उड़ान गतिकी: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 37: | Line 37: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | [[Category:Articles with unsourced statements from February 2022]] | ||
[[Category:Created On 23/01/2023]] | [[Category:Created On 23/01/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अंतरिक्ष इंजीनियरिंग]] | |||
[[Category:अंतरिक्ष यान अवधारणाएं]] | |||
[[Category:वायुगतिकी]] |
Latest revision as of 19:45, 31 January 2023
विमानन और अंतरिक्ष यान में उड़ान की गतिशीलता, हवा के माध्यम से या बाहरी अंतरिक्ष में वाहनों की उड़ान के प्रदर्शन, स्थिरता और नियंत्रण का अध्ययन है।[1] यह इस बात से चिंतित है कि वाहन पर काम करने वाली ताकतें समय के संबंध में अपने वेग और दृष्टिकोण को कैसे निर्धारित करती हैं।
एक निश्चित-विंग विमान के लिए, स्थानीय वायु प्रवाह के संबंध में इसके बदलते अभिविन्यास (ज्यामिति) को दो महत्वपूर्ण कोणों, विंग के हमले (अल्फा) और ऊर्ध्वाधर पूंछ के हमले के कोण को साइडस्लिप कोण ("बीटा") के रूप में जाना जाता है। यदि विमान अपने गुरुत्वाकर्षण के केंद्र के बारे में कहता है और यदि विमान शारीरिक रूप से साइड्सलिप करता है, तो एक साइडस्लिप कोण उठेगा, अर्थात् गुरुत्वाकर्षण का केंद्र बग़ल में चलता है।[2] ये कोण महत्वपूर्ण हैं क्योंकि वे वायुगतिकीय बलों में परिवर्तन का प्रमुख स्रोत हैं और विमान पर प्रयुक्त क्षण हैं।
अंतरिक्ष यान उड़ान की गतिशीलता में तीन मुख्य बल सम्मिलित हैं: प्रोपल्सिव (रॉकेट इंजन), गुरुत्वाकर्षण और वायुमंडलीय प्रतिरोध।[3] प्रोपल्सिव फोर्स और वायुमंडलीय प्रतिरोध का गुरुत्वाकर्षण बलों की तुलना में किसी दिए गए अंतरिक्ष यान पर अधिक कम प्रभाव पड़ता है।
विमान
उड़ान की गतिशीलता तीन आयामों में वायु-वाहन अभिविन्यास और नियंत्रण का विज्ञान है। महत्वपूर्ण उड़ान की गतिशीलता पैरामीटर तीन विमान प्रिंसिपल अक्षों के संबंध में रोटेशन के कोण हैं। इसके केंद्र के बारे में विमान के प्रमुख अक्षों को रोल, पिच और यव के रूप में जाना जाता है।
विमान इंजीनियर अपने द्रव्यमान के केंद्र के बारे में वाहन के अभिविन्यास (विमान के रवैये) के लिए नियंत्रण प्रणाली विकसित करते हैं। नियंत्रण प्रणालियों में एक्ट्यूएटर्स सम्मिलित हैं, जो विभिन्न दिशाओं में बलों को बढ़ाते हैं, और विमान के गुरुत्वाकर्षण के केंद्र के बारे में घूर्णी बलों या क्षण (भौतिकी) उत्पन्न करते हैं, और इस प्रकार विमान को पिच, रोल या यव में घुमाते हैं। उदाहरण के लिए, एक पिचिंग क्षण विमान के गुरुत्वाकर्षण के केंद्र से आगे या पीछे की दूरी पर प्रयुक्त एक ऊर्ध्वाधर बल है, जिससे विमान ऊपर या नीचे पिच करता है।
रोल, पिच और यॉ इस संदर्भ में, परिभाषित संतुलन स्थिति से प्रारंभ होने वाली संबंधित अक्षों के बारे में घूर्णन के लिए संदर्भित करता है। समतोल रोल कोण को पंखों के स्तर या शून्य बैंक कोण के रूप में जाना जाता है, जो जहाज पर एक स्तर के झुकाव कोण के बराबर होता है। यॉ को "शीर्षक" के रूप में जाना जाता है।
एक निश्चित-विंग विमान पंखों द्वारा उत्पन्न लिफ्ट को बढ़ाता है या घटाता है जब यह हमले के कोण (एओए) को बढ़ाकर या कम करके नाक को ऊपर या नीचे पिच करता है। रोल कोण को एक निश्चित-विंग विमान पर बैंक कोण के रूप में भी जाना जाता है, जो सामान्यतः उड़ान की क्षैतिज दिशा को बदलने के लिए बैंकों को जाता है। ड्रैग (भौतिकी) को कम करने के लिए एक विमान को नाक से पूंछ तक सुव्यवस्थित किया जाता है, जिससे यह शून्य के पास साइड्सलिप कोण को रखने के लिए लाभदायक होता है, चूंकि क्रॉस-विंड में उतरते समय विमान जानबूझकर साइड-स्लिप होते हैं, जैसा कि स्लिप (एरोडायनामिक्स) में बताया गया है।
अंतरिक्ष यान और उपग्रह
अंतरिक्ष वाहनों पर काम करने वाली ताकतें तीन प्रकार की होती हैं: अंतरिक्ष यान प्रणोदन बल (सामान्यतः वाहन के इंजन थ्रस्ट द्वारा प्रदान किया जाता है); पृथ्वी और अन्य खगोलीय निकायों द्वारा गुरुत्वाकर्षण बल;और वायुगतिकीय बल (जब पृथ्वी या किसी अन्य पिंड के वायुमंडल में उड़ान भरते हैं, जैसे कि मंगल या शुक्र)।वायुगतिकीय और प्रणोदन बलों पर इसके प्रभाव के कारण वाहन के रवैये को संचालित वायुमंडलीय उड़ान के समय नियंत्रित किया जाना चाहिए।[3] गैर-संचालित उड़ान (जैसे, थर्मल नियंत्रण, सौर ऊर्जा उत्पादन, संचार, या खगोलीय अवलोकन) में वाहन के रवैये को नियंत्रित करने के लिए, उड़ान की गतिशीलता से असंबंधित अन्य कारण हैं।
अंतरिक्ष यान की उड़ान की गतिशीलता उन विमानों से भिन्न होती है, जिनमें वायुगतिकीय बल वाहन की अधिकांश उड़ान के लिए बहुत छोटे, या गायब हो जाते हैं, और उस समय के समय दृष्टिकोण नियंत्रण के लिए उपयोग नहीं किया जा सकता है। इसके अतिरिक्त, अधिकांश अंतरिक्ष यान की उड़ान का समय सामान्यतः अस्वाभाविक होता है, जो गुरुत्वाकर्षण को प्रमुख बल के रूप में छोड़ देता है।
यह भी देखें
- वायुगतिकी – Branch of dynamics concerned with studying the motion of air
- विमान उड़ान नियंत्रण प्रणाली
- फिक्स्ड-विंग विमान
- उड़ान नियंत्रण सतहों
- उड़ान की गतिशीलता (फिक्स्ड-विंग विमान)
- मूविंग फ्रेम – Generalization of an ordered basis of a vector space
संदर्भ
- ↑ Stengel, Robert F. (2010), Aircraft Flight Dynamics (MAE 331) course summary, retrieved November 16, 2011
- ↑ Flightwise - Volume 2 - Aircraft Stability And Control, Chris Carpenter 1997, Airlife Publishing Ltd., ISBN 1 85310 870 7, p.145
- ↑ 3.0 3.1 Depending on the vehicle's mass distribution, the effects of gravitational force may also be affected by attitude (and vice versa),[citation needed] but to a much lesser extent.