चमक निर्वहन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{more citations needed|date=December 2014}}
[[File:AC powered NE-2 type neon lamp close-up.jpg|thumb|upright|एनई-2 टाइप नियॉन लैंप को वैकल्पिक करंट द्वारा संचालित किया गया]]
[[File:AC powered NE-2 type neon lamp close-up.jpg|thumb|upright|NE-2 टाइप नियॉन लैंप को वैकल्पिक करंट द्वारा संचालित किया गया]]
[[File:12. Тлеечко празнење.ogv|thumb|250px|विद्युत प्रवाह के कारण कम दबाव वाली ट्यूब में चमक निर्वहन ।]]चमक निर्वहन गैस के माध्यम से [[विद्युत प्रवाह]] के पारित होने से [[ प्लाज्मा |प्लाज्मा]] (भौतिकी) होता है यह अधिकांशतः एक कांच की ट्यूब में दो [[ इलेक्ट्रोड |इलेक्ट्रोड]] के बीच एक वोल्टता लागू करके बनाया जाता है जिसमें कम दबाव वाली गैस होती है। जब वोल्टता[[ हड़ताली वोल्टेज | स्ट्राइकिंग वोल्टेज]] मान से अधिक हो जाती है, तो गैस [[ आयनीकरण |आयनीकरण]] हो जाता है, और ट्यूब एक रंगीन प्रकाश के साथ चमकती है। यह रंग प्रयुक्त गैस पर निर्भर करता है।
[[File:12. Тлеечко празнење.ogv|thumb|250px|विद्युत प्रवाह के कारण कम दबाव वाली ट्यूब में दीप्ति  डिस्चार्ज।]]दीप्ति डिस्चार्ज एक गैस के माध्यम से [[विद्युत प्रवाह]] के पारित होने से [[ प्लाज्मा ]] (भौतिकी) है। यह अधिकांशतः एक कांच की ट्यूब में दो [[ इलेक्ट्रोड ]] के बीच एक वोल्टता लागू करके बनाया जाता है जिसमें कम दबाव वाली गैस होती है। जब वोल्टता [[ हड़ताली वोल्टेज | आर्क प्रारंभिक वोल्टता]] मान से अधिक हो जाती है, तो गैस [[ आयनीकरण ]] आत्मनिर्भर हो जाता है, और ट्यूब एक रंगीन प्रकाश के साथ चमकती है। रंग उपयोग की गई गैस पर निर्भर करता है।


दीप्ति  डिस्चार्ज का उपयोग [[ नियॉन लाइट | नियॉन लाइट]], [[ फ्लोरोसेंट लैंप ]] और [[ प्लाज्मा प्रदर्शन | प्लाज्मा स्क्रीन टीवी]] जैसे उपकरणों में प्रकाश के स्रोत के रूप में किया जाता है। प्लाज्मा-स्क्रीन टेलीविज़न[[ स्पेक्ट्रोस्कोपी ]] द्वारा उत्पन्न प्रकाश के विश्लेषण से गैस में परमाणु अन्योन्य क्रिया के बारे में जानकारी प्राप्त की जा सकती है, इसलिए [[ प्लाज्मा भौतिकी ]] और विश्लेषणात्मक रसायन विज्ञान में दीप्ति डिस्चार्ज का उपयोग किया जाता है। उनका उपयोग सतह उपचार तकनीक में भी किया जाता है जिसे [[ कड़वा | स्पटरिंग]] कहा जाता है।
चमक निर्वहन का उपयोग [[ नियॉन लाइट |नियॉन लाइट]], [[ फ्लोरोसेंट लैंप |फ्लोरोसेंट लैंप]] और [[ प्लाज्मा प्रदर्शन |प्लाज्मा स्क्रीन टीवी]] जैसे उपकरणों में प्रकाश के स्रोत के रूप में किया जाता है। प्लाज्मा-स्क्रीन टेलीविज़न[[ स्पेक्ट्रोस्कोपी | स्पेक्ट्रोस्कोपी]] द्वारा उत्पन्न प्रकाश के विश्लेषण से गैस में परमाणु अन्योन्य क्रिया के बारे में जानकारी प्राप्त की जा सकती है, इसलिए [[ प्लाज्मा भौतिकी |प्लाज्मा भौतिकी]] और विश्लेषणात्मक रसायन विज्ञान में चमक निर्वहन का उपयोग किया जाता है। उनका उपयोग सतह उपचार तकनीक में भी किया जाता है जिसे [[ कड़वा |स्पटरिंग]] कहा जाता है।


== गैस में विद्युत चालन ==
== गैस में विद्युत चालन ==
[[File:Glow discharge current-voltage curve English.svg|thumb|right|300px|1 टॉर पर नियॉन में विद्युत डिस्चार्ज की वोल्टता -वर्तमान विशेषताएं, दो प्लानर इलेक्ट्रोड के साथ 50 & nbsp; cm। <br/>
[[File:Glow discharge current-voltage curve English.svg|thumb|right|300px|1 टोर पर नियॉन में विद्युत निर्वहन की वोल्टेज-वर्तमान विशेषताएँ, दो प्लानर इलेक्ट्रोड के साथ 50 सेमी से अलग। <br/>: ब्रह्मांडीय विकिरण द्वारा यादृच्छिक पल्सेस <br/>बी: संतृप्ति वर्तमान <br/>सी: हिमस्खलन टाउनसेंड निर्वहन <br/>डी: स्व-सत्तर टाउनसेंड निर्वहन <br/>ई: अस्थिर क्षेत्र: [[ कोरोना डिस्चार्ज |कोरोना निर्वहन]] <br/>एफ: उप-सामान्य चमक निर्वहन <br/>जी: सामान्य चमक निर्वहन <br/>एच: असामान्य चमक निर्वहन <br/>आई: अस्थिर क्षेत्र: चमक -आर्क संक्रमण <br/>जे: [[ इलेक्ट्रिक आर्क |इलेक्ट्रिक आर्क]] <br/>के: इलेक्ट्रिक आर्क <br/>ए-डी क्षेत्र: डार्क निर्वहन ;आयनीकरण होता है, 10 माइक्रोएएमपी के नीचे वर्तमान। <br/>एफ-एच क्षेत्र: चमक निर्वहन ;प्लाज्मा एक बेहोश चमक का उत्सर्जन करता है।<br/>आई-के क्षेत्र: आर्क निर्वहन ;बड़ी मात्रा में विकिरण का उत्पादन किया गया।]]गैस में चालन के लिए आवेश वाहक की आवश्यकता होती है, जो इलेक्ट्रॉन या आयन हो सकते हैं। आवेश वाहक गैस के कुछ अणुओं को आयनित करने से आते हैं। वर्तमान प्रवाह के संदर्भ में चमक निर्वहन डार्क निर्वहन और [[ चाप -निर्वहन |चाप -निर्वहन]] के बीच गिरता है।
एक: ब्रह्मांडीय विकिरण द्वारा यादृच्छिक दालों <br/>
B: संतृप्ति वर्तमान <br/>
सी: हिमस्खलन टाउनसेंड डिस्चार्ज <br/>
D: स्व-सत्तर टाउनसेंड डिस्चार्ज <br/>
ई: अस्थिर क्षेत्र: [[ कोरोना डिस्चार्ज ]] <br/>
एफ: उप-सामान्य दीप्ति डिस्चार्ज <br/>
जी: सामान्य दीप्ति डिस्चार्ज <br/>
H: असामान्य दीप्ति डिस्चार्ज <br/>
I: अस्थिर क्षेत्र: दीप्ति -आर्क संक्रमण <br/>
J: [[ इलेक्ट्रिक आर्क ]] <br/>
K: इलेक्ट्रिक आर्क <br/>
ए-डी क्षेत्र: डार्क डिस्चार्ज;आयनीकरण होता है, 10 माइक्रोएएमपी के नीचे वर्तमान। <br/>
एफ-एच क्षेत्र: दीप्ति  डिस्चार्ज;प्लाज्मा एक बेहोश दीप्ति का उत्सर्जन करता है।<br/>
I-K क्षेत्र: आर्क डिस्चार्ज;बड़ी मात्रा में विकिरण का उत्पादन किया गया।]]गैस में चालन के लिए चार्ज वाहक की आवश्यकता होती है, जो कि या तो इलेक्ट्रॉन या आयन हो सकते हैं। चार्ज वाहक कुछ गैस अणुओं को आयनित करने से आते हैं। वर्तमान प्रवाह के संदर्भ में दीप्ति  डिस्चार्ज डार्क डिस्चार्ज और [[ चाप -निर्वहन | चाप -डिस्चार्ज]] के बीच गिरता है।


*एक अंधेरे डिस्चार्ज में, गैस को एक विकिरण स्रोत जैसे पराबैंगनी प्रकाश या कॉस्मिक किरणों द्वारा आयनित वाहक उत्पन्न होते हैं।एनोड और कैथोड में उच्च वोल्टता पर, मुक्त वाहक पर्याप्त ऊर्जा प्राप्त कर सकते हैं ताकि टकराव के दौरान अतिरिक्त वाहक को मुक्त कर दिया जाए तो प्रक्रिया एक [[ टाउनसेंड हिमस्खलन ]] या गुणन के रूप में होते है।
*एक डार्क निर्वहन में, गैस को एक विकिरण स्रोत जैसे पराबैंगनी प्रकाश या कॉस्मिक किरणों द्वारा आयनित वाहक उत्पन्न होते हैं। एनोड और कैथोड में उच्च वोल्टता पर, मुक्त वाहक पर्याप्त ऊर्जा प्राप्त कर सकते हैं ताकि टकराव के दौरान अतिरिक्त वाहक को मुक्त कर दिया जाए तो प्रक्रिया एक [[ टाउनसेंड हिमस्खलन |टाउनसेंड हिमस्खलन]] या गुणन के रूप में होते है।
*एक दीप्ति डिस्चार्ज में, वाहक उत्पादन प्रक्रिया एक बिंदु पर पहुंच जाती है जहां कैथोड छोड़ने वाला औसत इलेक्ट्रॉन अन्य इलेक्ट्रॉन को कैथोड छोड़ने की अनुमति देता है। उदाहरण के लिए, औसत इलेक्ट्रॉन टाउनसेंड हिमस्खलन के माध्यम से दर्जनों आयनीकरण टकराव का कारण बन सकता है परिणामस्वरूप धनात्मक आयनों ने कैथोड की ओर प्रधान होता है, और जो कैथोड के साथ टकराव का कारण बनता है, उनका एक अंश एक इलेक्ट्रान को द्वितीयक उत्सर्जन द्वारा निकाल देता है।
*एक चमक निर्वहन में, वाहक उत्पादन प्रक्रिया एक बिंदु पर पहुंच जाती है जहां कैथोड छोड़ने वाला औसत इलेक्ट्रॉन अन्य इलेक्ट्रॉन को कैथोड छोड़ने की अनुमति देता है। उदाहरण के लिए, औसत इलेक्ट्रॉन टाउनसेंड हिमस्खलन के माध्यम से दर्जनों आयनीकरण टकराव का कारण बन सकता है परिणामस्वरूप धनात्मक आयनों ने कैथोड की ओर प्रधान होता है, और जो कैथोड के साथ टकराव का कारण बनता है, उनका एक अंश एक इलेक्ट्रान को द्वितीयक उत्सर्जन द्वारा निकाल देता है।
*एक आर्क डिस्चार्ज में, इलेक्ट्रॉनों को थर्मोनिक उत्सर्जन और [[ क्षेत्र उत्सर्जन ]] द्वारा कैथोड छोड़ दिया जाता है, और गैस को थर्मल साधनों द्वारा आयनित किया जाता है।<ref name="alex">{{cite book | last = Fridman | first = Alexander | title = प्लाज्मा भौतिकी और इंजीनियरिंग| publisher = [[CRC Press]] | location = Boca Raton, FL | year = 2011 | isbn = 978-1439812280 }}</ref>
*एक आर्क निर्वहन में, इलेक्ट्रॉनों को थर्मोनिक उत्सर्जन और [[ क्षेत्र उत्सर्जन |क्षेत्र उत्सर्जन]] द्वारा कैथोड छोड़ दिया जाता है, और गैस को थर्मल साधनों द्वारा आयनित किया जाता है।<ref name="alex">{{cite book | last = Fridman | first = Alexander | title = प्लाज्मा भौतिकी और इंजीनियरिंग| publisher = [[CRC Press]] | location = Boca Raton, FL | year = 2011 | isbn = 978-1439812280 }}</ref>
[[ ब्रेकडाउन वोल्टेज | ब्रेकडाउन वोल्टता]] के नीचे कोई दीप्ति नहीं है और विद्युत क्षेत्र एक समान है। जब विद्युत क्षेत्र आयनीकरण करने के लिए पर्याप्त हो जाता है, तो टाउनसेंड डिस्चार्ज शुरू होता है। जब एक दीप्ति डिस्चार्ज का विकास होता है, तो विद्युत क्षेत्र को धनात्मक आयनों की उपस्थिति से विद्युत क्षेत्र में काफी परिवर्तन होता है, क्षेत्र कैथोड के पास केंद्रित होता है। दीप्ति  डिस्चार्ज एक सामान्य दीप्ति के रूप में शुरू होता है। जैसे जैसे करंट बढ़ाया जाता है, कैथोड की अधिक सतह दीप्ति में सम्मलित होती है। जब वर्तमान को उस स्तर से ऊपर बढ़ाया जाता है जहां पूरे कैथोड की सतह निहित होती है, तो डिस्चार्ज को एक असामान्य दीप्ति के रूप में जाना जाता है। यदि वर्तमान में अभी भी वृद्धि हुई है, तो अन्य कारक खेल में आते हैं और एक इलेक्ट्रिक चाप का डिस्चार्ज शुरू होता है।<ref>Principles of Electronics By V.K. Mehta {{ISBN|81-219-2450-2}}</ref>
[[ ब्रेकडाउन वोल्टेज |भंजक वोल्टता]] के नीचे कोई चमक नहीं होती है और विद्युत क्षेत्र एक समान होता है। जब विद्युत क्षेत्र आयनीकरण करने के लिए पर्याप्त हो जाता है, तो टाउनसेंड निर्वहन आरम्भ होता है। जब एक चमक निर्वहन का विकास होता है, तो विद्युत क्षेत्र को धनात्मक आयनों की उपस्थिति से विद्युत क्षेत्र में काफी परिवर्तन होता है, क्षेत्र कैथोड के पास केंद्रित होता है। चमक निर्वहन एक सामान्य चमक के रूप में आरम्भ होता है। जैसे जैसे करंट बढ़ाया जाता है, कैथोड की अधिक सतह चमक में सम्मलित होती है। जब वर्तमान को उस स्तर से ऊपर बढ़ाया जाता है जहां कैथोड की सतह निहित होती है, तो निर्वहन को एक असामान्य चमक के रूप में जाना जाता है। यदि वर्तमान में अभी भी वृद्धि हुई है, तो अन्य कारक प्रकिया में आते हैं और एक इलेक्ट्रिक चाप का निर्वहन आरम्भ होता है।<ref>Principles of Electronics By V.K. Mehta {{ISBN|81-219-2450-2}}</ref>
== तंत्र ==
== तंत्र ==
दीप्ति  डिस्चार्ज का सबसे सरलतम प्रकार एक प्रत्यक्ष वर्तमान दीप्ति  डिस्चार्ज होता है। अपने सरलतम रूप में, इसमें कम दबाव में आयोजित एक सेल में दो इलेक्ट्रोड होते हैं। और (0.1-10 टोर लगभग 1/10000 से 1/100 वें वायुमंडलीय दबाव) के रूप में होते है औसत मुक्त पथ को बढ़ाने के लिए एक कम दबाव का उपयोग किया जाता है एक निश्चित विद्युत क्षेत्र के लिए, एक लंबा मतलब मुक्त पथ एक चार्ज कण को दूसरे कण से टकराने से पहले अधिक ऊर्जा प्राप्त करने की अनुमति देता है। सेल सामान्यतः नियॉन से भरा होता है, लेकिन अन्य गैसों का उपयोग भी किया जा सकता है। दो इलेक्ट्रोड के बीच कई सौ वोल्ट की एक विद्युत क्षमता लागू की जाती है। सेल के भीतर परमाणुओं की आबादी का एक छोटा सा हिस्सा शुरू में यादृच्छिक प्रक्रियाओं के माध्यम से [[ आयनित ]] होता है, जैसे कि परमाणुओं के बीच थर्मल टकराव या [[ गामा किरण | गामा किरणों]] द्वारा होता है। धनात्मक आयनों को विद्युत क्षमता द्वारा [[ कैथोड ]] की ओर प्रेरित होते हैं, और इलेक्ट्रान [[एनोड]] की ओर समान विभव से प्रेरित होते हैं। आयनों और इलेक्ट्रॉनों की प्रारंभिक आबादी अन्य परमाणुओं के साथ टकराती है, उन्हें [[ उत्साहित राज्य |उत्साहित]] या आयनित करती है। जब तक क्षमता को बनाए रखा जाता है, तब तक आयनों और इलेक्ट्रॉनों की आबादी बनी रहती है।
चमक निर्वहन का सबसे सरलतम प्रकार एक प्रत्यक्ष वर्तमान चमक निर्वहन होता है। अपने सरलतम रूप में, इसमें कम दबाव में आयोजित एक सेल में दो इलेक्ट्रोड होते हैं। और (0.1-10 टोर लगभग 1/10000 से 1/100 वें वायुमंडलीय दबाव) के रूप में होते है औसत मुक्त पथ को बढ़ाने के लिए एक कम दबाव का उपयोग किया जाता है एक निश्चित विद्युत क्षेत्र के लिए, एक लंबा मतलब मुक्त पथ एक आवेश कण को दूसरे कण से टकराने से पहले अधिक ऊर्जा प्राप्त करने की अनुमति देता है। सेल सामान्यतः नियॉन से भरा होता है, लेकिन अन्य गैसों का उपयोग भी किया जा सकता है। दो इलेक्ट्रोड के बीच कई सौ वोल्ट की एक विद्युत क्षमता लागू की जाती है। सेल के भीतर परमाणुओं की संख्या का एक छोटा सा हिस्सा आरम्भ में यादृच्छिक प्रक्रियाओं के माध्यम से [[ आयनित |आयनित]] होता है, जैसे कि परमाणुओं के बीच थर्मल टकराव या [[ गामा किरण |गामा किरणों]] द्वारा होता है। धनात्मक आयनों को विद्युत क्षमता द्वारा [[ कैथोड |कैथोड]] की ओर प्रेरित होते हैं, और इलेक्ट्रान [[एनोड]] की ओर समान विभव से प्रेरित होते हैं। आयनों और इलेक्ट्रॉनों की प्रारंभिक आबादी अन्य परमाणुओं के साथ टकराती है, उन्हें [[ उत्साहित राज्य |उत्साहित]] या आयनित करती है। जब तक क्षमता को बनाए रखा जाता है, तब तक आयनों और इलेक्ट्रॉनों की संख्या बनी रहती है।


=== माध्यमिक उत्सर्जन ===
=== माध्यमिक उत्सर्जन ===
कुछ आयनों की गतिज ऊर्जा कैथोड में स्थानांतरित हो जाती है। यह आंशिक रूप से आंशिक रूप से कैथोड को सीधे स्ट्राइकिंग करने वाले आयनों के माध्यम से होता है। चूंकि, प्राथमिक क्रियाविधि कम प्रत्यक्ष होती है। आयनों में कई तटस्थ गैस परमाणुओं पर हमला किया, उनकी ऊर्जा के एक हिस्से को उनके पास स्थानांतरित किया। ये तटस्थ परमाणु तब कैथोड पर प्रहार करते हैं।जो भी प्रजातियां आयन या परमाणु कैथोड पर प्रहार करती हैं, कैथोड के भीतर टकराव इस ऊर्जा को फिर से परिभाषित करते हैं, जिसके परिणामस्वरूप कैथोड से इलेक्ट्रॉनों को बाहर निकाल दिया जाता है। इस प्रक्रिया को द्वितीयक इलेक्ट्रॉन उत्सर्जन के रूप में जाना जाता है। एक बार कैथोड से मुक्त होने के बाद, विद्युत क्षेत्र दीप्ति  डिस्चार्ज के थोक में इलेक्ट्रॉनों को गति प्रदान करता है। फिर परमाणु तब आयनों, इलेक्ट्रॉनों, या अन्य परमाणुओं के साथ टकराव से उत्तेजित किया जा सकता है, जिन्हें पहले टकराव से उत्तेजित किया गया था।
कुछ आयनों की गतिज ऊर्जा कैथोड में स्थानांतरित हो जाती है। यह आंशिक रूप से आंशिक रूप से कैथोड को सीधे स्ट्राइकिंग करने वाले आयनों के माध्यम से होता है। चूंकि, प्राथमिक क्रियाविधि कम प्रत्यक्ष होती है। आयनों में कई तटस्थ गैस परमाणुओं पर हमला किया, उनकी ऊर्जा के एक हिस्से को उनके पास स्थानांतरित किया। ये तटस्थ परमाणु तब कैथोड पर प्रहार करते हैं। जो भी प्रजातियां आयन या परमाणु कैथोड पर प्रहार करती हैं, कैथोड के भीतर टकराव इस ऊर्जा को फिर से परिभाषित करते हैं, जिसके परिणामस्वरूप कैथोड से इलेक्ट्रॉनों को बाहर निकाल दिया जाता है। इस प्रक्रिया को द्वितीयक इलेक्ट्रॉन उत्सर्जन के रूप में जाना जाता है। एक बार कैथोड से मुक्त होने के बाद, विद्युत क्षेत्र चमक निर्वहन के थोक में इलेक्ट्रॉनों को गति प्रदान करता है। फिर परमाणु तब आयनों, इलेक्ट्रॉनों, या अन्य परमाणुओं के साथ टकराव से उत्तेजित किया जा सकता है, जिन्हें पहले टकराव से उत्तेजित किया गया था।


=== प्रकाश उत्पादन ===
=== प्रकाश उत्पादन ===
एक बार उत्साहित होने के बाद, परमाणु अपनी ऊर्जा को काफी जल्दी खो देते है। यह ऊर्जा खोने के लिए महत्वपूर्ण है। सबसे महत्वपूर्ण विकिरणीय रूप से है, जिसका अर्थ है कि ऊर्जा को दूर ले जाने के लिए एक फोटॉन जारी किया जाता है। ऑप्टिकल [[ परमाणु स्पेक्ट्रोस्कोपी ]] में, इस फोटॉन की तरंग दैर्ध्य का उपयोग परमाणु की पहचान को निर्धारित करने के लिए किया जा सकता है अर्थात, जो [[ रासायनिक तत्व ]] है और फोटॉन की संख्या नमूने में उस तत्व की एकाग्रता के लिए सीधे आनुपातिक होती है। कुछ टकराव उच्च पर्याप्त ऊर्जा के आयनीकरण का कारण बनते है परमाणु [[ मास स्पेक्ट्रोमेट्री | भार स्पेक्ट्रोमेट्री]] में, इन आयनों का पता लगाया जाता है। उनका द्रव्यमान परमाणुओं के प्रकार की पहचान करता है और उनकी मात्रा नमूने में उस तत्व की मात्रा को दर्शाती है।
एक बार उत्साहित होने के बाद, परमाणु अपनी ऊर्जा को काफी जल्दी खो देते है। यह ऊर्जा खोने के लिए महत्वपूर्ण है। सबसे महत्वपूर्ण विकिरणीय रूप से है, जिसका अर्थ है कि ऊर्जा को दूर ले जाने के लिए एक फोटॉन जारी किया जाता है। ऑप्टिकल [[ परमाणु स्पेक्ट्रोस्कोपी |परमाणु स्पेक्ट्रोस्कोपी]] में, इस फोटॉन की तरंग दैर्ध्य का उपयोग परमाणु की पहचान को निर्धारित करने के लिए किया जा सकता है अर्थात, जो [[ रासायनिक तत्व |रासायनिक तत्व]] है और फोटॉन की संख्या नमूने में उस तत्व की एकाग्रता के लिए सीधे आनुपातिक होती है। कुछ टकराव उच्च पर्याप्त ऊर्जा के आयनीकरण का कारण बनते है परमाणु [[ मास स्पेक्ट्रोमेट्री |भार स्पेक्ट्रोमेट्री]] में, इन आयनों का पता लगाया जाता है। उनका द्रव्यमान परमाणुओं के प्रकार की पहचान करता है और उनकी मात्रा नमूने में उस तत्व की मात्रा को दर्शाती है।


=== क्षेत्र ===
=== क्षेत्र ===
{{multiple image
{{multiple image
| align = right
| align = दायां
| direction = vertical
| direction = लंबवत
| header  =  
| header  =  
| image1  = Glow discharge regions.jpg
| image1  = Glow discharge regions.jpg
Line 46: Line 31:
| caption2 =  
| caption2 =  
| width2  = 350
| width2  = 350
| footer  = A glow discharge illustrating the different regions comprising it and a diagram giving their names.
| footer  = इसमें सम्मिलित विभिन्न क्षेत्रों को दर्शाने वाला एक चमक निर्वहन और उनके नाम देने वाला आरेख।
}}
}}
दाईं ओर दिए गए चित्रों में मुख्य क्षेत्र जो एक दीप्ति  डिस्चार्ज में विद्यमान हो सकते हैं। दीप्ति के रूप में वर्णित क्षेत्रों में महत्वपूर्ण प्रकाश का उत्सर्जन करते हैं डार्क स्पेस के रूप में लेबल किए गए क्षेत्र नहीं हैं। जैसे, जैसे डिस्चार्ज अधिक विस्तारित हो जाता है अर्थात, चित्रण के ज्यामिति में क्षैतिज रूप से फैला हुआ हैं। धनात्मक स्तंभ रेखित हो जाता है।अर्थात्, बारी बारी से अंधेरे और उज्ज्वल क्षेत्रों का निर्माण हो सकता है। डिस्चार्ज को क्षैतिज रूप से कॉमप्रेस करने से कम जगह पर परिणाम मिलता है धनात्मक स्तंभ संकुचित हो जाता है, जबकि ऋणात्मक दीप्ति समान आकार में रहती है और छोटे पर्याप्त अंतराल के साथ, धनात्मक स्तंभ पूरी तरह से गायब हो जाता है। एक विश्लेषणात्मक दीप्ति डिस्चार्ज में, डिस्चार्ज मुख्य रूप से इसके ऊपर और नीचे अंधेरे क्षेत्र के साथ एक ऋणात्मक दीप्ति होती है।
दाईं ओर दिए गए चित्रों में मुख्य क्षेत्र जो एक चमक निर्वहन में विद्यमान हो सकते हैं। चमक के रूप में वर्णित क्षेत्रों में महत्वपूर्ण प्रकाश का उत्सर्जन करते हैं डार्क स्पेस के रूप में लेबल किए गए क्षेत्र नहीं हैं। जैसे, जैसे निर्वहन अधिक विस्तारित हो जाता है अर्थात, चित्रण के ज्यामिति में क्षैतिज रूप से फैला हुआ हैं। धनात्मक स्तंभ रेखित हो जाता है।अर्थात्, बारी बारी से डार्क और उज्ज्वल क्षेत्रों का निर्माण हो सकता है। निर्वहन को क्षैतिज रूप से संपीड करने से कम जगह पर परिणाम मिलता है धनात्मक स्तंभ संकुचित हो जाता है, जबकि ऋणात्मक चमक समान आकार में रहती है और छोटे पर्याप्त अंतराल के साथ, धनात्मक स्तंभ पूरी तरह से गायब हो जाता है। एक विश्लेषणात्मक चमक निर्वहन में, निर्वहन मुख्य रूप से इसके ऊपर और नीचे डार्क स्पेस के साथ एक ऋणात्मक चमक होती है।


=== कैथोड परत ===
=== कैथोड परत ===
कैथोड परत एस्टन डार्क स्पेस के साथ शुरू होती है, और ऋणात्मक दीप्ति क्षेत्र के साथ समाप्त होती है।कैथोड परत गैस के दबाव में वृद्धि के साथ कम हो जाती है।कैथोड परत में एक धनात्मक अंतरिक्ष चार्ज और एक मजबूत विद्युत क्षेत्र है।<ref name="fridman"/><ref name="KonjevicVidenovic1997">{{cite journal|last1=Konjevic|first1=N.|last2=Videnovic|first2=I. R.|last3=Kuraica|first3=M. M.|title=एक विश्लेषणात्मक चमक निर्वहन के कैथोड गिरावट क्षेत्र का उत्सर्जन स्पेक्ट्रोस्कोपी|journal=Le Journal de Physique IV|volume=07|issue=C4|year=1997|pages=C4–247–C4–258|issn=1155-4339|doi=10.1051/jp4:1997420 |url=https://hal.archives-ouvertes.fr/jpa-00255576/document |access-date=June 19, 2017}}</ref>
कैथोड परत एस्टन डार्क स्पेस के साथ आरम्भ होती है, और ऋणात्मक चमक क्षेत्र के साथ समाप्त होती है। कैथोड परत में गैस के दबाव में वृद्धि के साथ कम हो जाती है। कैथोड परत में एक धनात्मक स्थान आवेश और एक मजबूत विद्युत क्षेत्र होता है।<ref name="fridman"/><ref name="KonjevicVidenovic1997">{{cite journal|last1=Konjevic|first1=N.|last2=Videnovic|first2=I. R.|last3=Kuraica|first3=M. M.|title=एक विश्लेषणात्मक चमक निर्वहन के कैथोड गिरावट क्षेत्र का उत्सर्जन स्पेक्ट्रोस्कोपी|journal=Le Journal de Physique IV|volume=07|issue=C4|year=1997|pages=C4–247–C4–258|issn=1155-4339|doi=10.1051/jp4:1997420 |url=https://hal.archives-ouvertes.fr/jpa-00255576/document |access-date=June 19, 2017}}</ref>
 
 
==== एस्टन डार्क स्पेस ====
==== एस्टन डार्क स्पेस ====
इलेक्ट्रॉन कैथोड को लगभग 1 ईवी की ऊर्जा के साथ छोड़ देते हैं, जो कैथोड के बगल में एक पतली अंधेरी परत को छोड़कर, परमाणुओं को आयनित या उत्तेजित करने के लिए पर्याप्त नहीं है।<ref name="fridman">{{cite book | last = Fridman | first = Alexander | title = प्लाज्मा रसायन विज्ञान| publisher = [[Cambridge University Press]] | location = Cambridge | page=177 | year = 2012 | isbn = 978-1107684935 }}</ref>
इलेक्ट्रॉन कैथोड को लगभग 1 ईवी की ऊर्जा के साथ छोड़ देते हैं, जो कैथोड के बगल में एक पतली अंधेरी परत को छोड़कर परमाणुओं को आयनित या उत्तेजित करने के लिए पर्याप्त नहीं है।<ref name="fridman">{{cite book | last = Fridman | first = Alexander | title = प्लाज्मा रसायन विज्ञान| publisher = [[Cambridge University Press]] | location = Cambridge | page=177 | year = 2012 | isbn = 978-1107684935 }}</ref>
 


==== कैथोड चमक ====
==== कैथोड चमक ====
कैथोड से इलेक्ट्रॉन अंततः परमाणुओं को उत्तेजित करने के लिए पर्याप्त ऊर्जा प्राप्त करते हैं।ये उत्साहित परमाणु जल्दी से जमीन की स्थिति में वापस आ जाते हैं, परमाणुओं के ऊर्जा बैंड के बीच अंतर के अनुरूप तरंग दैर्ध्य पर प्रकाश का उत्सर्जन करते हैं।यह दीप्ति कैथोड के पास बहुत देखी जाती है।<ref name="fridman"/>
कैथोड से इलेक्ट्रॉन अंततः परमाणुओं को उत्तेजित करने के लिए पर्याप्त ऊर्जा प्राप्त करते हैं। ये उत्तेजित परमाणु जल्दी ही अपने मूल अवस्था में वापस आ जाते हैं, परमाणुओं के ऊर्जा बैंड के बीच अंतर के अनुरूप तरंग दैर्ध्य पर प्रकाश का उत्सर्जन करते हैं। यह चमक कैथोड के पास अत्यधिक देखी जाती है।<ref name="fridman"/>




===={{anchor| cathode fall}}कैथोड डार्क स्पेस ====
====कैथोड डार्क स्पेस ====
चूंकि कैथोड से इलेक्ट्रॉनों को अधिक ऊर्जा मिलती है, इसलिए वे परमाणुओं को उत्तेजित करने के अतिरिक्त  आयनित होते हैं।उत्साहित परमाणु जल्दी से जमीनी स्तर पर प्रकाश डालते हैं, चूंकि , जब परमाणुओं को आयनित किया जाता है, तो विपरीत आरोपों को भिन्न कर दिया जाता है, और तुरंत पुनर्संयोजन नहीं करते हैं।इससे अधिक आयनों और इलेक्ट्रॉनों में परिणाम होता है, लेकिन कोई प्रकाश नहीं।<ref name="fridman"/> इस क्षेत्र को कभी -कभी [[ विलियम क्रूक्स ]] डार्क स्पेस कहा जाता है, और कभी -कभी कैथोड गिरने के रूप में संदर्भित किया जाता है, क्योंकि ट्यूब में सबसे बड़ा वोल्टता ड्रॉप इस क्षेत्र में होता है।
चूंकि कैथोड से इलेक्ट्रॉनों को अधिक ऊर्जा मिलती है, इसलिए वे परमाणुओं को उत्तेजित करने के आयनित करते हैं और उत्साहित परमाणु जल्दी से अपनी मूल अवस्था पर प्रकाश डालते हैं, चूंकि जब परमाणुओं को आयनित किया जाता है, तो विपरीत अभिकथन को भिन्न कर दिया जाता है, और तुरंत पुन: संयोग नहीं करते हैं। इससे अधिक आयनों और इलेक्ट्रॉनों में परिणाम होता है, लेकिन कोई प्रकाश नहीं होता है।<ref name="fridman"/> इस क्षेत्र को कभी कभी [[ विलियम क्रूक्स |विलियम क्रूक्स]] डार्क स्पेस कहा जाता है, और कभी -कभी कैथोड गिरने के रूप में संदर्भित किया जाता है, क्योंकि ट्यूब में सबसे बड़ा वोल्टता ड्रॉप इस क्षेत्र में होता है।


==== ऋणात्मक चमक ====
==== ऋणात्मक चमक ====
कैथोड डार्क स्पेस में आयनीकरण के परिणामस्वरूप एक उच्च इलेक्ट्रॉन घनत्व होता है, लेकिन धीमी गति से इलेक्ट्रॉनों, इलेक्ट्रॉनों के लिए धनात्मक आयनों के साथ पुनर्संयोजन करना आसान हो जाता है, जिससे गहन प्रकाश होता है, एक प्रक्रिया के माध्यम से, जिसे [[ ब्रेक विकिरण विकिरण ]] कहा जाता है।<ref name="fridman"/>
कैथोड डार्क स्पेस में आयनीकरण के परिणामस्वरूप एक उच्च इलेक्ट्रॉन घनत्व होता है, लेकिन धीमी गति से इलेक्ट्रॉनों के लिए धनात्मक आयनों के साथ पुन: संयोग करना आसान हो जाता है, जिससे गहन प्रकाश होता है, यह एक प्रक्रिया के माध्यम से होता है, जिसे [[ ब्रेक विकिरण विकिरण |ब्रेक विकिरण विकिरण]] कहा जाता है।<ref name="fridman"/>




==== फैराडे डार्क स्पेस ====
==== फैराडे डार्क स्पेस ====
जैसे -जैसे इलेक्ट्रॉन ऊर्जा खो देते रहते हैं, कम प्रकाश उत्सर्जित होता है, जिसके परिणामस्वरूप एक और अंधेरे स्थान होता है।<ref name="fridman"/>
जैसे -जैसे इलेक्ट्रॉन ऊर्जा खोते रहते हैं, कम प्रकाश उत्सर्जित होता है, जिसके परिणामस्वरूप एक और डार्क स्पेस होता है।<ref name="fridman"/>
 
 
=== एनोड परत ===
=== एनोड परत ===
एनोड परत धनात्मक स्तंभ से शुरू होती है, और एनोड पर समाप्त होती है।एनोड परत में एक ऋणात्मक स्थान आवेश और एक मध्यम विद्युत क्षेत्र होता है।<ref name="fridman"/>
एनोड परत धनात्मक स्तंभ से आरम्भ होती है, और एनोड पर समाप्त होती है। एनोड परत में एक ऋणात्मक स्थान आवेश और एक मध्यम विद्युत क्षेत्र होता है।<ref name="fridman"/>






==== पॉजिटिव कॉलम ====
==== पॉजिटिव कॉलम ====
कम आयनों के साथ, विद्युत क्षेत्र बढ़ता है, जिसके परिणामस्वरूप लगभग 2 ईवी की ऊर्जा होती है, जो परमाणुओं को उत्तेजित करने और प्रकाश का उत्पादन करने के लिए पर्याप्त है।लंबी दीप्ति डिस्चार्ज ट्यूबों के साथ, लंबी जगह को एक लंबे धनात्मक स्तंभ द्वारा कब्जा कर लिया जाता है, जबकि कैथोड परत समान रहती है।<ref name="fridman"/> उदाहरण के लिए, एक नीयन चिन्ह के साथ, धनात्मक स्तंभ ट्यूब की लगभग पूरी लंबाई में रहता है।
जिसके परिणामस्वरूप इलेक्ट्रानों में लगभग 2 ई. वी. की ऊर्जा होती है, जो कि परमाणुओं को उत्तेजित करने और प्रकाश उत्पन्न करने के लिए काफी होती है। लंबे समय तक चमक निर्वहन ट्यूबों के साथ, लंबी जगह एक लंबे सकारात्मक कॉलम द्वारा कब्जा है, जबकि कैथोड परत एक समान रहता है।<ref name="fridman"/> उदाहरण के लिए, नीयन चिन्ह के साथ धनात्मक स्तंभ की पूरी लंबाई ट्यूब में होती है।
 
==== एनोड दीप्ति ====
एक विद्युत क्षेत्र एनोड दीप्ति में परिणाम बढ़ाता है।<ref name="fridman"/>
 


==== एनोड चमक ====
एक विद्युत क्षेत्र एनोड चमक में परिणाम बढ़ाता है।<ref name="fridman"/>
==== एनोड डार्क स्पेस ====
==== एनोड डार्क स्पेस ====
कम इलेक्ट्रॉनों के परिणामस्वरूप एक और अंधेरे स्थान होता है।<ref name="fridman"/>
कम इलेक्ट्रॉनों के परिणामस्वरूप एक और डार्क डार्क स्पेस होता है।<ref name="fridman"/>
 
=== स्ट्रिएशन्स ===
 
धनात्मक कॉलम में बारी -बारी से प्रकाश और डार्क के बैंड को स्ट्रिएशन्स कहा जाता है। स्ट्रिएशन्स इसलिए होती हैं क्यों क्योंकि इलेक्ट्रान एक क्वांटम स्तर से दूसरे में स्थानांतरित होने पर परमाणुओं द्वारा ऊर्जा की असतत [[मात्रा]] को अवशोषित अथवा मुक्त किया जा सकता है। इसका प्रभाव फ्रेंक -हर्ट्ज़ के प्रभाव को 1914 में समझाया गया।<ref>{{cite book |title=प्रकाश स्रोतों और लेज़रों के मूल सिद्धांत|pages=31–36 |chapter=2.6 The Franck–Hertz Experiment |first=Mark |last=Csele |publisher=[[John Wiley & Sons]] |year=2011 |isbn=9780471675228 |chapter-url=https://books.google.com/books?id=xQfKWwvH42kC&pg=PA31}}</ref>
=== स्ट्राइक्स ===
धनात्मक कॉलम में बारी -बारी से प्रकाश और अंधेरे के बैंड को विक्ट: स्ट्राइक कहा जाता है।स्ट्राइक होते हैं क्योंकि केवल असतत ऊर्जा को परमाणुओं द्वारा अवशोषित या जारी किया जा सकता है, जब इलेक्ट्रॉन एक [[ मात्रा ]] स्तर से दूसरे में जाते हैं।इसका प्रभाव फ्रेंक -हर्ट्ज़ प्रयोग#फ्रेंक .e2.80.93hertz प्रयोग 1914 में नियॉन के साथ था।<ref>{{cite book |title=प्रकाश स्रोतों और लेज़रों के मूल सिद्धांत|pages=31–36 |chapter=2.6 The Franck–Hertz Experiment |first=Mark |last=Csele |publisher=[[John Wiley & Sons]] |year=2011 |isbn=9780471675228 |chapter-url=https://books.google.com/books?id=xQfKWwvH42kC&pg=PA31}}</ref>
 
 
=== स्पटरिंग ===
=== स्पटरिंग ===


{{Main|Sputtering}}
{{Main|स्पटरिंग}}
द्वितीयक उत्सर्जन के कारण, धनात्मक आयन कैथोड को पर्याप्त बल के साथ हड़ताल कर सकते हैं, जिसमें से उस सामग्री के कणों को बाहर निकालने के लिए जहां से कैथोड बनाया जाता है।इस प्रक्रिया को स्पटरिंग कहा जाता है और यह धीरे -धीरे कैथोड को समाप्त कर देता है।कैथोड की संरचना का विश्लेषण करने के लिए स्पेक्ट्रोस्कोपी का उपयोग करते समय स्पटरिंग उपयोगी है, जैसा कि [[ प्रकाश-निर्वासन ऑप्टिकल उत्सर्जन स्पेक्ट्रोस्कोपी ]] में किया जाता है।<ref name="Mavrodineanu1984"/>
 
चूंकि , स्पटरिंग वांछनीय नहीं है जब दीप्ति डिस्चार्ज का उपयोग प्रकाश के लिए किया जाता है, क्योंकि यह दीपक के जीवन को छोटा करता है।उदाहरण के लिए, नीयन संकेतों में खोखले कैथोड प्रभाव होता है, जो स्पटरिंग को कम करने के लिए डिज़ाइन किया गया है, और इसमें अवांछित आयनों और परमाणुओं को लगातार हटाने के लिए लकड़ी का कोयला होता है।<ref name="claude">{{cite journal |last=Claude |first=Georges |title=नीयन ट्यूबों का विकास|journal=The Engineering Magazine |date=November 1913 |pages=271–274|lccn=sn83009124 |url=https://books.google.com/books?id=erpMAAAAYAAJ&pg=PA271}}</ref>


द्वितीयक उत्सर्जन के अलावा, सकारात्मक आयन, जिस पदार्थ से कैथोड बनता है उसके कणों को बाहर निकालने के लिए पर्याप्त बल युक्त कैथोड को मार सकता है। इस प्रक्रिया को स्पटरिंग कहा जाता है और यह धीरे धीरे कैथोड के संयोजन का विश्लेषण करने के लिए स्पेक्ट्रोस्कोपी का प्रयोग करना उपयोगी है, जैसा कि [[ प्रकाश-निर्वासन ऑप्टिकल उत्सर्जन स्पेक्ट्रोस्कोपी |प्रकाश-निर्वासन ऑप्टिकल उत्सर्जन स्पेक्ट्रोस्कोपी]] में किया जाता है।<ref name="Mavrodineanu1984"/>


चूंकि, जब प्रकाश के लिए चमक के निर्वहन का प्रयोग किया जाता है तो स्पटरिंग वांछनीय नहीं है, क्योंकि इससे दीप के जीवन में कमी आती है। उदाहरण के लिए, नीयन के चिन्हों में खोखले कैथोड्स होते हैं जो स्पटरिंग को कम करने के लिए बनाये जाते हैं और इसमें अवांछित आयनों और परमाणुओं को लगातार हटाने के लिए लकड़ी का कोयला होता है।<ref name="claude">{{cite journal |last=Claude |first=Georges |title=नीयन ट्यूबों का विकास|journal=The Engineering Magazine |date=November 1913 |pages=271–274|lccn=sn83009124 |url=https://books.google.com/books?id=erpMAAAAYAAJ&pg=PA271}}</ref>
=== वाहक गैस ===
=== वाहक गैस ===
स्पटरिंग के संदर्भ में, ट्यूब में गैस को वाहक गैस कहा जाता है, क्योंकि यह कैथोड से कणों को वहन करता है।<ref name="Mavrodineanu1984"/>
स्पटरिंग के संदर्भ में, ट्यूब में गैस को वाहक गैस कहा जाता है, क्योंकि यह कैथोड से कणों को वहन करता है।<ref name="Mavrodineanu1984"/>
=== रंग अंतर ===
=== रंग अंतर ===
कैथोड में होने वाले स्पटरिंग के कारण, कैथोड के पास के क्षेत्रों से उत्सर्जित रंग एनोड से काफी भिन्न हैं।कैथोड से छिटके हुए कण उत्साहित होते हैं और कैथोड को बनाने वाले धातुओं और ऑक्साइड से विकिरण का उत्सर्जन करते हैं।इन कणों से विकिरण उत्साहित वाहक गैस से विकिरण के साथ जोड़ता है, जिससे कैथोड क्षेत्र को एक सफेद या नीला रंग मिलता है, जबकि बाकी ट्यूब में, विकिरण केवल वाहक गैस से होता है और अधिक मोनोक्रोमैटिक होता है।<ref name="Mavrodineanu1984">{{cite journal|last1=Mavrodineanu|first1=R.|title=खोखले कैथोड डिस्चार्ज - विश्लेषणात्मक अनुप्रयोग|journal=Journal of Research of the National Bureau of Standards|volume=89|issue=2|year=1984|pages=147|issn=0160-1741| pmid=34566122| doi=10.6028/jres.089.009 |pmc=6768240 |doi-access=free}}</ref>
कैथोड में होने वाले स्पटरिंग के कारण, कैथोड के पास के क्षेत्रों से उत्सर्जित रंग एनोड से काफी भिन्न हैं। कैथोड से छिटके हुए कण उत्साहित होते हैं और कैथोड को बनाने वाले धातुओं और ऑक्साइड से विकिरण का उत्सर्जन करते हैं। इन कणों से विकिरण उत्साहित वाहक गैस से विकिरण के साथ जोड़ता है, जिससे कैथोड क्षेत्र को एक सफेद या नीला रंग मिलता है, जबकि बाकी ट्यूब में, विकिरण केवल वाहक गैस से होता है और अधिक मोनोक्रोमैटिक होता है।<ref name="Mavrodineanu1984">{{cite journal|last1=Mavrodineanu|first1=R.|title=खोखले कैथोड डिस्चार्ज - विश्लेषणात्मक अनुप्रयोग|journal=Journal of Research of the National Bureau of Standards|volume=89|issue=2|year=1984|pages=147|issn=0160-1741| pmid=34566122| doi=10.6028/jres.089.009 |pmc=6768240 |doi-access=free}}</ref>
कैथोड के पास इलेक्ट्रॉन बाकी ट्यूब की तुलना में कम ऊर्जावान हैं।कैथोड के चारों ओर एक ऋणात्मक क्षेत्र है, जो इलेक्ट्रॉनों को धीमा कर देता है क्योंकि वे सतह से बाहर निकल जाते हैं।केवल उच्चतम वेग वाले इलेक्ट्रॉन इस क्षेत्र से बचने में सक्षम हैं, और पर्याप्त गतिज ऊर्जा वाले लोगों को कैथोड में वापस खींच लिया जाता है।एक बार ऋणात्मक क्षेत्र के बाहर, धनात्मक क्षेत्र से आकर्षण इन इलेक्ट्रॉनों को एनोड की ओर बढ़ाना शुरू कर देता है।इस त्वरण के दौरान इलेक्ट्रॉनों को कैथोड की ओर तेजी से धनात्मक आयनों द्वारा विक्षेपित और धीमा कर दिया जाता है, जो बदले में, ऋणात्मक दीप्ति क्षेत्र में उज्ज्वल नीले-सफेद [[ ब्रेकिंग विकिरण ]] विकिरण का उत्पादन करता है।<ref name="whitaker">{{cite book | last = Whitaker | first = Jerry | title = पावर वैक्यूम ट्यूब्स हैंडबुक, दूसरा संस्करण| page=94 | publisher = CRC Press | location = Boca Raton | year = 1999 | isbn = 978-1420049657 }}</ref>


कैथोड के पास इलेक्ट्रॉन बाकी ट्यूब की तुलना में कम ऊर्जावान हैं।कैथोड के चारों ओर एक ऋणात्मक क्षेत्र है, जो इलेक्ट्रॉनों को धीमा कर देता है क्योंकि वे सतह से बाहर निकल जाते हैं। केवल उच्चतम वेग वाले इलेक्ट्रॉन इस क्षेत्र से बचने में सक्षम हैं, और पर्याप्त गतिज ऊर्जा वाले लोगों को कैथोड में वापस खींच लिया जाता है। एक बार ऋणात्मक क्षेत्र के बाहर, धनात्मक क्षेत्र से आकर्षण इन इलेक्ट्रॉनों को एनोड की ओर बढ़ाना आरम्भ कर देता है। इस त्वरण के दौरान इलेक्ट्रॉनों को कैथोड की ओर तेजी से धनात्मक आयनों द्वारा विक्षेपित और धीमा कर दिया जाता है, जो बदले में, ऋणात्मक चमक क्षेत्र में उज्ज्वल नीले-सफेद [[ ब्रेकिंग विकिरण |ब्रेकिंग विकिरण]] का उत्पादन करता है।<ref name="whitaker">{{cite book | last = Whitaker | first = Jerry | title = पावर वैक्यूम ट्यूब्स हैंडबुक, दूसरा संस्करण| page=94 | publisher = CRC Press | location = Boca Raton | year = 1999 | isbn = 978-1420049657 }}</ref>


== विश्लेषणात्मक रसायन विज्ञान में उपयोग करें ==
== विश्लेषणात्मक रसायन विज्ञान में उपयोग करें ==


दीप्ति  डिस्चार्ज का उपयोग मौलिक का विश्लेषण करने के लिए किया जा सकता है, और कभी -कभी आणविक, ठोस, तरल पदार्थों और गैसों की संरचना, लेकिन ठोस पदार्थों का मौलिक विश्लेषण सबसे सामान्य है।इस व्यवस्था में, नमूने का उपयोग कैथोड के रूप में किया जाता है।जैसा कि पहले उल्लेख किया गया है, गैस आयनों और परमाणुओं ने नमूना सतह पर परमाणुओं को बंद कर दिया, जो कि स्पटरिंग के रूप में जाना जाता है।
चमक निर्वहन का उपयोग मौलिक का विश्लेषण करने के लिए किया जा सकता है, और कभी -कभी आणविक, ठोस, तरल पदार्थों और गैसों की संरचना, लेकिन ठोस पदार्थों का मौलिक विश्लेषण सबसे सामान्य है। इस व्यवस्था में, नमूने का उपयोग कैथोड के रूप में किया जाता है। जैसा कि पहले उल्लेख किया गया है, गैस आयनों और परमाणुओं ने नमूना सतह पर परमाणुओं को बंद कर दिया, जो कि स्पटरिंग के रूप में जाना जाता है।


स्पटर परमाणु, अब गैस चरण में, [[ परमाणु अवशोषण स्पेक्ट्रोस्कोपी ]] द्वारा पता लगाया जा सकता है, लेकिन यह एक तुलनात्मक रूप से दुर्लभ रणनीति है।इसके अतिरिक्त , [[ परमाणु उत्सर्जन स्पेक्ट्रोस्कोपी ]] और मास स्पेक्ट्रोमेट्री का उपयोग सामान्यतः किया जाता है।
स्पटर परमाणु, अब गैस चरण में, [[ परमाणु अवशोषण स्पेक्ट्रोस्कोपी |परमाणु अवशोषण स्पेक्ट्रोस्कोपी]] द्वारा पता लगाया जा सकता है, लेकिन यह एक तुलनात्मक रूप से दुर्लभ रणनीति है। इसके अतिरिक्त , [[ परमाणु उत्सर्जन स्पेक्ट्रोस्कोपी |परमाणु उत्सर्जन स्पेक्ट्रोस्कोपी]] और मास स्पेक्ट्रोमेट्री का उपयोग सामान्यतः किया जाता है।


गैस-चरण नमूना परमाणुओं और प्लाज्मा गैस के बीच टकराव नमूना परमाणुओं को ऊर्जा पास करते हैं।यह ऊर्जा परमाणुओं को उत्तेजित कर सकती है, जिसके बाद वे परमाणु उत्सर्जन के माध्यम से अपनी ऊर्जा खो सकते हैं।उत्सर्जित प्रकाश की तरंग दैर्ध्य का अवलोकन करके, परमाणु की पहचान निर्धारित की जा सकती है।उत्सर्जन की तीव्रता का अवलोकन करके, उस प्रकार के परमाणुओं की एकाग्रता को निर्धारित किया जा सकता है।
गैस-चरण नमूना परमाणुओं और प्लाज्मा गैस के बीच टकराव नमूना परमाणुओं को ऊर्जा पास करते हैं। यह ऊर्जा परमाणुओं को उत्तेजित कर सकती है, जिसके बाद वे परमाणु उत्सर्जन के माध्यम से अपनी ऊर्जा खो सकते हैं। उत्सर्जित प्रकाश की तरंग दैर्ध्य का अवलोकन करके, परमाणु की पहचान निर्धारित की जा सकती है। उत्सर्जन की तीव्रता का अवलोकन करके, उस प्रकार के परमाणुओं की एकाग्रता को निर्धारित किया जा सकता है।


टकराव के माध्यम से प्राप्त ऊर्जा भी नमूना परमाणुओं को आयनित कर सकती है।आयनों को तब मास स्पेक्ट्रोमेट्री द्वारा पता लगाया जा सकता है।इस स्थिति में, यह आयनों का द्रव्यमान है जो तत्व और आयनों की संख्या की पहचान करते हैं जो एकाग्रता को दर्शाते हैं।इस विधि को दीप्ति  डिस्चार्ज मास स्पेक्ट्रोमेट्री (GDMS) के रूप में संदर्भित किया जाता है और इसमें अधिकांश तत्वों के लिए उप-पीपीबी रेंज तक का पता लगाने की सीमा होती है जो लगभग मैट्रिक्स-स्वतंत्र हैं।
टकराव के माध्यम से प्राप्त ऊर्जा भी नमूना परमाणुओं को आयनित कर सकती है। आयनों को तब मास स्पेक्ट्रोमेट्री द्वारा पता लगाया जा सकता है। इस स्थिति में, यह आयनों का द्रव्यमान है जो तत्व और आयनों की संख्या की पहचान करते हैं जो एकाग्रता को दर्शाते हैं। इस विधि को चमक निर्वहन मास स्पेक्ट्रोमेट्री (जीडीएमएस) के रूप में संदर्भित किया जाता है और इसमें अधिकांश तत्वों के लिए उप-पीपीबी रेंज तक का पता लगाने की सीमा होती है जो लगभग मैट्रिक्स-स्वतंत्र के रूप में होते हैं।


=== गहराई विश्लेषण ===
=== गहराई विश्लेषण ===
ठोस पदार्थों के थोक और गहराई दोनों विश्लेषण को दीप्ति  डिस्चार्ज के साथ किया जा सकता है।बल्क विश्लेषण मानता है कि नमूना काफी सजातीय है और समय के साथ उत्सर्जन या द्रव्यमान स्पेक्ट्रोमेट्रिक सिग्नल का औसत है।गहराई विश्लेषण समय में सिग्नल को ट्रैक करने पर निर्भर करता है, इसलिए, गहराई से मौलिक रचना को ट्रैक करने के समान है।
ठोस पदार्थों के थोक और गहराई दोनों विश्लेषण को चमक निर्वहन के साथ किया जा सकता है। जबकि विश्लेषण मानता है कि नमूना काफी सजातीय है और समय के साथ उत्सर्जन या द्रव्यमान स्पेक्ट्रोमेट्रिक सिग्नल का औसत होता है। गहराई विश्लेषण समय में सिग्नल को ट्रैक करने पर निर्भर करता है, इसलिए, गहराई से मौलिक रचना को ट्रैक करने के समान है।


गहराई विश्लेषण के लिए परिचालन मापदंडों पर अधिक नियंत्रण की आवश्यकता होती है।उदाहरण के लिए, स्थितियों (वर्तमान, संभावित, दबाव) को समायोजित करने की आवश्यकता है ताकि स्पटरिंग द्वारा उत्पादित गड्ढा सपाट तल है (अर्थात , ताकि गड्ढा क्षेत्र पर विश्लेषण की गई गहराई एक समान हो)।थोक माप में, एक खुरदरा या गोल गड्ढा तल पर प्रतिकूल प्रभाव नहीं होगा।सर्वोत्तम परिस्थितियों में, एकल नैनोमीटर रेंज में गहराई संकल्प प्राप्त किया गया है (वास्तव में,-अणु संकल्प के भीतर प्रदर्शित किया गया है)।{{citation needed|date=June 2017}}
गहराई विश्लेषण के लिए परिचालन मापदंडों पर अधिक नियंत्रण की आवश्यकता होती है। उदाहरण के लिए, स्थितियों वर्तमान, संभावित, दबाव को समायोजित करने की आवश्यकता है ताकि स्पटरिंग द्वारा उत्पादित गड्ढा सपाट तल है अर्थात, ताकि गड्ढा क्षेत्र पर विश्लेषण की गई गहराई एक समान हो। थोक माप में, एक खुरदरा या गोल गड्ढा तल पर प्रतिकूल प्रभाव नहीं होता है। सर्वोत्तम परिस्थितियों में, एकल नैनोमीटर रेंज में गहराई संकल्प प्राप्त किया गया है वास्तव में,-अणु संकल्प के भीतर प्रदर्शित किया गया है)।
वैक्यूम में आयनों और न्यूट्रल के रसायन विज्ञान को गैस चरण आयन रसायन विज्ञान कहा जाता है और यह विश्लेषणात्मक अध्ययन का हिस्सा है जिसमें दीप्ति  डिस्चार्ज सम्मलित है।
 
वैक्यूम में आयनों और न्यूट्रल के रसायन विज्ञान को गैस चरण आयन रसायन विज्ञान कहा जाता है और यह विश्लेषणात्मक अध्ययन का हिस्सा है जिसमें चमक निर्वहन सम्मलित होते है।


== पावरिंग मोड ==
== पावरिंग मोड ==
[[File:Neon lamp on DC.JPG|thumb|upright=0.8|डीसी संचालित नीयन लैंप, केवल कैथोड के आसपास दीप्ति डिस्चार्ज दिखा रहा है]]विश्लेषणात्मक रसायन विज्ञान में, दीप्ति  डिस्चार्ज सामान्यतः प्रत्यक्ष-वर्तमान मोड में संचालित होते हैं।प्रत्यक्ष-वर्तमान के लिए, कैथोड (जो ठोस विश्लेषण में नमूना है) प्रवाहकीय होना चाहिए।इसके विपरीत, एक गैर -प्रवाहकीय कैथोड के विश्लेषण के लिए उच्च आवृत्ति वैकल्पिक वर्तमान के उपयोग की आवश्यकता होती है।
[[File:Neon lamp on DC.JPG|thumb|upright=0.8|डीसी संचालित नीयन लैंप, केवल कैथोड के आसपास चमक निर्वहन दिखाता है]]विश्लेषणात्मक रसायन विज्ञान में, चमक निर्वहन सामान्यतः प्रत्यक्ष-वर्तमान मोड में संचालित होते हैं। प्रत्यक्ष-वर्तमान के लिए, कैथोड जो ठोस विश्लेषण में नमूना है प्रवाहकीय होना चाहिए। इसके विपरीत, एक गैर -प्रवाहकीय कैथोड के विश्लेषण के लिए उच्च आवृत्ति वैकल्पिक वर्तमान के उपयोग की आवश्यकता होती है।


संभावित, दबाव और वर्तमान परस्पर जुड़े हुए हैं।केवल दो को एक साथ सीधे नियंत्रित किया जा सकता है, जबकि तीसरे को भिन्न -भिन्न होने की अनुमति दी जानी चाहिए।दबाव सामान्यतः स्थिर रखा जाता है, लेकिन अन्य योजनाओं का उपयोग किया जा सकता है।दबाव और वर्तमान को स्थिर रखा जा सकता है, जबकि क्षमता को भिन्न -भिन्न होने की अनुमति दी जाती है।दबाव और वोल्टता को स्थिर रखा जा सकता है जबकि वर्तमान को भिन्न -भिन्न होने की अनुमति है।पावर (वोल्टता और करंट का उत्पाद) को स्थिर रखा जा सकता है जबकि दबाव को भिन्न -भिन्न होने की अनुमति दी जाती है।
संभावित, दबाव और वर्तमान परस्पर जुड़े हुए होते है। केवल दो को एक साथ सीधे नियंत्रित किया जा सकता है, जबकि तीसरे को भिन्न -भिन्न होने की अनुमति दी जानी चाहिए। दबाव सामान्यतः स्थिर रखा जाता है, लेकिन अन्य योजनाओं का उपयोग किया जा सकता है।दबाव और वर्तमान को स्थिर रखा जा सकता है, जबकि क्षमता को भिन्न -भिन्न होने की अनुमति दी जाती है। दबाव और वोल्टता को स्थिर रखा जा सकता है जबकि वर्तमान को भिन्न -भिन्न होने की अनुमति होती है। पावर वोल्टता और करंट का उत्पाद को स्थिर रखा जा सकता है जबकि दबाव को भिन्न -भिन्न होने की अनुमति दी जाती है।


दीप्ति  डिस्चार्ज को रेडियो-फ्रीक्वेंसी में भी संचालित किया जा सकता है।इस आवृत्ति का उपयोग नमूना सतह पर एक ऋणात्मक डीसी-पूर्वाग्रह वोल्टता स्थापित करेगा।डीसी-पूर्वाग्रह एक वैकल्पिक वर्तमान तरंग का परिणाम है जो ऋणात्मक क्षमता के बारे में केंद्रित है;जैसे कि यह कम या ज्यादा नमूना सतह पर रहने वाली औसत क्षमता का प्रतिनिधित्व करता है।रेडियो-फ्रीक्वेंसी में इंसुलेटर (गैर-प्रवाहकीय सामग्री) के माध्यम से प्रवाह करने की क्षमता है।
चमक निर्वहन को रेडियो-फ्रीक्वेंसी में भी संचालित किया जा सकता है। इस आवृत्ति का उपयोग नमूना सतह पर एक ऋणात्मक डीसी-पूर्वाग्रह वोल्टता स्थापित करेगा। डीसी-पूर्वाग्रह एक वैकल्पिक वर्तमान तरंग का परिणाम है जो ऋणात्मक क्षमता के बारे में केंद्रित है जैसे कि यह कम या ज्यादा नमूना सतह पर रहने वाली औसत क्षमता का प्रतिनिधित्व करता है। रेडियो-फ्रीक्वेंसी में इंसुलेटर (गैर-प्रवाहकीय सामग्री) के माध्यम से प्रवाह करने की क्षमता रखता है।


रेडियो-फ्रीक्वेंसी और डायरेक्ट-करंट दीप्ति  डिस्चार्ज दोनों को स्पंदित मोड में संचालित किया जा सकता है, जहां क्षमता चालू और बंद हो जाती है।यह उच्च तात्कालिक शक्तियों को कैथोड को अत्यधिक गर्म किए बिना लागू करने की अनुमति देता है।ये उच्च तात्कालिक शक्तियां उच्च तात्कालिक संकेतों का उत्पादन करती हैं, सहायता का पता लगाती हैं।अतिरिक्त लाभों में स्पंदित पावरिंग परिणाम के साथ समय-हल का पता लगाने का संयोजन।परमाणु उत्सर्जन में, विश्लेषण परमाणुओं का विश्लेषण पृष्ठभूमि परमाणुओं की तुलना में पल्स के विभिन्न हिस्सों के दौरान उत्सर्जित होता है, जिससे दोनों को भेदभाव किया जा सकता है।अनुरूप रूप से, मास स्पेक्ट्रोमेट्री में, नमूना और पृष्ठभूमि आयनों को भिन्न -भिन्न समय पर बनाया जाता है।
रेडियो-फ्रीक्वेंसी और डायरेक्ट-करंट चमक निर्वहन दोनों को स्पंदित मोड में संचालित किया जा सकता है, जहां क्षमता चालू और बंद हो जाती है। यह उच्च तात्कालिक शक्तियों को कैथोड को अत्यधिक गर्म किए बिना लागू करने की अनुमति देता है। ये उच्च तात्कालिक शक्तियां उच्च तात्कालिक संकेतों का उत्पादन करती हैं, सहायता का पता लगाती हैं। अतिरिक्त लाभों में स्पंदित पावरिंग परिणाम के साथ समय-हल का पता लगाने का संयोजन करते है। परमाणु उत्सर्जन में, विश्लेषण परमाणुओं का विश्लेषण पृष्ठभूमि परमाणुओं की तुलना में पल्स के विभिन्न हिस्सों के दौरान उत्सर्जित होता है, जिससे दोनों को भेदभाव किया जा सकता है। अनुरूप रूप से, मास स्पेक्ट्रोमेट्री में, नमूना और पृष्ठभूमि आयनों को भिन्न -भिन्न समय पर बनाया जाता है।


== एनालॉग कंप्यूटिंग के लिए आवेदन ==
== एनालॉग कंप्यूटिंग के लिए अनुप्रयोग ==
दीप्ति  डिस्चार्ज का उपयोग करने के लिए एक दिलचस्प एप्लिकेशन को 2002 के वैज्ञानिक पेपर में रायस, घनम एट अल द्वारा वर्णित किया गया था।<ref>{{Cite journal
चमक निर्वहन का उपयोग करने के लिए एक दिलचस्प अनुप्रयोग को 2002 के वैज्ञानिक पेपर में रायस, घनम एट अल द्वारा वर्णित किया गया था।<ref>{{Cite journal
   | last1 = Reyes | first1 = D. R.
   | last1 = Reyes | first1 = D. R.
   | last2 = Ghanem| first2 = M. M.
   | last2 = Ghanem| first2 = M. M.
Line 151: Line 123:
   }}
   }}
</ref>
</ref>
एक नेचर न्यूज लेख के अनुसार, काम का वर्णन करते हुए,<ref>Mini-map gives tourists neon route signs: http://www.nature.com/news/2002/020527/full/news020520-12.html</ref> इंपीरियल कॉलेज लंदन के शोधकर्ताओं ने दिखाया कि कैसे उन्होंने एक मिनी-मैप का निर्माण किया जो दो अंकों के बीच सबसे छोटे मार्ग के साथ चमकती है।नेचर न्यूज लेख इस प्रणाली का वर्णन करता है:


: एक इंच लंदन चिप बनाने के लिए, टीम ने एक कांच की स्लाइड पर शहर के केंद्र की एक योजना बनाई।शीर्ष पर एक फ्लैट ढक्कन को फिट करने से सड़कों को खोखले, जुड़े ट्यूबों में बदल दिया गया।उन्होंने इन्हें हीलियम गैस से भर दिया, और प्रमुख पर्यटक हब में इलेक्ट्रोड डाला।जब दो बिंदुओं के बीच एक वोल्टता  लगाया जाता है, तो बिजली स्वाभाविक रूप से ए से बी से सबसे छोटे मार्ग के साथ सड़कों के माध्यम से चलती है - और गैस एक छोटे नीयन पट्टी की तरह चमकती है।
एक नेचर न्यूज लेख के अनुसार, काम का वर्णन करते हुए,<ref>Mini-map gives tourists neon route signs: http://www.nature.com/news/2002/020527/full/news020520-12.html</ref> इंपीरियल कॉलेज लंदन के शोधकर्ताओं ने दिखाया कि कैसे उन्होंने एक मिनी-मैप का निर्माण किया जो दो अंकों के बीच सबसे छोटे मार्ग के साथ चमकती है। नेचर न्यूज लेख इस प्रणाली का वर्णन करता है:


दृष्टिकोण स्वयं एक माइक्रोफ्लुइडिक चिप में एक दीप्ति डिस्चार्ज के प्रकाश के गुणों के आधार पर भूलभुलैया खोज समस्याओं की एक विस्तृत श्रेणी को हल करने के लिए एक उपन्यास दृश्यमान [[ अनुरूप अभिकलन ]] दृष्टिकोण प्रदान करता है।
: एक इंच लंदन चिप बनाने के लिए, टीम ने एक कांच की स्लाइड पर शहर के केंद्र की एक योजना बनाई। शीर्ष पर एक फ्लैट ढक्कन को फिट करने से सड़कों को खोखले, जुड़े ट्यूबों में बदल दिया गया। उन्होंने इन्हें हीलियम गैस से भर दिया, और प्रमुख पर्यटक हब में इलेक्ट्रोड डाला। जब दो बिंदुओं के बीच एक वोल्टता लगाया जाता है, तो बिजली स्वाभाविक रूप से ए से बी से सबसे छोटे मार्ग के साथ सड़कों के माध्यम से चलती है और गैस एक छोटे नीयन पट्टी की तरह चमकती है।


== वोल्टता विनियमन के लिए आवेदन ==
यह दृष्टिकोण स्वयं एक माइक्रोफ्लुइडिक चिप में एक चमक निर्वहन के प्रकाश के गुणों के आधार पर भूलभुलैया खोज समस्याओं की एक विस्तृत श्रेणी को हल करने के लिए एक उपन्यास दृश्यमान[[ अनुरूप अभिकलन | अनुरूप अभिकलन]] दृष्टिकोण प्रदान करता है।
[[File:5651RegulatorTubeInOperation.jpg|thumb|upright|ऑपरेशन में एक 5651 वोल्टता -नियामक ट्यूब]]20 वीं शताब्दी के मध्य में, [[ ज़ेनर डायोड्स ]] जैसे ठोस राज्य इलेक्ट्रॉनिक्स घटकों के विकास से पहले, वोल्टता नियामक#डीसी वोल्टता स्टेबलाइजर्स को सर्किट में अधिकांशतः वोल्टता -नियामक ट्यूबों के साथ पूरा किया गया था, जिसमें दीप्ति  डिस्चार्ज का उपयोग किया गया था।
 
== वोल्टता विनियमन के लिए अनुप्रयोग ==
[[File:5651RegulatorTubeInOperation.jpg|thumb|upright|ऑपरेशन में एक 5651 वोल्टता -नियामक ट्यूब]]20 वीं शताब्दी के मध्य में, [[ ज़ेनर डायोड्स |ज़ेनर डायोड्स]] जैसे ठोस राज्य इलेक्ट्रॉनिक्स घटकों के विकास से पहले, वोल्टता नियामक डीसी वोल्टता स्टेबलाइजर्स को परिपथ में अधिकांशतः वोल्टता नियामक ट्यूबों के साथ पूरा किया गया था, जिसमें चमक निर्वहन का उपयोग किया गया था।


== यह भी देखें ==
== यह भी देखें ==


*इलेक्ट्रिक आर्क डिस्चार्ज
*इलेक्ट्रिक आर्क निर्वहन
*[[ बिजली की चिंगारी ]]
*[[ बिजली की चिंगारी ]]
*विद्युत टूटना
*विद्युत विश्लेषण
*[[ स्थिरविद्युत निर्वाह ]]
*[[ स्थिरविद्युत निर्वाह ]]
*[[ वैक्यूम आर्क ]]
*[[ वैक्यूम आर्क ]]
*[[ एक्स-रे ट्यूब ]]
*[[ एक्स-रे ट्यूब ]]
*फ्लोरोसेंट लैंप, नीयन दीपक और [[ प्लाज्मा दीपक ]]
*फ्लोरोसेंट लैंप, नीयन दीप और [[ प्लाज्मा दीपक |प्लाज्मा दीप]]
*[[ प्लाज्मा (भौतिकी) लेखों की सूची ]]
*[[ प्लाज्मा (भौतिकी) लेखों की सूची ]]


Line 175: Line 148:




==इस पृष्ठ में गुम आंतरिक लिंक की सूची==
*प्रत्यावर्ती धारा
*विश्लेषणात्मक रसायनशास्त्र
*लौकिक विकिरण
*किसी गर्म स्त्रोत से इलेक्ट्रॉन उत्सर्जन
*द्वितीयक उत्सर्जन
*ब्रह्मांडीय किरणों
*टोर
*एकदिश धारा
*विद्युतीय संभाव्यता
*मुक्त पथ मतलब
*पृथक करना
*खोखली कैथोड प्रभाव
*नियोन संकेत
*गैस चरण रसायन विज्ञान
*ठोस अवस्था इलेक्ट्रॉनिक्स
*वोल्टता -रिमूलेटर ट्यूब
*बिजली का टूटना
*नीयन लैंप
==आगे की पढाई==
==आगे की पढाई==
*{{cite book
*{{cite book
Line 211: Line 163:
{{Mass spectrometry}}
{{Mass spectrometry}}
{{Authority control}}
{{Authority control}}
[[श्रेणी: गैसों में विद्युत निर्वहन]]
[[श्रेणी: गैस डिस्चार्ज लैंप]]
[[श्रेणी: प्रकाश]]]
[[श्रेणी: आयन स्रोत]]
[[श्रेणी: विश्लेषणात्मक रसायन विज्ञान]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 26/12/2022]]
[[Category:Created On 26/12/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 12:12, 12 January 2023

एनई-2 टाइप नियॉन लैंप को वैकल्पिक करंट द्वारा संचालित किया गया
विद्युत प्रवाह के कारण कम दबाव वाली ट्यूब में चमक निर्वहन ।

चमक निर्वहन गैस के माध्यम से विद्युत प्रवाह के पारित होने से प्लाज्मा (भौतिकी) होता है यह अधिकांशतः एक कांच की ट्यूब में दो इलेक्ट्रोड के बीच एक वोल्टता लागू करके बनाया जाता है जिसमें कम दबाव वाली गैस होती है। जब वोल्टता स्ट्राइकिंग वोल्टेज मान से अधिक हो जाती है, तो गैस आयनीकरण हो जाता है, और ट्यूब एक रंगीन प्रकाश के साथ चमकती है। यह रंग प्रयुक्त गैस पर निर्भर करता है।

चमक निर्वहन का उपयोग नियॉन लाइट, फ्लोरोसेंट लैंप और प्लाज्मा स्क्रीन टीवी जैसे उपकरणों में प्रकाश के स्रोत के रूप में किया जाता है। प्लाज्मा-स्क्रीन टेलीविज़न स्पेक्ट्रोस्कोपी द्वारा उत्पन्न प्रकाश के विश्लेषण से गैस में परमाणु अन्योन्य क्रिया के बारे में जानकारी प्राप्त की जा सकती है, इसलिए प्लाज्मा भौतिकी और विश्लेषणात्मक रसायन विज्ञान में चमक निर्वहन का उपयोग किया जाता है। उनका उपयोग सतह उपचार तकनीक में भी किया जाता है जिसे स्पटरिंग कहा जाता है।

गैस में विद्युत चालन

1 टोर पर नियॉन में विद्युत निर्वहन की वोल्टेज-वर्तमान विशेषताएँ, दो प्लानर इलेक्ट्रोड के साथ 50 सेमी से अलग।
ए: ब्रह्मांडीय विकिरण द्वारा यादृच्छिक पल्सेस
बी: संतृप्ति वर्तमान
सी: हिमस्खलन टाउनसेंड निर्वहन
डी: स्व-सत्तर टाउनसेंड निर्वहन
ई: अस्थिर क्षेत्र: कोरोना निर्वहन
एफ: उप-सामान्य चमक निर्वहन
जी: सामान्य चमक निर्वहन
एच: असामान्य चमक निर्वहन
आई: अस्थिर क्षेत्र: चमक -आर्क संक्रमण
जे: इलेक्ट्रिक आर्क
के: इलेक्ट्रिक आर्क
ए-डी क्षेत्र: डार्क निर्वहन ;आयनीकरण होता है, 10 माइक्रोएएमपी के नीचे वर्तमान।
एफ-एच क्षेत्र: चमक निर्वहन ;प्लाज्मा एक बेहोश चमक का उत्सर्जन करता है।
आई-के क्षेत्र: आर्क निर्वहन ;बड़ी मात्रा में विकिरण का उत्पादन किया गया।

गैस में चालन के लिए आवेश वाहक की आवश्यकता होती है, जो इलेक्ट्रॉन या आयन हो सकते हैं। आवेश वाहक गैस के कुछ अणुओं को आयनित करने से आते हैं। वर्तमान प्रवाह के संदर्भ में चमक निर्वहन डार्क निर्वहन और चाप -निर्वहन के बीच गिरता है।

  • एक डार्क निर्वहन में, गैस को एक विकिरण स्रोत जैसे पराबैंगनी प्रकाश या कॉस्मिक किरणों द्वारा आयनित वाहक उत्पन्न होते हैं। एनोड और कैथोड में उच्च वोल्टता पर, मुक्त वाहक पर्याप्त ऊर्जा प्राप्त कर सकते हैं ताकि टकराव के दौरान अतिरिक्त वाहक को मुक्त कर दिया जाए तो प्रक्रिया एक टाउनसेंड हिमस्खलन या गुणन के रूप में होते है।
  • एक चमक निर्वहन में, वाहक उत्पादन प्रक्रिया एक बिंदु पर पहुंच जाती है जहां कैथोड छोड़ने वाला औसत इलेक्ट्रॉन अन्य इलेक्ट्रॉन को कैथोड छोड़ने की अनुमति देता है। उदाहरण के लिए, औसत इलेक्ट्रॉन टाउनसेंड हिमस्खलन के माध्यम से दर्जनों आयनीकरण टकराव का कारण बन सकता है परिणामस्वरूप धनात्मक आयनों ने कैथोड की ओर प्रधान होता है, और जो कैथोड के साथ टकराव का कारण बनता है, उनका एक अंश एक इलेक्ट्रान को द्वितीयक उत्सर्जन द्वारा निकाल देता है।
  • एक आर्क निर्वहन में, इलेक्ट्रॉनों को थर्मोनिक उत्सर्जन और क्षेत्र उत्सर्जन द्वारा कैथोड छोड़ दिया जाता है, और गैस को थर्मल साधनों द्वारा आयनित किया जाता है।[1]

भंजक वोल्टता के नीचे कोई चमक नहीं होती है और विद्युत क्षेत्र एक समान होता है। जब विद्युत क्षेत्र आयनीकरण करने के लिए पर्याप्त हो जाता है, तो टाउनसेंड निर्वहन आरम्भ होता है। जब एक चमक निर्वहन का विकास होता है, तो विद्युत क्षेत्र को धनात्मक आयनों की उपस्थिति से विद्युत क्षेत्र में काफी परिवर्तन होता है, क्षेत्र कैथोड के पास केंद्रित होता है। चमक निर्वहन एक सामान्य चमक के रूप में आरम्भ होता है। जैसे जैसे करंट बढ़ाया जाता है, कैथोड की अधिक सतह चमक में सम्मलित होती है। जब वर्तमान को उस स्तर से ऊपर बढ़ाया जाता है जहां कैथोड की सतह निहित होती है, तो निर्वहन को एक असामान्य चमक के रूप में जाना जाता है। यदि वर्तमान में अभी भी वृद्धि हुई है, तो अन्य कारक प्रकिया में आते हैं और एक इलेक्ट्रिक चाप का निर्वहन आरम्भ होता है।[2]

तंत्र

चमक निर्वहन का सबसे सरलतम प्रकार एक प्रत्यक्ष वर्तमान चमक निर्वहन होता है। अपने सरलतम रूप में, इसमें कम दबाव में आयोजित एक सेल में दो इलेक्ट्रोड होते हैं। और (0.1-10 टोर लगभग 1/10000 से 1/100 वें वायुमंडलीय दबाव) के रूप में होते है औसत मुक्त पथ को बढ़ाने के लिए एक कम दबाव का उपयोग किया जाता है एक निश्चित विद्युत क्षेत्र के लिए, एक लंबा मतलब मुक्त पथ एक आवेश कण को दूसरे कण से टकराने से पहले अधिक ऊर्जा प्राप्त करने की अनुमति देता है। सेल सामान्यतः नियॉन से भरा होता है, लेकिन अन्य गैसों का उपयोग भी किया जा सकता है। दो इलेक्ट्रोड के बीच कई सौ वोल्ट की एक विद्युत क्षमता लागू की जाती है। सेल के भीतर परमाणुओं की संख्या का एक छोटा सा हिस्सा आरम्भ में यादृच्छिक प्रक्रियाओं के माध्यम से आयनित होता है, जैसे कि परमाणुओं के बीच थर्मल टकराव या गामा किरणों द्वारा होता है। धनात्मक आयनों को विद्युत क्षमता द्वारा कैथोड की ओर प्रेरित होते हैं, और इलेक्ट्रान एनोड की ओर समान विभव से प्रेरित होते हैं। आयनों और इलेक्ट्रॉनों की प्रारंभिक आबादी अन्य परमाणुओं के साथ टकराती है, उन्हें उत्साहित या आयनित करती है। जब तक क्षमता को बनाए रखा जाता है, तब तक आयनों और इलेक्ट्रॉनों की संख्या बनी रहती है।

माध्यमिक उत्सर्जन

कुछ आयनों की गतिज ऊर्जा कैथोड में स्थानांतरित हो जाती है। यह आंशिक रूप से आंशिक रूप से कैथोड को सीधे स्ट्राइकिंग करने वाले आयनों के माध्यम से होता है। चूंकि, प्राथमिक क्रियाविधि कम प्रत्यक्ष होती है। आयनों में कई तटस्थ गैस परमाणुओं पर हमला किया, उनकी ऊर्जा के एक हिस्से को उनके पास स्थानांतरित किया। ये तटस्थ परमाणु तब कैथोड पर प्रहार करते हैं। जो भी प्रजातियां आयन या परमाणु कैथोड पर प्रहार करती हैं, कैथोड के भीतर टकराव इस ऊर्जा को फिर से परिभाषित करते हैं, जिसके परिणामस्वरूप कैथोड से इलेक्ट्रॉनों को बाहर निकाल दिया जाता है। इस प्रक्रिया को द्वितीयक इलेक्ट्रॉन उत्सर्जन के रूप में जाना जाता है। एक बार कैथोड से मुक्त होने के बाद, विद्युत क्षेत्र चमक निर्वहन के थोक में इलेक्ट्रॉनों को गति प्रदान करता है। फिर परमाणु तब आयनों, इलेक्ट्रॉनों, या अन्य परमाणुओं के साथ टकराव से उत्तेजित किया जा सकता है, जिन्हें पहले टकराव से उत्तेजित किया गया था।

प्रकाश उत्पादन

एक बार उत्साहित होने के बाद, परमाणु अपनी ऊर्जा को काफी जल्दी खो देते है। यह ऊर्जा खोने के लिए महत्वपूर्ण है। सबसे महत्वपूर्ण विकिरणीय रूप से है, जिसका अर्थ है कि ऊर्जा को दूर ले जाने के लिए एक फोटॉन जारी किया जाता है। ऑप्टिकल परमाणु स्पेक्ट्रोस्कोपी में, इस फोटॉन की तरंग दैर्ध्य का उपयोग परमाणु की पहचान को निर्धारित करने के लिए किया जा सकता है अर्थात, जो रासायनिक तत्व है और फोटॉन की संख्या नमूने में उस तत्व की एकाग्रता के लिए सीधे आनुपातिक होती है। कुछ टकराव उच्च पर्याप्त ऊर्जा के आयनीकरण का कारण बनते है परमाणु भार स्पेक्ट्रोमेट्री में, इन आयनों का पता लगाया जाता है। उनका द्रव्यमान परमाणुओं के प्रकार की पहचान करता है और उनकी मात्रा नमूने में उस तत्व की मात्रा को दर्शाती है।

क्षेत्र

इसमें सम्मिलित विभिन्न क्षेत्रों को दर्शाने वाला एक चमक निर्वहन और उनके नाम देने वाला आरेख।

दाईं ओर दिए गए चित्रों में मुख्य क्षेत्र जो एक चमक निर्वहन में विद्यमान हो सकते हैं। चमक के रूप में वर्णित क्षेत्रों में महत्वपूर्ण प्रकाश का उत्सर्जन करते हैं डार्क स्पेस के रूप में लेबल किए गए क्षेत्र नहीं हैं। जैसे, जैसे निर्वहन अधिक विस्तारित हो जाता है अर्थात, चित्रण के ज्यामिति में क्षैतिज रूप से फैला हुआ हैं। धनात्मक स्तंभ रेखित हो जाता है।अर्थात्, बारी बारी से डार्क और उज्ज्वल क्षेत्रों का निर्माण हो सकता है। निर्वहन को क्षैतिज रूप से संपीड करने से कम जगह पर परिणाम मिलता है धनात्मक स्तंभ संकुचित हो जाता है, जबकि ऋणात्मक चमक समान आकार में रहती है और छोटे पर्याप्त अंतराल के साथ, धनात्मक स्तंभ पूरी तरह से गायब हो जाता है। एक विश्लेषणात्मक चमक निर्वहन में, निर्वहन मुख्य रूप से इसके ऊपर और नीचे डार्क स्पेस के साथ एक ऋणात्मक चमक होती है।

कैथोड परत

कैथोड परत एस्टन डार्क स्पेस के साथ आरम्भ होती है, और ऋणात्मक चमक क्षेत्र के साथ समाप्त होती है। कैथोड परत में गैस के दबाव में वृद्धि के साथ कम हो जाती है। कैथोड परत में एक धनात्मक स्थान आवेश और एक मजबूत विद्युत क्षेत्र होता है।[3][4]

एस्टन डार्क स्पेस

इलेक्ट्रॉन कैथोड को लगभग 1 ईवी की ऊर्जा के साथ छोड़ देते हैं, जो कैथोड के बगल में एक पतली अंधेरी परत को छोड़कर परमाणुओं को आयनित या उत्तेजित करने के लिए पर्याप्त नहीं है।[3]

कैथोड चमक

कैथोड से इलेक्ट्रॉन अंततः परमाणुओं को उत्तेजित करने के लिए पर्याप्त ऊर्जा प्राप्त करते हैं। ये उत्तेजित परमाणु जल्दी ही अपने मूल अवस्था में वापस आ जाते हैं, परमाणुओं के ऊर्जा बैंड के बीच अंतर के अनुरूप तरंग दैर्ध्य पर प्रकाश का उत्सर्जन करते हैं। यह चमक कैथोड के पास अत्यधिक देखी जाती है।[3]


कैथोड डार्क स्पेस

चूंकि कैथोड से इलेक्ट्रॉनों को अधिक ऊर्जा मिलती है, इसलिए वे परमाणुओं को उत्तेजित करने के आयनित करते हैं और उत्साहित परमाणु जल्दी से अपनी मूल अवस्था पर प्रकाश डालते हैं, चूंकि जब परमाणुओं को आयनित किया जाता है, तो विपरीत अभिकथन को भिन्न कर दिया जाता है, और तुरंत पुन: संयोग नहीं करते हैं। इससे अधिक आयनों और इलेक्ट्रॉनों में परिणाम होता है, लेकिन कोई प्रकाश नहीं होता है।[3] इस क्षेत्र को कभी कभी विलियम क्रूक्स डार्क स्पेस कहा जाता है, और कभी -कभी कैथोड गिरने के रूप में संदर्भित किया जाता है, क्योंकि ट्यूब में सबसे बड़ा वोल्टता ड्रॉप इस क्षेत्र में होता है।

ऋणात्मक चमक

कैथोड डार्क स्पेस में आयनीकरण के परिणामस्वरूप एक उच्च इलेक्ट्रॉन घनत्व होता है, लेकिन धीमी गति से इलेक्ट्रॉनों के लिए धनात्मक आयनों के साथ पुन: संयोग करना आसान हो जाता है, जिससे गहन प्रकाश होता है, यह एक प्रक्रिया के माध्यम से होता है, जिसे ब्रेक विकिरण विकिरण कहा जाता है।[3]


फैराडे डार्क स्पेस

जैसे -जैसे इलेक्ट्रॉन ऊर्जा खोते रहते हैं, कम प्रकाश उत्सर्जित होता है, जिसके परिणामस्वरूप एक और डार्क स्पेस होता है।[3]

एनोड परत

एनोड परत धनात्मक स्तंभ से आरम्भ होती है, और एनोड पर समाप्त होती है। एनोड परत में एक ऋणात्मक स्थान आवेश और एक मध्यम विद्युत क्षेत्र होता है।[3]


पॉजिटिव कॉलम

जिसके परिणामस्वरूप इलेक्ट्रानों में लगभग 2 ई. वी. की ऊर्जा होती है, जो कि परमाणुओं को उत्तेजित करने और प्रकाश उत्पन्न करने के लिए काफी होती है। लंबे समय तक चमक निर्वहन ट्यूबों के साथ, लंबी जगह एक लंबे सकारात्मक कॉलम द्वारा कब्जा है, जबकि कैथोड परत एक समान रहता है।[3] उदाहरण के लिए, नीयन चिन्ह के साथ धनात्मक स्तंभ की पूरी लंबाई ट्यूब में होती है।

एनोड चमक

एक विद्युत क्षेत्र एनोड चमक में परिणाम बढ़ाता है।[3]

एनोड डार्क स्पेस

कम इलेक्ट्रॉनों के परिणामस्वरूप एक और डार्क डार्क स्पेस होता है।[3]

स्ट्रिएशन्स

धनात्मक कॉलम में बारी -बारी से प्रकाश और डार्क के बैंड को स्ट्रिएशन्स कहा जाता है। स्ट्रिएशन्स इसलिए होती हैं क्यों क्योंकि इलेक्ट्रान एक क्वांटम स्तर से दूसरे में स्थानांतरित होने पर परमाणुओं द्वारा ऊर्जा की असतत मात्रा को अवशोषित अथवा मुक्त किया जा सकता है। इसका प्रभाव फ्रेंक -हर्ट्ज़ के प्रभाव को 1914 में समझाया गया।[5]

स्पटरिंग

द्वितीयक उत्सर्जन के अलावा, सकारात्मक आयन, जिस पदार्थ से कैथोड बनता है उसके कणों को बाहर निकालने के लिए पर्याप्त बल युक्त कैथोड को मार सकता है। इस प्रक्रिया को स्पटरिंग कहा जाता है और यह धीरे धीरे कैथोड के संयोजन का विश्लेषण करने के लिए स्पेक्ट्रोस्कोपी का प्रयोग करना उपयोगी है, जैसा कि प्रकाश-निर्वासन ऑप्टिकल उत्सर्जन स्पेक्ट्रोस्कोपी में किया जाता है।[6]

चूंकि, जब प्रकाश के लिए चमक के निर्वहन का प्रयोग किया जाता है तो स्पटरिंग वांछनीय नहीं है, क्योंकि इससे दीप के जीवन में कमी आती है। उदाहरण के लिए, नीयन के चिन्हों में खोखले कैथोड्स होते हैं जो स्पटरिंग को कम करने के लिए बनाये जाते हैं और इसमें अवांछित आयनों और परमाणुओं को लगातार हटाने के लिए लकड़ी का कोयला होता है।[7]

वाहक गैस

स्पटरिंग के संदर्भ में, ट्यूब में गैस को वाहक गैस कहा जाता है, क्योंकि यह कैथोड से कणों को वहन करता है।[6]

रंग अंतर

कैथोड में होने वाले स्पटरिंग के कारण, कैथोड के पास के क्षेत्रों से उत्सर्जित रंग एनोड से काफी भिन्न हैं। कैथोड से छिटके हुए कण उत्साहित होते हैं और कैथोड को बनाने वाले धातुओं और ऑक्साइड से विकिरण का उत्सर्जन करते हैं। इन कणों से विकिरण उत्साहित वाहक गैस से विकिरण के साथ जोड़ता है, जिससे कैथोड क्षेत्र को एक सफेद या नीला रंग मिलता है, जबकि बाकी ट्यूब में, विकिरण केवल वाहक गैस से होता है और अधिक मोनोक्रोमैटिक होता है।[6]

कैथोड के पास इलेक्ट्रॉन बाकी ट्यूब की तुलना में कम ऊर्जावान हैं।कैथोड के चारों ओर एक ऋणात्मक क्षेत्र है, जो इलेक्ट्रॉनों को धीमा कर देता है क्योंकि वे सतह से बाहर निकल जाते हैं। केवल उच्चतम वेग वाले इलेक्ट्रॉन इस क्षेत्र से बचने में सक्षम हैं, और पर्याप्त गतिज ऊर्जा वाले लोगों को कैथोड में वापस खींच लिया जाता है। एक बार ऋणात्मक क्षेत्र के बाहर, धनात्मक क्षेत्र से आकर्षण इन इलेक्ट्रॉनों को एनोड की ओर बढ़ाना आरम्भ कर देता है। इस त्वरण के दौरान इलेक्ट्रॉनों को कैथोड की ओर तेजी से धनात्मक आयनों द्वारा विक्षेपित और धीमा कर दिया जाता है, जो बदले में, ऋणात्मक चमक क्षेत्र में उज्ज्वल नीले-सफेद ब्रेकिंग विकिरण का उत्पादन करता है।[8]

विश्लेषणात्मक रसायन विज्ञान में उपयोग करें

चमक निर्वहन का उपयोग मौलिक का विश्लेषण करने के लिए किया जा सकता है, और कभी -कभी आणविक, ठोस, तरल पदार्थों और गैसों की संरचना, लेकिन ठोस पदार्थों का मौलिक विश्लेषण सबसे सामान्य है। इस व्यवस्था में, नमूने का उपयोग कैथोड के रूप में किया जाता है। जैसा कि पहले उल्लेख किया गया है, गैस आयनों और परमाणुओं ने नमूना सतह पर परमाणुओं को बंद कर दिया, जो कि स्पटरिंग के रूप में जाना जाता है।

स्पटर परमाणु, अब गैस चरण में, परमाणु अवशोषण स्पेक्ट्रोस्कोपी द्वारा पता लगाया जा सकता है, लेकिन यह एक तुलनात्मक रूप से दुर्लभ रणनीति है। इसके अतिरिक्त , परमाणु उत्सर्जन स्पेक्ट्रोस्कोपी और मास स्पेक्ट्रोमेट्री का उपयोग सामान्यतः किया जाता है।

गैस-चरण नमूना परमाणुओं और प्लाज्मा गैस के बीच टकराव नमूना परमाणुओं को ऊर्जा पास करते हैं। यह ऊर्जा परमाणुओं को उत्तेजित कर सकती है, जिसके बाद वे परमाणु उत्सर्जन के माध्यम से अपनी ऊर्जा खो सकते हैं। उत्सर्जित प्रकाश की तरंग दैर्ध्य का अवलोकन करके, परमाणु की पहचान निर्धारित की जा सकती है। उत्सर्जन की तीव्रता का अवलोकन करके, उस प्रकार के परमाणुओं की एकाग्रता को निर्धारित किया जा सकता है।

टकराव के माध्यम से प्राप्त ऊर्जा भी नमूना परमाणुओं को आयनित कर सकती है। आयनों को तब मास स्पेक्ट्रोमेट्री द्वारा पता लगाया जा सकता है। इस स्थिति में, यह आयनों का द्रव्यमान है जो तत्व और आयनों की संख्या की पहचान करते हैं जो एकाग्रता को दर्शाते हैं। इस विधि को चमक निर्वहन मास स्पेक्ट्रोमेट्री (जीडीएमएस) के रूप में संदर्भित किया जाता है और इसमें अधिकांश तत्वों के लिए उप-पीपीबी रेंज तक का पता लगाने की सीमा होती है जो लगभग मैट्रिक्स-स्वतंत्र के रूप में होते हैं।

गहराई विश्लेषण

ठोस पदार्थों के थोक और गहराई दोनों विश्लेषण को चमक निर्वहन के साथ किया जा सकता है। जबकि विश्लेषण मानता है कि नमूना काफी सजातीय है और समय के साथ उत्सर्जन या द्रव्यमान स्पेक्ट्रोमेट्रिक सिग्नल का औसत होता है। गहराई विश्लेषण समय में सिग्नल को ट्रैक करने पर निर्भर करता है, इसलिए, गहराई से मौलिक रचना को ट्रैक करने के समान है।

गहराई विश्लेषण के लिए परिचालन मापदंडों पर अधिक नियंत्रण की आवश्यकता होती है। उदाहरण के लिए, स्थितियों वर्तमान, संभावित, दबाव को समायोजित करने की आवश्यकता है ताकि स्पटरिंग द्वारा उत्पादित गड्ढा सपाट तल है अर्थात, ताकि गड्ढा क्षेत्र पर विश्लेषण की गई गहराई एक समान हो। थोक माप में, एक खुरदरा या गोल गड्ढा तल पर प्रतिकूल प्रभाव नहीं होता है। सर्वोत्तम परिस्थितियों में, एकल नैनोमीटर रेंज में गहराई संकल्प प्राप्त किया गया है वास्तव में,-अणु संकल्प के भीतर प्रदर्शित किया गया है)।

वैक्यूम में आयनों और न्यूट्रल के रसायन विज्ञान को गैस चरण आयन रसायन विज्ञान कहा जाता है और यह विश्लेषणात्मक अध्ययन का हिस्सा है जिसमें चमक निर्वहन सम्मलित होते है।

पावरिंग मोड

डीसी संचालित नीयन लैंप, केवल कैथोड के आसपास चमक निर्वहन दिखाता है

विश्लेषणात्मक रसायन विज्ञान में, चमक निर्वहन सामान्यतः प्रत्यक्ष-वर्तमान मोड में संचालित होते हैं। प्रत्यक्ष-वर्तमान के लिए, कैथोड जो ठोस विश्लेषण में नमूना है प्रवाहकीय होना चाहिए। इसके विपरीत, एक गैर -प्रवाहकीय कैथोड के विश्लेषण के लिए उच्च आवृत्ति वैकल्पिक वर्तमान के उपयोग की आवश्यकता होती है।

संभावित, दबाव और वर्तमान परस्पर जुड़े हुए होते है। केवल दो को एक साथ सीधे नियंत्रित किया जा सकता है, जबकि तीसरे को भिन्न -भिन्न होने की अनुमति दी जानी चाहिए। दबाव सामान्यतः स्थिर रखा जाता है, लेकिन अन्य योजनाओं का उपयोग किया जा सकता है।दबाव और वर्तमान को स्थिर रखा जा सकता है, जबकि क्षमता को भिन्न -भिन्न होने की अनुमति दी जाती है। दबाव और वोल्टता को स्थिर रखा जा सकता है जबकि वर्तमान को भिन्न -भिन्न होने की अनुमति होती है। पावर वोल्टता और करंट का उत्पाद को स्थिर रखा जा सकता है जबकि दबाव को भिन्न -भिन्न होने की अनुमति दी जाती है।

चमक निर्वहन को रेडियो-फ्रीक्वेंसी में भी संचालित किया जा सकता है। इस आवृत्ति का उपयोग नमूना सतह पर एक ऋणात्मक डीसी-पूर्वाग्रह वोल्टता स्थापित करेगा। डीसी-पूर्वाग्रह एक वैकल्पिक वर्तमान तरंग का परिणाम है जो ऋणात्मक क्षमता के बारे में केंद्रित है जैसे कि यह कम या ज्यादा नमूना सतह पर रहने वाली औसत क्षमता का प्रतिनिधित्व करता है। रेडियो-फ्रीक्वेंसी में इंसुलेटर (गैर-प्रवाहकीय सामग्री) के माध्यम से प्रवाह करने की क्षमता रखता है।

रेडियो-फ्रीक्वेंसी और डायरेक्ट-करंट चमक निर्वहन दोनों को स्पंदित मोड में संचालित किया जा सकता है, जहां क्षमता चालू और बंद हो जाती है। यह उच्च तात्कालिक शक्तियों को कैथोड को अत्यधिक गर्म किए बिना लागू करने की अनुमति देता है। ये उच्च तात्कालिक शक्तियां उच्च तात्कालिक संकेतों का उत्पादन करती हैं, सहायता का पता लगाती हैं। अतिरिक्त लाभों में स्पंदित पावरिंग परिणाम के साथ समय-हल का पता लगाने का संयोजन करते है। परमाणु उत्सर्जन में, विश्लेषण परमाणुओं का विश्लेषण पृष्ठभूमि परमाणुओं की तुलना में पल्स के विभिन्न हिस्सों के दौरान उत्सर्जित होता है, जिससे दोनों को भेदभाव किया जा सकता है। अनुरूप रूप से, मास स्पेक्ट्रोमेट्री में, नमूना और पृष्ठभूमि आयनों को भिन्न -भिन्न समय पर बनाया जाता है।

एनालॉग कंप्यूटिंग के लिए अनुप्रयोग

चमक निर्वहन का उपयोग करने के लिए एक दिलचस्प अनुप्रयोग को 2002 के वैज्ञानिक पेपर में रायस, घनम एट अल द्वारा वर्णित किया गया था।[9]

एक नेचर न्यूज लेख के अनुसार, काम का वर्णन करते हुए,[10] इंपीरियल कॉलेज लंदन के शोधकर्ताओं ने दिखाया कि कैसे उन्होंने एक मिनी-मैप का निर्माण किया जो दो अंकों के बीच सबसे छोटे मार्ग के साथ चमकती है। नेचर न्यूज लेख इस प्रणाली का वर्णन करता है:

एक इंच लंदन चिप बनाने के लिए, टीम ने एक कांच की स्लाइड पर शहर के केंद्र की एक योजना बनाई। शीर्ष पर एक फ्लैट ढक्कन को फिट करने से सड़कों को खोखले, जुड़े ट्यूबों में बदल दिया गया। उन्होंने इन्हें हीलियम गैस से भर दिया, और प्रमुख पर्यटक हब में इलेक्ट्रोड डाला। जब दो बिंदुओं के बीच एक वोल्टता लगाया जाता है, तो बिजली स्वाभाविक रूप से ए से बी से सबसे छोटे मार्ग के साथ सड़कों के माध्यम से चलती है और गैस एक छोटे नीयन पट्टी की तरह चमकती है।

यह दृष्टिकोण स्वयं एक माइक्रोफ्लुइडिक चिप में एक चमक निर्वहन के प्रकाश के गुणों के आधार पर भूलभुलैया खोज समस्याओं की एक विस्तृत श्रेणी को हल करने के लिए एक उपन्यास दृश्यमान अनुरूप अभिकलन दृष्टिकोण प्रदान करता है।

वोल्टता विनियमन के लिए अनुप्रयोग

ऑपरेशन में एक 5651 वोल्टता -नियामक ट्यूब

20 वीं शताब्दी के मध्य में, ज़ेनर डायोड्स जैसे ठोस राज्य इलेक्ट्रॉनिक्स घटकों के विकास से पहले, वोल्टता नियामक डीसी वोल्टता स्टेबलाइजर्स को परिपथ में अधिकांशतः वोल्टता नियामक ट्यूबों के साथ पूरा किया गया था, जिसमें चमक निर्वहन का उपयोग किया गया था।

यह भी देखें

संदर्भ

  1. Fridman, Alexander (2011). प्लाज्मा भौतिकी और इंजीनियरिंग. Boca Raton, FL: CRC Press. ISBN 978-1439812280.
  2. Principles of Electronics By V.K. Mehta ISBN 81-219-2450-2
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Fridman, Alexander (2012). प्लाज्मा रसायन विज्ञान. Cambridge: Cambridge University Press. p. 177. ISBN 978-1107684935.
  4. Konjevic, N.; Videnovic, I. R.; Kuraica, M. M. (1997). "एक विश्लेषणात्मक चमक निर्वहन के कैथोड गिरावट क्षेत्र का उत्सर्जन स्पेक्ट्रोस्कोपी". Le Journal de Physique IV. 07 (C4): C4–247–C4–258. doi:10.1051/jp4:1997420. ISSN 1155-4339. Retrieved June 19, 2017.
  5. Csele, Mark (2011). "2.6 The Franck–Hertz Experiment". प्रकाश स्रोतों और लेज़रों के मूल सिद्धांत. John Wiley & Sons. pp. 31–36. ISBN 9780471675228.
  6. 6.0 6.1 6.2 Mavrodineanu, R. (1984). "खोखले कैथोड डिस्चार्ज - विश्लेषणात्मक अनुप्रयोग". Journal of Research of the National Bureau of Standards. 89 (2): 147. doi:10.6028/jres.089.009. ISSN 0160-1741. PMC 6768240. PMID 34566122.
  7. Claude, Georges (November 1913). "नीयन ट्यूबों का विकास". The Engineering Magazine: 271–274. LCCN sn83009124.
  8. Whitaker, Jerry (1999). पावर वैक्यूम ट्यूब्स हैंडबुक, दूसरा संस्करण. Boca Raton: CRC Press. p. 94. ISBN 978-1420049657.
  9. Reyes, D. R.; Ghanem, M. M.; Whitesides, G. M.; Manz, A. (2002). "दृश्यमान एनालॉग कंप्यूटिंग के लिए माइक्रोफ्लुइडिक चिप्स में चमक डिस्चार्ज". Lab on a Chip. ACS. 2 (2): 113–6. doi:10.1039/B200589A. PMID 15100843.
  10. Mini-map gives tourists neon route signs: http://www.nature.com/news/2002/020527/full/news020520-12.html


आगे की पढाई

  • S. Flügge, ed. (1956). Handbuch der Physik/Encyclopedia of Physics band/volume XXI - Electron-emission • Gas discharges I. Springer-Verlag. First chapter of the article Secondary effects by P.F. Little.
  • R. Kenneth Marcus, ed. (1993). Glow Discharge Spectroscopies. Kluwer Academic Publishers (Modern Analytical Chemistry). ISBN 978-0-306-44396-1.