तक टोक़ फिर से ड्रैग को संतुलित नहीं करता। क्योंकि एक श्रृंखला आघात मोटर में बैक-ईएमएफ द्वारा क्षेत्र की धारा कम हो जाती है, ऐसी कोई गति नहीं होती है जिस पर बैक-ईएमएफ आपूर्ति वोल्टेज से अधिक हो, और इसलिए एक एकल श्रृंखला आघात डीसी कर्षण मोटर अकेले गतिशील या पुनर्योजी ब्रेकिंग प्रदान नहीं कर सकती है।

हालाँकि, कर्षण मोटर्स का उपयोग करके एक मंदक बल प्रदान करने के लिए विभिन्न योजनाएँ लागू की जाती हैं। उत्पन्न ऊर्जा को आपूर्ति (पुनर्योजी ब्रेकिंग) में लौटाया जा सकता है, या बोर्ड प्रतिरोधों (गतिशील ब्रेकिंग) द्वारा विखंडित किया जा सकता है। इस तरह की प्रणाली लोड को कम गति पर ला सकती है, जिससे लोड को पूर्ण विराम पर लाने के लिए अपेक्षाकृत कम घर्षण ब्रेकिंग की आवश्यकता होती है।

स्वचालित त्वरण

एक इलेक्ट्रिक ट्रेन पर, ट्रेन चालक या मोटरमैन को मैन्युअल रूप से प्रतिरोध को काटने के लिए नियंत्रित करना पड़ता था, लेकिन 1914 तक स्वचालित त्वरण का उपयोग किया जा रहा था। यह मोटर परिपथ में एक त्वरित रिले (प्रायः "नॉचिंग रिले" कहा जाता है) द्वारा प्राप्त किया गया था, जिसने प्रतिरोध के प्रत्येक चरण को काट दिया गया, साथ हीवर्तमान के पतन की निगरानी की। सभी ड्राइवर को कम, मध्यम या पूर्ण गति (जिसे "श्रृंखला", "समानांतर" और "शंट" कहा जाता है, जिस तरह से मोटर्स प्रतिरोध परिपथ में जुड़े थे) का चयन करना था और स्वचालित उपकरण बाकी काम करेगा।

रेटिंग

इलेक्ट्रिक लोकोमोटिव की व्यापक रूप से निरंतर और एक घंटे की रेटिंग होती है। एक घंटे की रेटिंग वह अधिकतम शक्ति है जो मोटर बिना ज़्यादा गरम किए एक घंटे की अवधि में लगातार विकसित कर सकती है। इस तरह का परीक्षण मोटर्स के साथ +25 डिग्री सेल्सियस पर प्रारम्भ होता है (और बाहरी हवा का उपयोग वेंटिलेशन के लिए भी +25 डिग्री सेल्सियस पर होता है)। यूएसएसआर में, कक्षा एन इन्सुलेशन के साथ घोस्ट 2582-72 के अनुसार, डीसी मोटरों के लिए अधिकतम तापमान आर्मेचर के लिए 160 डिग्री सेल्सियस, स्टेटर के लिए 180 डिग्री सेल्सियस और कलेक्टर के लिए 105 डिग्री सेल्सियस था।[3] एक घंटे की रेटिंग व्यापक रूप से निरंतर रेटिंग की तुलना में लगभग दस प्रतिशत अधिक होती है, और मोटर में तापमान वृद्धि से सीमित होती है।

चूंकि ट्रैक्शन मोटर्स मोटर आर्मेचर से संचालित एक्सल तक बल-आघूर्ण ट्रांसफर करने के लिए रिडक्शन गियर सेटअप का उपयोग करती हैं, मोटर पर रखा गया वास्तविक लोड गियर अनुपात के साथ बदलता रहता है अन्यथा "समान" ट्रैक्शन मोटर्स में काफी भिन्न लोड रेटिंग हो सकती है। कम गियर अनुपात के साथ माल ढुलाई के लिए तैयार एक कर्षण मोटर सुरक्षित रूप से उसी वर्तमान स्तर पर लंबी अवधि के लिए पहियों पर उच्च टोक़ का उत्पादन करेगा क्योंकि निचले गियर मोटर को अधिक यांत्रिक लाभ देते हैं।

डीजल-इलेक्ट्रिक ट्रांसमिशन डीजल-इलेक्ट्रिक और गैस टर्बाइन-इलेक्ट्रिक लोकोमोटिव में, ट्रैक्शन मोटर्स की अश्व-शक्ति रेटिंग व्यापक रूप से प्राइम मूवर (लोकोमोटिव) की तुलना में लगभग 81% होती है। यह मानता है कि विद्युत जनरेटर इंजन के आउटपुट का 90% विद्युत ऊर्जा में परिवर्तित करता है और कर्षण मोटर्स इस विद्युत ऊर्जा के 90% को वापस यांत्रिक ऊर्जा में परिवर्तित करता है, उद्धरण वांछित गणना: 0.9 × 0.9 = 0.81।

व्यक्तिगत कर्षण मोटर रेटिंग व्यापक रूप से 1,600 किलोवाट (2,100 एचपी) तक होती है।

एक अन्य महत्वपूर्ण कारक जब कर्षण मोटर्स को डिज़ाइन या निर्दिष्ट किया जाता है, तो वह परिचालन गति कहलाती है। मोटर आर्मेचर में अधिकतम सुरक्षित घूर्णन गति होती है, जिस पर या उससे कम पर वाइंडिंग सुरक्षित रूप से अपने स्थान पर रहेगी।

इस अधिकतम गति से ऊपर आर्मेचर पर अभिकेंद्री बल वाइंडिंग को बाहर की ओर फेंक देगा। गंभीर मामलों में, यह "बर्डनेस्टिंग" का कारण बन सकता है क्योंकि घुमावदार मोटर आवास से संपर्क करते हैं और अंत में आर्मेचर से पूरी तरह से टूट जाते हैं और खुल जाते हैं।

ओवरस्पीड के कारण बर्ड-नेस्टिंग (आर्मेचर की वाइंडिंग का सेंट्रीफ्यूगल इजेक्शन) या तो पावर्ड लोकोमोटिव के ऑपरेटिंग ट्रैक्शन मोटर्स में हो सकता है या बहुत तेजी से यात्रा करने वाली ट्रेन के भीतर डेड-इन-कंसिस्ट लोकोमोटिव के ट्रैक्शन मोटर्स में हो सकता है। एक अन्य कारण घिसी-पिटी या क्षतिग्रस्त ट्रैक्शन मोटरों का उन यूनिटों से प्रतिस्थापन है जो अनुप्रयोग के लिए गलत ढंग से तैयार किए गए हैं।

जब आर्मेचर असेंबली और वाइंडिंग सपोर्ट और रिटेनर पिछले दुरुपयोग से क्षतिग्रस्त हो गए हों, तो ओवरलोडिंग और ओवरहीटिंग से होने वाली क्षति भी रेटेड गति से नीचे बर्ड-नेस्टिंग पैदा कर सकती है।

शीतलक

उच्च शक्ति स्तर सम्मिलित होने के कारण, कर्षण मोटर्स को लगभग सदैव मजबूर हवा, पानी या एक विशेष ढांकता हुआ तरल का उपयोग करके ठंडा किया जाता है।

एक यूएस डीजल-इलेक्ट्रिक लोकोमोटिव पर विशिष्ट शीतलन प्रणाली में हवा को उड़ाने वाले लोकोमोटिव फ्रेम में एकीकृत मार्ग में एक विद्युत चालित पंखा होता है। रबर कूलिंग डक्ट्स अलग-अलग ट्रैक्शन मोटर्स के मार्ग को जोड़ते हैं और ठंडी हवा वायुमंडल में समाप्त होने से पहले कवच के नीचे जाती है।

निर्माता


यह भी देखें


संदर्भ

  1. Andreas Steimel Electric Traction - Motive Power and Energy Supply: Basics and Practical Experience Oldenbourg Industrieverlag, 2008 ISBN 3835631322 ; Chapter 6 "Induction Traction Motors and Their Control"
  2. "टीजीवीवेब - टीजीवी का "अंडर द हुड"". www.trainweb.org. Retrieved 2017-12-12.
  3. Сидоров 1980, p.47


ग्रन्थसूची

  • British Railways (1962). "Section 13: Traction Control". Diesel Traction Manual for Enginemen (1st ed.). British Transport Commission. pp. 172–189.
  • Bolton, William F. (1963). The Railwayman's Diesel Manual (4th ed.). pp. 107–111, 184–190.









बाहरी कड़ियाँ