सीमा मान समस्या: Difference between revisions

From Vigyanwiki
No edit summary
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Solving a differential equation such that certain constraints are satisfied}}
[[File:Boundary value problem-en.svg|300px|thumb|right|एक ऐसा क्षेत्र दिखाता है जहां [[ अंतर समीकरण |अंतर समीकरण]] मान्य है और संबंधित सीमा मूल्य]]गणित में, अंतर समीकरणों के क्षेत्र में, सीमा मूल्य समस्या एक अंतर समीकरण है जिसमें अतिरिक्त बाधाओं का एक समूह होता है, जिसे सीमा की स्थिति कहा जाता है।<ref name="Zwillinger2014">{{cite book|author=Daniel Zwillinger|title=विभेदक समीकरणों की पुस्तिका|url=https://books.google.com/books?id=9QLjBQAAQBAJ&q=%22boundary+value%22&pg=PA536|date=12 May 2014|publisher=Elsevier Science|isbn=978-1-4832-2096-3|pages=536–}}</ref> सीमा मूल्य समस्या का हल अंतर समीकरण का हल है जो सीमा प्रतिबंधों को भी संतुष्ट करता है।
[[File:Boundary value problem-en.svg|300px|thumb|right|एक ऐसा क्षेत्र दिखाता है जहां एक [[ अंतर समीकरण |अंतर समीकरण]] मान्य है और संबंधित सीमा मूल्य]]गणित में, अंतर समीकरणों के क्षेत्र में, एक सीमा मूल्य समस्या एक अंतर समीकरण है जिसमें अतिरिक्त बाधाओं का एक समूह होता है, जिसे सीमा की स्थिति कहा जाता है।<ref name="Zwillinger2014">{{cite book|author=Daniel Zwillinger|title=विभेदक समीकरणों की पुस्तिका|url=https://books.google.com/books?id=9QLjBQAAQBAJ&q=%22boundary+value%22&pg=PA536|date=12 May 2014|publisher=Elsevier Science|isbn=978-1-4832-2096-3|pages=536–}}</ref> सीमा मूल्य समस्या का हल अंतर समीकरण का हल है जो सीमा प्रतिबंधों को भी संतुष्ट करता है।


भौतिक विज्ञान की कई शाखाओं में सीमा मूल्य की समस्याएँ उत्पन्न होती हैं क्योंकि किसी भी भौतिक अवकल समीकरण में ये समस्याएँ होंगी। तरंग समीकरण से जुड़ी समस्याएं, जैसे कि प्रसामान्य विधा का निर्धारण, प्रायः सीमा मूल्य समस्याओं के रूप में कहा जाता है। महत्वपूर्ण सीमा मूल्य समस्याओं का एक बड़ा वर्ग स्टर्म-लिउविल सिद्धांत है। इन समस्याओं के विश्लेषण में एक अवकल संकारक के [[ eigenfunction |आईगेन फलन]] सम्मिलित हैं।
भौतिक विज्ञान की कई शाखाओं में सीमा मूल्य की समस्याएँ उत्पन्न होती हैं क्योंकि किसी भी भौतिक अवकल समीकरण में ये समस्याएँ होंगी। तरंग समीकरण से जुड़ी समस्याएं, जैसे कि प्रसामान्य विधा का निर्धारण, प्रायः सीमा मूल्य समस्याओं के रूप में कहा जाता है। महत्वपूर्ण सीमा मूल्य समस्याओं का एक बड़ा वर्ग स्टर्म-लिउविल सिद्धांत है। इन समस्याओं के विश्लेषण में एक अवकल संकारक के [[ eigenfunction |आईगेन फलन]] सम्मिलित हैं।
Line 9: Line 8:


== स्पष्टीकरण ==
== स्पष्टीकरण ==
सीमा मूल्य समस्याएं [[ प्रारंभिक मूल्य समस्या |प्रारंभिक मूल्य समस्या]]ओं के समान हैं। एक सीमा मूल्य समस्या के समीकरण में स्वतंत्र चर के चरम सीमाओं (सीमाओं) पर निर्दिष्ट स्थितियाँ होती हैं जबकि एक प्रारंभिक मूल्य समस्या में स्वतंत्र चर के समान मूल्य पर निर्दिष्ट सभी परिस्थितियाँ होती हैं (और वह मूल्य डोमेन की निचली सीमा पर है, इस प्रकार शब्द "प्रारंभिक" मूल्य )। एक सीमा मूल्य एक निर्दिष्ट मूल्य है जो किसी प्रणाली या घटक के लिए निर्दिष्ट न्यूनतम या अधिकतम निवेश , आंतरिक या उत्पाद मूल्य से मेल खाता है।<ref>{{Cite book|title=ISO/IEC/IEEE अंतर्राष्ट्रीय मानक - सिस्टम और सॉफ़्टवेयर इंजीनियरिंग|publisher=ISO/IEC/IEEE 24765:2010(E)|pages=vol., no., pp.1-418}}</ref>
सीमा मूल्य समस्याएं [[ प्रारंभिक मूल्य समस्या |प्रारंभिक मूल्य समस्या]]ओं के समान हैं। सीमा मूल्य समस्या के समीकरण में स्वतंत्र चर के चरम सीमाओं (सीमाओं) पर निर्दिष्ट स्थितियाँ होती हैं जबकि एक प्रारंभिक मूल्य समस्या में स्वतंत्र चर के समान मूल्य पर निर्दिष्ट सभी परिस्थितियाँ होती हैं (और वह मूल्य डोमेन की निचली सीमा पर है, इस प्रकार शब्द "प्रारंभिक" मूल्य )। सीमा मूल्य एक निर्दिष्ट मूल्य है जो किसी प्रणाली या घटक के लिए निर्दिष्ट न्यूनतम या अधिकतम निवेश , आंतरिक या उत्पाद मूल्य से मेल खाता है।<ref>{{Cite book|title=ISO/IEC/IEEE अंतर्राष्ट्रीय मानक - सिस्टम और सॉफ़्टवेयर इंजीनियरिंग|publisher=ISO/IEC/IEEE 24765:2010(E)|pages=vol., no., pp.1-418}}</ref>


उदाहरण के लिए, यदि स्वतंत्र चर डोमेन [0,1] पर समय है, तो एक सीमा मूल्य समस्या <math>y(t)</math> के लिए <math>t=0</math> और <math>t=1</math> दोनों पर मूल्य निर्दिष्ट करेगी,, जबकि प्रारंभिक मूल्य समस्या का मूल्य <math>y(t)</math> और <math>y'(t)</math> समय पर <math>t=0</math> निर्दिष्ट करेगी।
उदाहरण के लिए, यदि स्वतंत्र चर डोमेन [0,1] पर समय है, तो सीमा मूल्य समस्या <math>y(t)</math> के लिए <math>t=0</math> और <math>t=1</math> दोनों पर मूल्य निर्दिष्ट करेगी,, जबकि प्रारंभिक मूल्य समस्या का मूल्य <math>y(t)</math> और <math>y'(t)</math> समय पर <math>t=0</math> निर्दिष्ट करेगी।


एक लोहे की पट्टी के सभी बिंदुओं पर तापमान का पता लगाना, जिसके एक सिरे को पूर्ण शून्य पर रखा जाता है और दूसरे सिरे को पानी के हिमांक बिंदु पर रखा जाता है, यह एक सीमा मूल्य समस्या होगी।
एक लोहे की पट्टी के सभी बिंदुओं पर तापमान का पता लगाना, जिसके एक सिरे को पूर्ण शून्य पर रखा जाता है और दूसरे सिरे को पानी के हिमांक बिंदु पर रखा जाता है, यह एक सीमा मूल्य समस्या होगी।
Line 27: Line 26:
सीमा की स्थिति से <math>y(0)=0</math> एक प्राप्त करता है
सीमा की स्थिति से <math>y(0)=0</math> एक प्राप्त करता है
:<math>0 = A \cdot 0 + B \cdot 1</math>
:<math>0 = A \cdot 0 + B \cdot 1</math>
जिसका तात्पर्य है <math>B=0</math> है सीमा की स्थिति से <math>y(\pi/2)=2</math> एक पाता है
जिसका तात्पर्य है <math>B=0</math> है सीमा की स्थिति से <math>y(\pi/2)=2</math> पाता है
:<math>2 = A \cdot 1 </math>
:<math>2 = A \cdot 1 </math>
इसलिए <math>A=2.</math> कोई यह देखता है कि सीमा प्रतिबंधों को लागू करने से एक अद्वितीय हल निर्धारित करने की अनुमति मिलती है, जो इस स्थिति में  
इसलिए <math>A=2.</math> कोई यह देखता है कि सीमा प्रतिबंधों को लागू करने से एक अद्वितीय हल निर्धारित करने की अनुमति मिलती है, जो इस स्थिति में  
Line 34: Line 33:


=== सीमा मूल्य की स्थिति ===
=== सीमा मूल्य की स्थिति ===
[[Image:Bounday value problem for a rod.PNG|frame|right|इस आदर्श 2डी रॉड के तापमान का वर्णन करने के लिए एक फलन ढूँढना डिरिचलेट सीमा प्रतिबंधों के साथ एक सीमा मूल्य समस्या है। कोई भी हल फलन गर्मी समीकरण को हल करेगा, और बाईं सीमा पर 0 K के तापमान की सीमा प्रतिबंधों को पूरा करेगा और दाहिनी सीमा पर 273.15 K का तापमान होगा।]]एक सीमा स्थिति जो फलन के मूल्य को ही निर्दिष्ट करती है, एक डिरिचलेट सीमा स्थिति या प्रथम प्रकार की सीमा स्थि‍ति है। उदाहरण के लिए, यदि किसी लोहे की छड़ का एक सिरा पूर्ण शून्य पर रखा जाता है, तो समस्या का मूल्य स्थान में उस बिंदु पर ज्ञात होगा।
[[Image:Bounday value problem for a rod.PNG|frame|right|इस आदर्श 2डी रॉड के तापमान का वर्णन करने के लिए एक फलन ढूँढना डिरिचलेट सीमा प्रतिबंधों के साथ एक सीमा मूल्य समस्या है। कोई भी हल फलन गर्मी समीकरण को हल करेगा, और बाईं सीमा पर 0 K के तापमान की सीमा प्रतिबंधों को पूरा करेगा और दाहिनी सीमा पर 273.15 K का तापमान होगा।]]एक सीमा स्थिति जो फलन के मूल्य को ही निर्दिष्ट करती है, डिरिचलेट सीमा स्थिति या प्रथम प्रकार की सीमा स्थि‍ति है। उदाहरण के लिए, यदि किसी लोहे की छड़ का एक सिरा पूर्ण शून्य पर रखा जाता है, तो समस्या का मूल्य स्थान में उस बिंदु पर ज्ञात होगा।


एक सीमा की स्थिति जो फलन के [[ सामान्य व्युत्पन्न |सामान्य व्युत्पन्न]] के मूल्य को निर्दिष्ट करती है, एक [[ न्यूमैन सीमा की स्थिति |न्यूमैन सीमा की स्थिति]] या दूसरी प्रकार की सीमा की स्थिति है। उदाहरण के लिए, यदि लोहे की छड़ के एक सिरे पर तापक लगा हो, तो ऊर्जा एक स्थिर दर से बढ़ेगी लेकिन वास्तविक तापमान ज्ञात नहीं होगा।
एक सीमा की स्थिति जो फलन के [[ सामान्य व्युत्पन्न |सामान्य व्युत्पन्न]] के मूल्य को निर्दिष्ट करती है, [[ न्यूमैन सीमा की स्थिति |न्यूमैन सीमा की स्थिति]] या दूसरी प्रकार की सीमा की स्थिति है। उदाहरण के लिए, यदि लोहे की छड़ के एक सिरे पर तापक लगा हो, तो ऊर्जा स्थिर दर से बढ़ेगी लेकिन वास्तविक तापमान ज्ञात नहीं होगा।


यदि सीमा में एक वक्र या सतह का रूप है जो सामान्य व्युत्पन्न और चर को ही मान देता है तो यह एक कौची सीमा स्थिति है।
यदि सीमा में एक वक्र या सतह का रूप है जो सामान्य व्युत्पन्न और चर को ही मान देता है तो यह एक कौची सीमा स्थिति है।
Line 44: Line 43:
{| class="wikitable" style="text-align: center"
{| class="wikitable" style="text-align: center"
|-
|-
! Name
! नाम
! Form on 1st part of boundary
! सीमा के पहले भाग पर प्रपत्र
! Form on 2nd part of boundary
! सीमा के दूसरे भाग पर प्रपत्र
|-
|-
| [[Dirichlet boundary condition|Dirichlet]]
| [[Dirichlet boundary condition|डिराइचलेट]]
| colspan="2" |<math>y=f</math>
| colspan="2" |<math>y=f</math>
|-
|-
| [[Neumann boundary condition|Neumann]]
| [[Neumann boundary condition|न्यूमन]]
| colspan="2" |<math>{\partial y \over \partial n}=f</math>
| colspan="2" |<math>{\partial y \over \partial n}=f</math>
|-
|-
Line 67: Line 66:


=== विभेदक संचालक ===
=== विभेदक संचालक ===
सीमा की स्थिति के अतिरिक्त, सीमा मूल्य की समस्याओं को भी अंतर संचालक के प्रकार के अनुसार वर्गीकृत किया जाता है। एक [[ अण्डाकार ऑपरेटर |अण्डाकार संचालक]] के लिए, एक अण्डाकार सीमा मूल्य समस्याओं पर तर्क करता है। एक [[ अतिशयोक्तिपूर्ण ऑपरेटर |अतिपरवलीय संचालक]] के लिए, एक अतिपरवलीय सीमा मूल्य समस्याओं पर तर्क करता है। इन श्रेणियों के अतिरिक्त रेखीय अवकल समीकरण और विभिन्न अरैखिक प्रकारों में विभाजित किया गया है।
सीमा की स्थिति के अतिरिक्त, सीमा मूल्य की समस्याओं को भी अंतर संचालक के प्रकार के अनुसार वर्गीकृत किया जाता है। एक [[ अण्डाकार ऑपरेटर |अण्डाकार संचालक]] के लिए, अण्डाकार सीमा मूल्य समस्याओं पर तर्क करता है। एक [[ अतिशयोक्तिपूर्ण ऑपरेटर |अतिपरवलीय संचालक]] के लिए, अतिपरवलीय सीमा मूल्य समस्याओं पर तर्क करता है। इन श्रेणियों के अतिरिक्त रेखीय अवकल समीकरण और विभिन्न अरैखिक प्रकारों में विभाजित किया गया है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 73: Line 72:
=== विद्युत चुम्बकीय क्षमता ===
=== विद्युत चुम्बकीय क्षमता ===
{{See also|लाप्लास का समीकरण#सीमा की स्थिति}}
{{See also|लाप्लास का समीकरण#सीमा की स्थिति}}
[[ इलेक्ट्रोस्टाटिक्स | स्थिरवैद्युतिकी]] में, एक सामान्य समस्या एक ऐसे फलन को ढूंढना है जो किसी दिए गए क्षेत्र की विद्युत क्षमता का वर्णन करता है। यदि क्षेत्र में आवेश नहीं है, तो संभावित रूप से लाप्लास के समीकरण (एक तथाकथित हार्मोनिक फलन ) का हल होना चाहिए। इस स्थिति में सीमा की स्थिति [[ विद्युत चुम्बकीय क्षेत्रों के लिए इंटरफ़ेस की स्थिति |विद्युत चुम्बकीय क्षेत्रों के लिए अंतरापृष्ठ की स्थिति]] है। यदि क्षेत्र में कोई [[ वर्तमान घनत्व |वर्तमान घनत्व]] नहीं है, तो इसी तरह की प्रक्रिया का उपयोग करके चुंबकीय अदिश क्षमता को परिभाषित करना भी संभव है।
[[ इलेक्ट्रोस्टाटिक्स | स्थिरवैद्युतिकी]] में, सामान्य समस्या एक ऐसे फलन को ढूंढना है जो किसी दिए गए क्षेत्र की विद्युत क्षमता का वर्णन करता है। यदि क्षेत्र में आवेश नहीं है, तो संभावित रूप से लाप्लास के समीकरण (एक तथाकथित हार्मोनिक फलन ) का हल होना चाहिए। इस स्थिति में सीमा की स्थिति [[ विद्युत चुम्बकीय क्षेत्रों के लिए इंटरफ़ेस की स्थिति |विद्युत चुम्बकीय क्षेत्रों के लिए अंतरापृष्ठ की स्थिति]] है। यदि क्षेत्र में कोई [[ वर्तमान घनत्व |विद्युत प्रवाह घनत्व]] नहीं है, तो इसी तरह की प्रक्रिया का उपयोग करके चुंबकीय अदिश क्षमता को परिभाषित करना भी संभव है।


== यह भी देखें ==
== यह भी देखें ==
Line 121: Line 120:


{{Authority control}}
{{Authority control}}
[[Category: Machine Translated Page]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 27/12/2022]]
[[Category:Created On 27/12/2022]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates using TemplateData]]

Latest revision as of 16:11, 10 October 2023

एक ऐसा क्षेत्र दिखाता है जहां अंतर समीकरण मान्य है और संबंधित सीमा मूल्य

गणित में, अंतर समीकरणों के क्षेत्र में, सीमा मूल्य समस्या एक अंतर समीकरण है जिसमें अतिरिक्त बाधाओं का एक समूह होता है, जिसे सीमा की स्थिति कहा जाता है।[1] सीमा मूल्य समस्या का हल अंतर समीकरण का हल है जो सीमा प्रतिबंधों को भी संतुष्ट करता है।

भौतिक विज्ञान की कई शाखाओं में सीमा मूल्य की समस्याएँ उत्पन्न होती हैं क्योंकि किसी भी भौतिक अवकल समीकरण में ये समस्याएँ होंगी। तरंग समीकरण से जुड़ी समस्याएं, जैसे कि प्रसामान्य विधा का निर्धारण, प्रायः सीमा मूल्य समस्याओं के रूप में कहा जाता है। महत्वपूर्ण सीमा मूल्य समस्याओं का एक बड़ा वर्ग स्टर्म-लिउविल सिद्धांत है। इन समस्याओं के विश्लेषण में एक अवकल संकारक के आईगेन फलन सम्मिलित हैं।

अनुप्रयोगों में उपयोगी होने के लिए, एक सीमा मूल्य समस्या अच्छी तरह से उत्पन्न समस्या होनी चाहिए। इसका मतलब यह है कि समस्या के निवेश दिए जाने पर एक विशिष्ट हल उपस्थित होता है, जो निरन्तर निवेश पर निर्भर करता है। आंशिक अंतर समीकरणों के क्षेत्र में बहुत से सैद्धांतिक फलन यह सिद्ध करने के लिए समर्पित हैं कि विज्ञान संबंधी और अभियांत्रिकी अनुप्रयोगों से उत्पन्न होने वाली सीमा मूल्य समस्याएं वस्तुत: अच्छी तरह से प्रस्तुत हैं।

अध्ययन की जाने वाली पूर्वतर सीमा मूल्य समस्याओं में हार्मोनिक फलन (लाप्लास के समीकरण के हल) को खोजने की डिरिचलेट समस्या है; हल डिरिक्लेट के सिद्धांत द्वारा दिया गया था।

स्पष्टीकरण

सीमा मूल्य समस्याएं प्रारंभिक मूल्य समस्याओं के समान हैं। सीमा मूल्य समस्या के समीकरण में स्वतंत्र चर के चरम सीमाओं (सीमाओं) पर निर्दिष्ट स्थितियाँ होती हैं जबकि एक प्रारंभिक मूल्य समस्या में स्वतंत्र चर के समान मूल्य पर निर्दिष्ट सभी परिस्थितियाँ होती हैं (और वह मूल्य डोमेन की निचली सीमा पर है, इस प्रकार शब्द "प्रारंभिक" मूल्य )। सीमा मूल्य एक निर्दिष्ट मूल्य है जो किसी प्रणाली या घटक के लिए निर्दिष्ट न्यूनतम या अधिकतम निवेश , आंतरिक या उत्पाद मूल्य से मेल खाता है।[2]

उदाहरण के लिए, यदि स्वतंत्र चर डोमेन [0,1] पर समय है, तो सीमा मूल्य समस्या के लिए और दोनों पर मूल्य निर्दिष्ट करेगी,, जबकि प्रारंभिक मूल्य समस्या का मूल्य और समय पर निर्दिष्ट करेगी।

एक लोहे की पट्टी के सभी बिंदुओं पर तापमान का पता लगाना, जिसके एक सिरे को पूर्ण शून्य पर रखा जाता है और दूसरे सिरे को पानी के हिमांक बिंदु पर रखा जाता है, यह एक सीमा मूल्य समस्या होगी।

यदि समस्या स्थान और समय दोनों पर निर्भर है, तो समस्या का मूल्य सभी समय के लिए दिए गए बिंदु पर या सभी स्थान के लिए दिए गए समय पर निर्दिष्ट किया जा सकता है।

ठोस रूप से, सीमा मूल्य समस्या (एक स्थानिक आयाम में) का एक उदाहरण है

अज्ञात फलन के लिए हल करने के लिए सीमा प्रतिबंधों के साथ

सीमा प्रतिबंधों के बिना, इस समीकरण का सामान्य हल है

है।

सीमा की स्थिति से एक प्राप्त करता है

जिसका तात्पर्य है है सीमा की स्थिति से पाता है

इसलिए कोई यह देखता है कि सीमा प्रतिबंधों को लागू करने से एक अद्वितीय हल निर्धारित करने की अनुमति मिलती है, जो इस स्थिति में

है।

सीमा मूल्य समस्याओं के प्रकार

सीमा मूल्य की स्थिति

इस आदर्श 2डी रॉड के तापमान का वर्णन करने के लिए एक फलन ढूँढना डिरिचलेट सीमा प्रतिबंधों के साथ एक सीमा मूल्य समस्या है। कोई भी हल फलन गर्मी समीकरण को हल करेगा, और बाईं सीमा पर 0 K के तापमान की सीमा प्रतिबंधों को पूरा करेगा और दाहिनी सीमा पर 273.15 K का तापमान होगा।

एक सीमा स्थिति जो फलन के मूल्य को ही निर्दिष्ट करती है, डिरिचलेट सीमा स्थिति या प्रथम प्रकार की सीमा स्थि‍ति है। उदाहरण के लिए, यदि किसी लोहे की छड़ का एक सिरा पूर्ण शून्य पर रखा जाता है, तो समस्या का मूल्य स्थान में उस बिंदु पर ज्ञात होगा।

एक सीमा की स्थिति जो फलन के सामान्य व्युत्पन्न के मूल्य को निर्दिष्ट करती है, न्यूमैन सीमा की स्थिति या दूसरी प्रकार की सीमा की स्थिति है। उदाहरण के लिए, यदि लोहे की छड़ के एक सिरे पर तापक लगा हो, तो ऊर्जा स्थिर दर से बढ़ेगी लेकिन वास्तविक तापमान ज्ञात नहीं होगा।

यदि सीमा में एक वक्र या सतह का रूप है जो सामान्य व्युत्पन्न और चर को ही मान देता है तो यह एक कौची सीमा स्थिति है।

उदाहरण

अज्ञात फलन के लिए सीमा प्रतिबंधों का सारांश, , स्थिरांक और सीमा स्थितियों और ज्ञात स्केलर फलन द्वारा निर्दिष्ट और सीमा प्रतिबंधों द्वारा निर्दिष्ट।

नाम सीमा के पहले भाग पर प्रपत्र सीमा के दूसरे भाग पर प्रपत्र
डिराइचलेट
न्यूमन
Robin
Mixed
Cauchy both and


विभेदक संचालक

सीमा की स्थिति के अतिरिक्त, सीमा मूल्य की समस्याओं को भी अंतर संचालक के प्रकार के अनुसार वर्गीकृत किया जाता है। एक अण्डाकार संचालक के लिए, अण्डाकार सीमा मूल्य समस्याओं पर तर्क करता है। एक अतिपरवलीय संचालक के लिए, अतिपरवलीय सीमा मूल्य समस्याओं पर तर्क करता है। इन श्रेणियों के अतिरिक्त रेखीय अवकल समीकरण और विभिन्न अरैखिक प्रकारों में विभाजित किया गया है।

अनुप्रयोग

विद्युत चुम्बकीय क्षमता

स्थिरवैद्युतिकी में, सामान्य समस्या एक ऐसे फलन को ढूंढना है जो किसी दिए गए क्षेत्र की विद्युत क्षमता का वर्णन करता है। यदि क्षेत्र में आवेश नहीं है, तो संभावित रूप से लाप्लास के समीकरण (एक तथाकथित हार्मोनिक फलन ) का हल होना चाहिए। इस स्थिति में सीमा की स्थिति विद्युत चुम्बकीय क्षेत्रों के लिए अंतरापृष्ठ की स्थिति है। यदि क्षेत्र में कोई विद्युत प्रवाह घनत्व नहीं है, तो इसी तरह की प्रक्रिया का उपयोग करके चुंबकीय अदिश क्षमता को परिभाषित करना भी संभव है।

यह भी देखें


टिप्पणियाँ

  1. Daniel Zwillinger (12 May 2014). विभेदक समीकरणों की पुस्तिका. Elsevier Science. pp. 536–. ISBN 978-1-4832-2096-3.
  2. ISO/IEC/IEEE अंतर्राष्ट्रीय मानक - सिस्टम और सॉफ़्टवेयर इंजीनियरिंग. ISO/IEC/IEEE 24765:2010(E). pp. vol., no., pp.1-418.


संदर्भ

  • A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 1-58488-297-2.
  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9.


बाहरी कड़ियाँ