ज्वारीय धारा शक्ति: Difference between revisions
No edit summary |
|||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Extraction of power from ocean currents}} | {{short description|Extraction of power from ocean currents}} | ||
[[ महासागर धारा ]] बड़ी मात्रा में पानी ले जा सकती है, जो मुख्य रूप से ज्वार द्वारा संचालित होती है, जो पृथ्वी, चंद्रमा और सूर्य की ग्रहों की गति के गुरुत्वाकर्षण प्रभाव का परिणाम है। संवर्धित प्रवाह वेग पाया जा सकता है जहां द्वीपों और मुख्य भूमि के बीच जलडमरूमध्य में पानी के नीचे की स्थलाकृति या हेडलैंड्स के आसपास उथले में प्रवाह वेग को बढ़ाने में एक प्रमुख भूमिका निभाता है, जिसके परिणामस्वरूप प्रशंसनीय गतिज ऊर्जा होती है। | [[ महासागर धारा ]] बड़ी मात्रा में पानी ले जा सकती है, जो मुख्य रूप से ज्वार द्वारा संचालित होती है, जो पृथ्वी, चंद्रमा और सूर्य की ग्रहों की गति के गुरुत्वाकर्षण प्रभाव का परिणाम है। संवर्धित प्रवाह वेग पाया जा सकता है जहां द्वीपों और मुख्य भूमि के बीच जलडमरूमध्य में पानी के नीचे की स्थलाकृति या हेडलैंड्स के आसपास उथले में प्रवाह वेग को बढ़ाने में एक प्रमुख भूमिका निभाता है, जिसके परिणामस्वरूप प्रशंसनीय गतिज ऊर्जा होती है। सूर्य प्राथमिक प्रेरक शक्ति के रूप में कार्य करता है, जिससे हवाओ और तापमान में अंतर होता है। क्योंकि दिशा में न्यूनतम परिवर्तन के साथ वर्तमान गति और धारा के स्थान में केवल छोटे उतार-चढ़ाव होते हैं, घूर्णी चालक यंत्र जैसे ऊर्जा निष्कर्षण उपकरणों को तैनात करने के लिए समुद्री धाराएं उपयुक्त स्थान हो सकती हैं। अन्य प्रभाव जैसे तापमान और लवणता में क्षेत्रीय अंतर और पृथ्वी के घूमने के कारण कोरिओलिस प्रभाव भी प्रमुख प्रभाव हैं। समुद्री धाराओं की [[ गतिज ऊर्जा ]] को उसी तरह से परिवर्तित किया जा सकता है जिस तरह एक पवन घूर्णी (rotary) चालक यंत्र विभिन्न प्रकार के खुले प्रवाह वाले घूर्णी का उपयोग करके हवा से ऊर्जा निकालता है। | ||
=== ऊर्जा क्षमता === | === ऊर्जा क्षमता === | ||
[[File:Gulf Stream Flowchart.gif|thumb|संयुक्त राज्य अमेरिका के पूर्वी तट के साथ वर्तमान प्रवाह का वेक्टर आरेख।]]15 kW/m2 तक की विद्युत घनत्व के साथ, महासागर धाराओं में कुल विश्वव्यापी विद्युत लगभग 5,000 GW होने का अनुमान लगाया गया है। फ़्लोरिडा जलडमरूमध्य की सतह के पास अपेक्षाकृत स्थिर निकालने योग्य ऊर्जा घनत्व प्रवाह क्षेत्र का लगभग 1 kW/m2 है। यह अनुमान लगाया गया है कि [[ गल्फ स्ट्रीम ]] से उपलब्ध ऊर्जा का केवल 1/1,000वाँ हिस्सा प्राप्त करना, जिसमें पानी के प्रवाह में नियाग्रा जल प्रपात की तुलना में 21,000 गुना अधिक ऊर्जा है, जो दुनिया की सभी मीठे पानी की नदियों के कुल प्रवाह का 50 गुना है, आपूर्ति करेगा फ्लोरिडा अपनी 35% विद्युत जरूरतों के साथ। दाईं ओर की छवि तट के साथ प्रवाह के उच्च घनत्व को दर्शाती है, उच्च वेग वाले सफेद उत्तर की ओर प्रवाह पर ध्यान दें, जो समुद्र की वर्तमान ऊर्जा के निष्कर्षण के लिए पूरी तरह से सही है। महासागरीय वर्तमान ऊर्जा प्रौद्योगिकियों के अनुप्रयोग में रुचि रखने वाले और उनका अनुसरण करने वाले देशों में यूरोपीय संघ शामिल हैं, | [[File:Gulf Stream Flowchart.gif|thumb|संयुक्त राज्य अमेरिका के पूर्वी तट के साथ वर्तमान प्रवाह का वेक्टर आरेख।]]15 kW/m2 तक की विद्युत घनत्व के साथ, महासागर धाराओं में कुल विश्वव्यापी विद्युत लगभग 5,000 GW होने का अनुमान लगाया गया है। फ़्लोरिडा जलडमरूमध्य की सतह के पास अपेक्षाकृत स्थिर निकालने योग्य ऊर्जा घनत्व प्रवाह क्षेत्र का लगभग 1 kW/m2 है। यह अनुमान लगाया गया है कि [[ गल्फ स्ट्रीम ]] से उपलब्ध ऊर्जा का केवल 1/1,000वाँ हिस्सा प्राप्त करना, जिसमें पानी के प्रवाह में नियाग्रा जल प्रपात की तुलना में 21,000 गुना अधिक ऊर्जा है, जो दुनिया की सभी मीठे पानी की नदियों के कुल प्रवाह का 50 गुना है, आपूर्ति करेगा फ्लोरिडा अपनी 35% विद्युत जरूरतों के साथ। दाईं ओर की छवि तट के साथ प्रवाह के उच्च घनत्व को दर्शाती है, उच्च वेग वाले सफेद उत्तर की ओर प्रवाह पर ध्यान दें, जो समुद्र की वर्तमान ऊर्जा के निष्कर्षण के लिए पूरी तरह से सही है। महासागरीय वर्तमान ऊर्जा प्रौद्योगिकियों के अनुप्रयोग में रुचि रखने वाले और उनका अनुसरण करने वाले देशों में यूरोपीय संघ शामिल हैं, जापान, संयुक्त राज्य, और चीन। | ||
समुद्री ज्वारीय धाराओं से विद्युत उत्पादन की क्षमता बहुत अधिक है। ऐसे कई कारक हैं जो अन्य नवीनीकरणों की तुलना में समुद्री धाराओं से विद्युत उत्पादन को बहुत आकर्षक बनाते हैं: | समुद्री ज्वारीय धाराओं से विद्युत उत्पादन की क्षमता बहुत अधिक है। ऐसे कई कारक हैं जो अन्य नवीनीकरणों की तुलना में समुद्री धाराओं से विद्युत उत्पादन को बहुत आकर्षक बनाते हैं: | ||
* द्रव गुणों के परिणामस्वरूप उच्च भार कारक। संसाधन की पूर्वानुमेयता, ताकि, अधिकांश अन्य नवीनीकरण के विपरीत, ऊर्जा की भविष्य की उपलब्धता को जाना जा सके और उसके लिए योजना बनाई जा सके। | * द्रव गुणों के परिणामस्वरूप उच्च भार कारक। संसाधन की पूर्वानुमेयता, ताकि, अधिकांश अन्य नवीनीकरण के विपरीत, ऊर्जा की भविष्य की उपलब्धता को जाना जा सके और उसके लिए योजना बनाई जा सके। संभावित रूप से बड़े संसाधन जिनका कम पर्यावरणीय प्रभाव के साथ दोहन किया जा सकता है, जिससे बड़े पैमाने पर विद्युत उत्पादन के लिए कम से कम हानिकारक तरीकों में से एक की पेशकश की जाती है।<ref name="Fundamentals">{{cite journal|last=Bahaj|first=A.S.|author2=L.E. Myers|date=November 2003|title=Fundamentals applicable to the utilisation of marine current turbines for energy production|url=http://www.sciencedirect.com|format=Article|journal=Renewable Energy|volume=28|issue=14|pages=2205–2211|doi=10.1016/S0960-1481(03)00103-4|access-date=2011-04-12}}</ref> | ||
* मूल ग्रिड शक्ति प्रदान करने के लिए समुद्री-वर्तमान विद्युत प्रतिष्ठानों की व्यवहार्यता, खासकर पूरा करना अधिकतम-धारा अवधि के साथ दो या दो से अधिक अलग-अलग सरणियाँ आपस में जुड़ी हों। | * मूल ग्रिड शक्ति प्रदान करने के लिए समुद्री-वर्तमान विद्युत प्रतिष्ठानों की व्यवहार्यता, खासकर पूरा करना अधिकतम-धारा अवधि के साथ दो या दो से अधिक अलग-अलग सरणियाँ आपस में जुड़ी हों। | ||
=== समुद्री-वर्तमान-विद्युत उत्पादन के लिए प्रौद्योगिकियां === | === समुद्री-वर्तमान-विद्युत उत्पादन के लिए प्रौद्योगिकियां === | ||
[[File:Cable Tethered Turbine.png|thumb|समुद्री विद्युत उत्पादन के लिए उपयोग की जाने वाली पवन ऊर्जा से प्रेरित अक्षीय प्रवाह घूर्णी (rotary) चालक यंत्र का चित्रण]]कई प्रकार के खुले प्रवाह वाले उपकरण हैं जिनका उपयोग समुद्री-वर्तमान-शक्ति अनुप्रयोगों में किया जा सकता है; उनमें से कई जल चक्र या इसी तरह के आधुनिक वंशज हैं। हालांकि, अधिक तकनीकी रूप से परिष्कृत रूप, जो पवन-ऊर्जा घूर्णी से प्राप्त हुए हैं, बड़े पैमाने पर समुद्री-वर्तमान-ऊर्जा भविष्य के परिदृश्य में व्यावहारिक होने के लिए पर्याप्त लागत-प्रभावशीलता और विश्वसनीयता प्राप्त करने की सबसे अधिक संभावना है। भले ही इन खुली-घारा[[ हाइड्रो टर्बाइन | हाइड्रो घूर्णी चालक यंत्र]] के लिए आम तौर पर स्वीकृत शब्द नहीं है, कुछ स्रोत उन्हें जल-वर्तमान घूर्णी चालक यंत्र के रूप में संदर्भित करते हैं। दो मुख्य प्रकार के जल प्रवाह घूर्णी चालक यंत्र हैं जिन पर विचार किया जा सकता है: अक्षीय-प्रवाह क्षैतिज-अक्ष प्रोपेलर ([[ चर-पिच प्रोपेलर (समुद्री) ]]समुद्री) | चर-पिच या फिक्स्ड-पिच दोनों के साथ), और तिरछी-धारा[[ रियर रोटर | रियर घूर्णी]]। | [[File:Cable Tethered Turbine.png|thumb|समुद्री विद्युत उत्पादन के लिए उपयोग की जाने वाली पवन ऊर्जा से प्रेरित अक्षीय प्रवाह घूर्णी (rotary) चालक यंत्र का चित्रण]]कई प्रकार के खुले प्रवाह वाले उपकरण हैं जिनका उपयोग समुद्री-वर्तमान-शक्ति अनुप्रयोगों में किया जा सकता है; उनमें से कई जल चक्र या इसी तरह के आधुनिक वंशज हैं। हालांकि, अधिक तकनीकी रूप से परिष्कृत रूप, जो पवन-ऊर्जा घूर्णी से प्राप्त हुए हैं, बड़े पैमाने पर समुद्री-वर्तमान-ऊर्जा भविष्य के परिदृश्य में व्यावहारिक होने के लिए पर्याप्त लागत-प्रभावशीलता और विश्वसनीयता प्राप्त करने की सबसे अधिक संभावना है। भले ही इन खुली-घारा[[ हाइड्रो टर्बाइन | हाइड्रो घूर्णी चालक यंत्र]] के लिए आम तौर पर स्वीकृत शब्द नहीं है, कुछ स्रोत उन्हें जल-वर्तमान घूर्णी चालक यंत्र के रूप में संदर्भित करते हैं। दो मुख्य प्रकार के जल प्रवाह घूर्णी चालक यंत्र हैं जिन पर विचार किया जा सकता है: अक्षीय-प्रवाह क्षैतिज-अक्ष प्रोपेलर ([[ चर-पिच प्रोपेलर (समुद्री) ]]समुद्री) | चर-पिच या फिक्स्ड-पिच दोनों के साथ), और तिरछी-धारा[[ रियर रोटर | रियर घूर्णी]]। | ||
दोनों घूर्णी प्रकारों को जल-वर्तमान घूर्णी चालक यंत्रों का समर्थन करने के लिए तीन मुख्य विधियों में से किसी एक के साथ जोड़ा जा सकता है फ्लोटिंग मूरेतंत्रटम, सी-बेड माउंटेतंत्रटम औमध्यम तंत्रटम। सी-बेड-माउंटेड [[ monopile ]] संरचनाएं पहली पीढ़ी के समुद्री वर्तमान विद्युत प्रणालियों का निर्माण करती हैं। उनके पास मौजूदा (और विश्वसनीय[[ monopile |अभियांत्रिकी]]ग जानकारियों का उपयोग करने का लाभ है, लेकिन व[[ monopile |तुलनात्मक]] [[ monopile |रूप से कम]]ले पानी (लगभग 20 से 40 मीटर (66 से 131 फीट) गहराई)। | दोनों घूर्णी प्रकारों को जल-वर्तमान घूर्णी चालक यंत्रों का समर्थन करने के लिए तीन मुख्य विधियों में से किसी एक के साथ जोड़ा जा सकता है फ्लोटिंग मूरेतंत्रटम, सी-बेड माउंटेतंत्रटम औमध्यम तंत्रटम। सी-बेड-माउंटेड [[ monopile ]] संरचनाएं पहली पीढ़ी के समुद्री वर्तमान विद्युत प्रणालियों का निर्माण करती हैं। उनके पास मौजूदा (और विश्वसनीय[[ monopile |अभियांत्रिकी]]ग जानकारियों का उपयोग करने का लाभ है, लेकिन व[[ monopile |तुलनात्मक]] [[ monopile |रूप से कम]]ले पानी (लगभग 20 से 40 मीटर (66 से 131 फीट) गहराई)। | ||
=== इतिहास और आवेदन === | === इतिहास और आवेदन === | ||
1973 के पहले तेल संकट के बाद 1970 के दशक के मध्य में ऊर्जा संसाधन के रूप में समुद्री धाराओं के संभावित उपयोग ने ध्यान आकर्षित करना शुरू किया। 1974 में ऊर्जा पर मैकआर्थर कार्यशाला में कई वैचारिक रूप प्रस्तुत किए गए, और 1976 में व्यापक इलेक्ट्रिक उद्योग | ब्रिटिश जनरल इलेक्ट्रिक कंपनी ने आंशिक रूप से सरकार द्वारा वित्त पोषित अध्ययन किया, जिसने निष्कर्ष निकाला कि समुद्री वर्तमान शक्ति अधिक विस्तृत शोध के योग्य है। इसके तुरंत बाद, यूके में आईटीडी-ग्रुप ने [[ सफेद नील ]] पर [[ पहले से ही ]] में तैनात 3-एम हाइड्रोडार्रियस घूर्णी के प्रदर्शन परीक्षण के एक वर्ष से जुड़े एक शोध कार्यक्रम को लागू किया। | 1973 के पहले तेल संकट के बाद 1970 के दशक के मध्य में ऊर्जा संसाधन के रूप में समुद्री धाराओं के संभावित उपयोग ने ध्यान आकर्षित करना शुरू किया। 1974 में ऊर्जा पर मैकआर्थर कार्यशाला में कई वैचारिक रूप प्रस्तुत किए गए, और 1976 में व्यापक इलेक्ट्रिक उद्योग | ब्रिटिश जनरल इलेक्ट्रिक कंपनी ने आंशिक रूप से सरकार द्वारा वित्त पोषित अध्ययन किया, जिसने निष्कर्ष निकाला कि समुद्री वर्तमान शक्ति अधिक विस्तृत शोध के योग्य है। इसके तुरंत बाद, यूके में आईटीडी-ग्रुप ने [[ सफेद नील ]] पर [[ पहले से ही ]] में तैनात 3-एम हाइड्रोडार्रियस घूर्णी के प्रदर्शन परीक्षण के एक वर्ष से जुड़े एक शोध कार्यक्रम को लागू किया। | ||
1980 के दशक में समुद्री वर्तमान विद्युत प्रणालियों के मूल्यांकन के लिए कई छोटी शोध परियोजनाएं देखी गईं। जिन मुख्य देशों में अध्ययन किए गए वे यूके, कनाडा और जापान थे। 1992-1993 में टाइडल स्ट्रीम एनर्जी रिव्यू ने यूके के जल में 58 TWH/वर्ष तक उत्पन्न करने के लिए उपयुक्त वर्तमान गति वाले विशिष्ट स्थलों की पहचान की। इसने कुल समुद्री वर्तमान विद्युत संसाधन की पुष्टि की जो सैद्धांतिक रूप से ब्रिटेन की विद्युत की मांग के लगभग 19% को पूरा करने में सक्षम है। | |||
1994-1995 में EU-JOULE CENEX परियोजना ने 100 से अधिक यूरोपीय साइटों की पहचान की, जो 2 से 200 किमी2 के समुद्र-तल क्षेत्र में हैं, जिनमें से कई 10 मेगावाट/किमी2 से अधिक विद्युत घनत्व वाले हैं। यूके सरकार और यूरोपीय संघ दोनों ने ग्लोबल वार्मिंग से निपटने के लिए डिज़ाइन किए गए अंतरराष्ट्रीय स्तर पर बातचीत के समझौतों के लिए खुद को प्रतिबद्ध किया है। इस तरह के समझौतों का पालन करने के लिए नवीकरणीय संसाधनों से बड़े पैमाने पर विद्युत उत्पादन में वृद्धि की आवश्यकता होगी। समुद्री धाराओं में भविष्य में यूरोपीय संघ की विद्युत की ज़रूरतों के एक बड़े हिस्से की आपूर्ति करने की क्षमता है। [3] यूरोपीय संघ में ज्वारीय घूर्णी चालक यंत्रों के लिए 106 संभावित स्थलों के अध्ययन ने लगभग 50 TWH/वर्ष की विद्युत उत्पादन की कुल क्षमता दिखाई। यदि इस संसाधन का सफलतापूर्वक उपयोग किया जाना है, तो आवश्यक तकनीक 21वीं सदी के लिए स्वच्छ ऊर्जा का उत्पादन करने के लिए एक प्रमुख नए उद्योग का आधार बन सकती है। | |||
इन तकनीकों के समसामयिक अनुप्रयोग यहां देखे जा सकते हैं: टाइडल पावर स्टेशनों की सूची। चूँकि समुद्री धाराओं पर ज्वार-भाटा का प्रभाव बहुत अधिक होता है, और उनके प्रवाह के रूप काफी विश्वसनीय होते हैं, इसलिए कई महासागरीय वर्तमान ऊर्जा निष्कर्षण संयंत्रों को उच्च ज्वारीय प्रवाह दर वाले क्षेत्रों में रखा जाता है। | |||
स्वीडन में उप्साला विश्वविद्यालय में, अन्य बातों के साथ-साथ, समुद्री धारा शक्ति पर अनुसंधान किया जाता है, जहां एक स्ट्रेट-क्षुरपत्रित डैरियस प्रकार के घूर्णी चालक यंत्र के साथ एक परीक्षण इकाई का निर्माण किया गया है और स्वीडन में डल नदी में रखा गया है। | |||
=== पर्यावरणीय प्रभाव === | === पर्यावरणीय प्रभाव === | ||
दुनिया भर के कई क्षेत्रों में [[ जलवायु | जलवायु]] का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की वर्तमान [[ ऊर्जा | ऊर्जा]] को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, फ़ारफ़ील्ड पर्यावरण पर वर्तमान ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट [[ टर्बाइन | घूर्णी चालक यंत्र]] मुद्दे अभी भी मौजूद हैं; हालाँकि, [[ पशु प्रवास | पशु प्रवास]] | दुनिया भर के कई क्षेत्रों में [[ जलवायु | जलवायु]] का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की वर्तमान [[ ऊर्जा | ऊर्जा]] को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, फ़ारफ़ील्ड पर्यावरण पर वर्तमान ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट [[ टर्बाइन | घूर्णी चालक यंत्र]] मुद्दे अभी भी मौजूद हैं; हालाँकि, [[ पशु प्रवास | पशु प्रवास]] उद्देश्यों के लिए समुद्री धाराओं का उपयोग करने वाले समुद्री जीवों की अधिक विविध आबादी की उपस्थिति के कारण इन्हें बढ़ाया जा सकता है। स्थान आगे अपतटीय हो सकते हैं और इसलिए लंबे समय तक विद्युत के तारों की आवश्यकता होती है जो विद्युत चुम्बकीय उत्पादन के साथ समुद्री पर्यावरण को प्रभावित कर सकते हैं। [[ टेथिस (डेटाबेस) |टेथिस (डेटाबेस)]] समुद्र की वर्तमान ऊर्जा के संभावित पर्यावरणीय प्रभावों पर वैज्ञानिक साहित्य और सामान्य जानकारी तक पहुंच प्रदान करता है। | ||
Line 35: | Line 41: | ||
{{Ocean energy}} | {{Ocean energy}} | ||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 20/01/2023]] | [[Category:Created On 20/01/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:समुद्री ऊर्जा]] | |||
[[Category:सागर की लहरें]] |
Latest revision as of 20:11, 31 January 2023
महासागर धारा बड़ी मात्रा में पानी ले जा सकती है, जो मुख्य रूप से ज्वार द्वारा संचालित होती है, जो पृथ्वी, चंद्रमा और सूर्य की ग्रहों की गति के गुरुत्वाकर्षण प्रभाव का परिणाम है। संवर्धित प्रवाह वेग पाया जा सकता है जहां द्वीपों और मुख्य भूमि के बीच जलडमरूमध्य में पानी के नीचे की स्थलाकृति या हेडलैंड्स के आसपास उथले में प्रवाह वेग को बढ़ाने में एक प्रमुख भूमिका निभाता है, जिसके परिणामस्वरूप प्रशंसनीय गतिज ऊर्जा होती है। सूर्य प्राथमिक प्रेरक शक्ति के रूप में कार्य करता है, जिससे हवाओ और तापमान में अंतर होता है। क्योंकि दिशा में न्यूनतम परिवर्तन के साथ वर्तमान गति और धारा के स्थान में केवल छोटे उतार-चढ़ाव होते हैं, घूर्णी चालक यंत्र जैसे ऊर्जा निष्कर्षण उपकरणों को तैनात करने के लिए समुद्री धाराएं उपयुक्त स्थान हो सकती हैं। अन्य प्रभाव जैसे तापमान और लवणता में क्षेत्रीय अंतर और पृथ्वी के घूमने के कारण कोरिओलिस प्रभाव भी प्रमुख प्रभाव हैं। समुद्री धाराओं की गतिज ऊर्जा को उसी तरह से परिवर्तित किया जा सकता है जिस तरह एक पवन घूर्णी (rotary) चालक यंत्र विभिन्न प्रकार के खुले प्रवाह वाले घूर्णी का उपयोग करके हवा से ऊर्जा निकालता है।
ऊर्जा क्षमता
15 kW/m2 तक की विद्युत घनत्व के साथ, महासागर धाराओं में कुल विश्वव्यापी विद्युत लगभग 5,000 GW होने का अनुमान लगाया गया है। फ़्लोरिडा जलडमरूमध्य की सतह के पास अपेक्षाकृत स्थिर निकालने योग्य ऊर्जा घनत्व प्रवाह क्षेत्र का लगभग 1 kW/m2 है। यह अनुमान लगाया गया है कि गल्फ स्ट्रीम से उपलब्ध ऊर्जा का केवल 1/1,000वाँ हिस्सा प्राप्त करना, जिसमें पानी के प्रवाह में नियाग्रा जल प्रपात की तुलना में 21,000 गुना अधिक ऊर्जा है, जो दुनिया की सभी मीठे पानी की नदियों के कुल प्रवाह का 50 गुना है, आपूर्ति करेगा फ्लोरिडा अपनी 35% विद्युत जरूरतों के साथ। दाईं ओर की छवि तट के साथ प्रवाह के उच्च घनत्व को दर्शाती है, उच्च वेग वाले सफेद उत्तर की ओर प्रवाह पर ध्यान दें, जो समुद्र की वर्तमान ऊर्जा के निष्कर्षण के लिए पूरी तरह से सही है। महासागरीय वर्तमान ऊर्जा प्रौद्योगिकियों के अनुप्रयोग में रुचि रखने वाले और उनका अनुसरण करने वाले देशों में यूरोपीय संघ शामिल हैं, जापान, संयुक्त राज्य, और चीन।
समुद्री ज्वारीय धाराओं से विद्युत उत्पादन की क्षमता बहुत अधिक है। ऐसे कई कारक हैं जो अन्य नवीनीकरणों की तुलना में समुद्री धाराओं से विद्युत उत्पादन को बहुत आकर्षक बनाते हैं:
- द्रव गुणों के परिणामस्वरूप उच्च भार कारक। संसाधन की पूर्वानुमेयता, ताकि, अधिकांश अन्य नवीनीकरण के विपरीत, ऊर्जा की भविष्य की उपलब्धता को जाना जा सके और उसके लिए योजना बनाई जा सके। संभावित रूप से बड़े संसाधन जिनका कम पर्यावरणीय प्रभाव के साथ दोहन किया जा सकता है, जिससे बड़े पैमाने पर विद्युत उत्पादन के लिए कम से कम हानिकारक तरीकों में से एक की पेशकश की जाती है।[1]
- मूल ग्रिड शक्ति प्रदान करने के लिए समुद्री-वर्तमान विद्युत प्रतिष्ठानों की व्यवहार्यता, खासकर पूरा करना अधिकतम-धारा अवधि के साथ दो या दो से अधिक अलग-अलग सरणियाँ आपस में जुड़ी हों।
समुद्री-वर्तमान-विद्युत उत्पादन के लिए प्रौद्योगिकियां
कई प्रकार के खुले प्रवाह वाले उपकरण हैं जिनका उपयोग समुद्री-वर्तमान-शक्ति अनुप्रयोगों में किया जा सकता है; उनमें से कई जल चक्र या इसी तरह के आधुनिक वंशज हैं। हालांकि, अधिक तकनीकी रूप से परिष्कृत रूप, जो पवन-ऊर्जा घूर्णी से प्राप्त हुए हैं, बड़े पैमाने पर समुद्री-वर्तमान-ऊर्जा भविष्य के परिदृश्य में व्यावहारिक होने के लिए पर्याप्त लागत-प्रभावशीलता और विश्वसनीयता प्राप्त करने की सबसे अधिक संभावना है। भले ही इन खुली-घारा हाइड्रो घूर्णी चालक यंत्र के लिए आम तौर पर स्वीकृत शब्द नहीं है, कुछ स्रोत उन्हें जल-वर्तमान घूर्णी चालक यंत्र के रूप में संदर्भित करते हैं। दो मुख्य प्रकार के जल प्रवाह घूर्णी चालक यंत्र हैं जिन पर विचार किया जा सकता है: अक्षीय-प्रवाह क्षैतिज-अक्ष प्रोपेलर (चर-पिच प्रोपेलर (समुद्री) समुद्री) | चर-पिच या फिक्स्ड-पिच दोनों के साथ), और तिरछी-धारा रियर घूर्णी।
दोनों घूर्णी प्रकारों को जल-वर्तमान घूर्णी चालक यंत्रों का समर्थन करने के लिए तीन मुख्य विधियों में से किसी एक के साथ जोड़ा जा सकता है फ्लोटिंग मूरेतंत्रटम, सी-बेड माउंटेतंत्रटम औमध्यम तंत्रटम। सी-बेड-माउंटेड monopile संरचनाएं पहली पीढ़ी के समुद्री वर्तमान विद्युत प्रणालियों का निर्माण करती हैं। उनके पास मौजूदा (और विश्वसनीयअभियांत्रिकीग जानकारियों का उपयोग करने का लाभ है, लेकिन वतुलनात्मक रूप से कमले पानी (लगभग 20 से 40 मीटर (66 से 131 फीट) गहराई)।
इतिहास और आवेदन
1973 के पहले तेल संकट के बाद 1970 के दशक के मध्य में ऊर्जा संसाधन के रूप में समुद्री धाराओं के संभावित उपयोग ने ध्यान आकर्षित करना शुरू किया। 1974 में ऊर्जा पर मैकआर्थर कार्यशाला में कई वैचारिक रूप प्रस्तुत किए गए, और 1976 में व्यापक इलेक्ट्रिक उद्योग | ब्रिटिश जनरल इलेक्ट्रिक कंपनी ने आंशिक रूप से सरकार द्वारा वित्त पोषित अध्ययन किया, जिसने निष्कर्ष निकाला कि समुद्री वर्तमान शक्ति अधिक विस्तृत शोध के योग्य है। इसके तुरंत बाद, यूके में आईटीडी-ग्रुप ने सफेद नील पर पहले से ही में तैनात 3-एम हाइड्रोडार्रियस घूर्णी के प्रदर्शन परीक्षण के एक वर्ष से जुड़े एक शोध कार्यक्रम को लागू किया।
1980 के दशक में समुद्री वर्तमान विद्युत प्रणालियों के मूल्यांकन के लिए कई छोटी शोध परियोजनाएं देखी गईं। जिन मुख्य देशों में अध्ययन किए गए वे यूके, कनाडा और जापान थे। 1992-1993 में टाइडल स्ट्रीम एनर्जी रिव्यू ने यूके के जल में 58 TWH/वर्ष तक उत्पन्न करने के लिए उपयुक्त वर्तमान गति वाले विशिष्ट स्थलों की पहचान की। इसने कुल समुद्री वर्तमान विद्युत संसाधन की पुष्टि की जो सैद्धांतिक रूप से ब्रिटेन की विद्युत की मांग के लगभग 19% को पूरा करने में सक्षम है।
1994-1995 में EU-JOULE CENEX परियोजना ने 100 से अधिक यूरोपीय साइटों की पहचान की, जो 2 से 200 किमी2 के समुद्र-तल क्षेत्र में हैं, जिनमें से कई 10 मेगावाट/किमी2 से अधिक विद्युत घनत्व वाले हैं। यूके सरकार और यूरोपीय संघ दोनों ने ग्लोबल वार्मिंग से निपटने के लिए डिज़ाइन किए गए अंतरराष्ट्रीय स्तर पर बातचीत के समझौतों के लिए खुद को प्रतिबद्ध किया है। इस तरह के समझौतों का पालन करने के लिए नवीकरणीय संसाधनों से बड़े पैमाने पर विद्युत उत्पादन में वृद्धि की आवश्यकता होगी। समुद्री धाराओं में भविष्य में यूरोपीय संघ की विद्युत की ज़रूरतों के एक बड़े हिस्से की आपूर्ति करने की क्षमता है। [3] यूरोपीय संघ में ज्वारीय घूर्णी चालक यंत्रों के लिए 106 संभावित स्थलों के अध्ययन ने लगभग 50 TWH/वर्ष की विद्युत उत्पादन की कुल क्षमता दिखाई। यदि इस संसाधन का सफलतापूर्वक उपयोग किया जाना है, तो आवश्यक तकनीक 21वीं सदी के लिए स्वच्छ ऊर्जा का उत्पादन करने के लिए एक प्रमुख नए उद्योग का आधार बन सकती है।
इन तकनीकों के समसामयिक अनुप्रयोग यहां देखे जा सकते हैं: टाइडल पावर स्टेशनों की सूची। चूँकि समुद्री धाराओं पर ज्वार-भाटा का प्रभाव बहुत अधिक होता है, और उनके प्रवाह के रूप काफी विश्वसनीय होते हैं, इसलिए कई महासागरीय वर्तमान ऊर्जा निष्कर्षण संयंत्रों को उच्च ज्वारीय प्रवाह दर वाले क्षेत्रों में रखा जाता है।
स्वीडन में उप्साला विश्वविद्यालय में, अन्य बातों के साथ-साथ, समुद्री धारा शक्ति पर अनुसंधान किया जाता है, जहां एक स्ट्रेट-क्षुरपत्रित डैरियस प्रकार के घूर्णी चालक यंत्र के साथ एक परीक्षण इकाई का निर्माण किया गया है और स्वीडन में डल नदी में रखा गया है।
पर्यावरणीय प्रभाव
दुनिया भर के कई क्षेत्रों में जलवायु का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की वर्तमान ऊर्जा को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, फ़ारफ़ील्ड पर्यावरण पर वर्तमान ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट घूर्णी चालक यंत्र मुद्दे अभी भी मौजूद हैं; हालाँकि, पशु प्रवास उद्देश्यों के लिए समुद्री धाराओं का उपयोग करने वाले समुद्री जीवों की अधिक विविध आबादी की उपस्थिति के कारण इन्हें बढ़ाया जा सकता है। स्थान आगे अपतटीय हो सकते हैं और इसलिए लंबे समय तक विद्युत के तारों की आवश्यकता होती है जो विद्युत चुम्बकीय उत्पादन के साथ समुद्री पर्यावरण को प्रभावित कर सकते हैं। टेथिस (डेटाबेस) समुद्र की वर्तमान ऊर्जा के संभावित पर्यावरणीय प्रभावों पर वैज्ञानिक साहित्य और सामान्य जानकारी तक पहुंच प्रदान करता है।
यह भी देखें
संदर्भ
- ↑ Bahaj, A.S.; L.E. Myers (November 2003). "Fundamentals applicable to the utilisation of marine current turbines for energy production" (Article). Renewable Energy. 28 (14): 2205–2211. doi:10.1016/S0960-1481(03)00103-4. Retrieved 2011-04-12.