प्रोजेक्टिव मॉड्यूल: Difference between revisions
No edit summary |
No edit summary |
||
(26 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Direct summand of a free module (mathematics)}} | {{Short description|Direct summand of a free module (mathematics)}} | ||
गणित में, विशेष रूप से [[ बीजगणित |बीजगणित]] में, प्रक्षेपी मापांक का वर्ग (समूह सिद्धांत) मुक्त मापांक के कुछ मुख्य गुणों | गणित में, विशेष रूप से [[ बीजगणित |बीजगणित]] में, प्रक्षेपी मापांक का वर्ग (समूह सिद्धांत) मुक्त मापांक के कुछ मुख्य गुणों का अध्यन करते हुए, वलय (गणित) के साथ मुक्त मापांक (अर्थात,[[ मॉड्यूल (गणित) | मापांक]] के आधार पर) के वर्ग को बढ़ाता है। इन मापांक के विभिन्न समकक्ष लक्षण नीचे प्रदर्शित हैं। | ||
प्रत्येक मुक्त मापांक प्रक्षेपी मापांक है, लेकिन | प्रत्येक मुक्त मापांक प्रक्षेपी मापांक है, लेकिन संवाद के आधार पर कुछ वलयों को धारण करने में विफल है, जैसे कि डेडेकिंड वलय जो प्रमुख आदर्श डोमेन नहीं हैं। चूंकि, प्रत्येक प्रक्षेपी मापांक मुक्त मापांक है यदि वलय प्रमुख आदर्श डोमेन है जैसे कि [[ पूर्णांक |पूर्णांक]], या बहुपद वलय (यह क्विलन -सुस्लिन प्रमेय है)। | ||
प्रक्षेपी मापांक को | प्रक्षेपी मापांक को प्रथम बार 1956 में हेनरी कार्टन और सैमुअल एलेनबर्ग द्वारा प्रभावशाली पुस्तक 'समरूप बीजगणित' 'में प्रस्तुत किया गया था। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
=== | === '''उद्यत''' संपत्ति === | ||
सामान्य श्रेणी | सामान्य श्रेणी की सैद्धांतिक परिभाषा उद्यत की संपत्ति के संदर्भ में है जो मुक्त से प्रक्षेप्य मापांक तक ले जाती है: मापांक P प्रक्षेपी है यदि केवल प्रत्येक विशेषण मापांक समरूपता के लिए {{nowrap|''f'' : ''N'' ↠ ''M''}} और प्रत्येक मापांक समरूपता {{nowrap|''g'' : ''P'' → ''M''}}, मापांक समरूपता {{nowrap|''h'' : ''P'' → ''N''}} उपस्थित है जैसे कि {{nowrap|1=''f'' ''h'' = ''g''}} (हमें उद्यत समरूपता H की आवश्यकता नहीं है; यह सार्वभौमिक संपत्ति नहीं है।) | ||
:[[Image:Projective-module-P.svg|120px]]प्रक्षेपी की इस परिभाषा का लाभ यह है कि इसे मापांक श्रेणियों की तुलना में अधिक सामान्य [[ श्रेणी (गणित) |श्रेणी (गणित)]] में किया जा सकता है: हमें मुक्त वस्तु की धारणा की आवश्यकता नहीं | :[[Image:Projective-module-P.svg|120px]] | ||
:प्रक्षेपी की इस परिभाषा का लाभ यह है कि इसे मापांक श्रेणियों की तुलना में अधिक सामान्य [[ श्रेणी (गणित) |श्रेणी (गणित)]] में किया जा सकता है: हमें मुक्त वस्तु की धारणा की आवश्यकता नहीं है। यह उभय (श्रेणी सिद्धांत) भी हो सकता है, जिससे [[ इंजेक्टिव मॉड्यूल |एकत्र मापांक]] हो सकते हैं। भारोत्तोलन संपत्ति को प्रत्येक रूपवाद के रूप में भी उभय किया जा सकता है <math>P</math> से <math>M</math> कारक प्रत्येक एपिमोर्फिज्म के माध्यम से कारक <math>M</math> को इस प्रकार, परिभाषा के अनुसार, प्रक्षेपी मापांक R-मापांक की श्रेणी में [[ प्रक्षेप्य वस्तु |प्रक्षेप्य वस्तुएं]] हैं। | |||
=== विभाजित-त्रुटिहीन अनुक्रम === | === विभाजित-त्रुटिहीन अनुक्रम === | ||
मापांक P प्रक्षेपी है यदि केवल मापांक प्रपत्र के प्रत्येक छोटे त्रुटिहीन अनुक्रम: | |||
:<math>0\rightarrow A\rightarrow B\rightarrow P\rightarrow 0</math> | :<math>0\rightarrow A\rightarrow B\rightarrow P\rightarrow 0</math> | ||
विभाजित त्रुटिहीन अनुक्रम है। अर्थात, प्रत्येक विशेषण मापांक समरूपता के लिए {{nowrap|''f'' : ''B'' ↠ ''P''}} खंड मानचित्र उपस्थित है, अर्थात, मापांक समरूपतावाद {{nowrap|''h'' : ''P'' → ''B''}} ऐसा है कि fh = id<sub>''P''</sub>; समान रूप से, उस स्थिति में, {{nowrap|''h''(''P'')}} B का प्रत्यक्ष योग है, h, P से h(P) तक[[ समाकृतिकता | समरूपता]] है और {{nowrap|''h'' ''f''}} सारांश {{nowrap|''h''(''P'')}}, पर [[ प्रक्षेपण (रैखिक बीजगणित) |प्रक्षेपण]] है। | |||
:<math>B = \operatorname{Im}(h) \oplus \operatorname{Ker}(f) \ \ | :<math>B = \operatorname{Im}(h) \oplus \operatorname{Ker}(f) \ \ | ||
Line 27: | Line 28: | ||
=== मुक्त मापांक के प्रत्यक्ष सारांश === | === मुक्त मापांक के प्रत्यक्ष सारांश === | ||
मापांक P प्रक्षेपी है यदि केवल कोई अन्य मापांक Q है जैसे कि P और Q का [[ मॉड्यूल का प्रत्यक्ष योग |प्रत्यक्ष योग]] मुक्त मापांक है। | |||
=== | === शुद्धता === | ||
R-मापांक P प्रक्षेपी है यदि केवल सह-संयोजक [[ फंक्टर |कारक]] {{nowrap|Hom(''P'', -): ''R''-'''Mod''' → '''Ab'''}} [[ सटीक फंक्टर | त्रुटिहीन]] [[ फंक्टर |कारक]] है, जहां {{nowrap|''R''-'''Mod'''}} बाएं R-मापांक की श्रेणी है और 'Ab' [[ एबेलियन समूहों की श्रेणी |एबेलियन समूहों की श्रेणी]] है। जब वलय R [[ कम्यूटेटिव रिंग |विनिमेय वलय]] है, तो 'Ab' को पूर्ववर्ती लक्षण वर्णन में {{nowrap|''R''-'''Mod'''}} द्वारा लाभप्रद रूप से परिवर्तित कर दिया जाता है। यह कारक सदैव त्रुटिहीन ही विभक्त कर दिया जाता है, लेकिन, जब P प्रक्षेपी होता है, तो यह सही त्रुटिहीन भी होता है। इसका अर्थ यह है कि P प्रक्षेपी है यदि केवल यह कारक [[ उपदेशता |एपिमोर्फिज्म]] (विशेषण समरूपता) को संरक्षित करता है, या यदि परिमित[[ कोलिमिट | कोलिमिट्स]] को संरक्षित करता है। | |||
=== | === उभय आधार === | ||
मापांक P प्रक्षेपी है यदि कोई समुच्चय उपस्थित है <math>\{a_i \in P \mid i \in I\}</math> और <math>\{f_i\in \mathrm{Hom}(P,R) \mid i\in I\}</math> में प्रत्येक x के लिए fi (x) अत्यधिक i के लिए केवल अशून्य है, और | |||
<math>x=\sum f_i(x)a_i</math>। | |||
== प्राथमिक उदाहरण और गुण == | == प्राथमिक उदाहरण और गुण == | ||
प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी | प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी शीघ्रता से घटाया जाता है: | ||
* प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी हैं। | * प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी होते हैं। | ||
* यदि {{nowrap|1=''e'' = ''e''<sup>2</sup>}} वलय | * यदि {{nowrap|1=''e'' = ''e''<sup>2</sup>}} वलय R में वर्गसम (वलय सिद्धांत) है, तब R, R पर प्रक्षेपी बाएं मापांक है। | ||
== अन्य मापांक-सिद्धांत गुणों से संबंध == | == अन्य मापांक-सिद्धांत गुणों से संबंध == | ||
मुक्त और[[ फ्लैट मॉड्यूल | समतल मापांक]] के लिए प्रक्षेपी मापांक का संबंध | मुक्त और[[ फ्लैट मॉड्यूल | समतल मापांक]] के लिए प्रक्षेपी मापांक का संबंध गुणों के निम्नलिखित आरेख में प्रस्तुत किया गया है: | ||
[[Image:Module properties in commutative algebra.svg|कम्यूटेटिव बीजगणित में मॉड्यूल गुण]] | |||
बाएं-से-दाएं निहितार्थ किसी भी वलय पर सही हैं, चूंकि कुछ लेखक केवल [[ डोमेन (रिंग सिद्धांत) |डोमेन (वलय सिद्धांत)]] पर घुमाव-मुक्त मापांक को परिभाषित करते हैं। दाएं-से-बाएं निहितार्थ भी सही हैं। ऐसे और भी वलय हो सकते हैं जिन पर वे सत्य हों। उदाहरण के लिए, स्थानीय वलय या पीआईडी लेबल किए गए निहितार्थ [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] पर बहुपद वलयों के लिए भी सही है: यह क्विलन -सुस्लिन प्रमेय है। | |||
=== प्रक्षेपी विरुद्ध मुक्त मापांक === | === प्रक्षेपी विरुद्ध मुक्त मापांक === | ||
कोई भी मुक्त मापांक प्रक्षेपी | कोई भी मुक्त मापांक प्रक्षेपी है। निम्नलिखित स्थितियों में यह विपरीत सत्य है: | ||
* यदि | * यदि R क्षेत्र,[[ तिरछा क्षेत्र | तिरछा क्षेत्र]] है: इस स्थिति में कोई भी मापांक मुक्त होता है। | ||
* यदि वलय | * यदि वलय R प्रमुख आदर्श प्रांत है। उदाहरण के लिए, यह {{nowrap|1=''R'' = '''Z'''}} (पूर्णांक), पर लागू होता है, इसलिए एबेलियन समूह अनुमानित है यदि केवल यह [[ मुक्त एबेलियन समूह |मुक्त एबेलियन समूह]] है। इसका कारण यह है कि प्रमुख आदर्श डोमेन पर मापांक का कोई भी[[ सबल | उप- मापांक]] मुक्त है। | ||
* यदि | * यदि R स्थानीय वलय है। यह तथ्य स्थानीय रूप से मुक्त = प्रक्षेप्य के अंतर्ज्ञान का आधार है। यह तथ्य सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक के लिए सिद्ध करना [[ गणितीय प्रमाण |गणितीय प्रमाण]] के लिए सरल है। सामान्यतः, यह {{harvtxt|कपलान्स्की|1958}} होने के कारण है; प्रक्षेपी मापांक पर कप्लांस्की के प्रमेय को देखें। | ||
सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है: | सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है: | ||
* | * वलय के प्रत्यक्ष उत्पाद पर {{nowrap|''R'' × ''S''}} जहां R और S शून्य वलय हैं, दोनों {{nowrap|''R'' × 0}} और {{nowrap|0 × ''S''}} गैर-मुक्त प्रक्षेपी मापांक हैं। | ||
* [[ डेडेकिंड डोमेन |डेडेकिंड डोमेन]] पर | * [[ डेडेकिंड डोमेन |डेडेकिंड डोमेन]] पर अप्रमुख आदर्श (वलय सिद्धांत) प्रायः प्रक्षेपी मापांक होता है जो मुक्त मापांक नहीं होता है। | ||
* | * [[ मैट्रिक्स रिंग |आव्यूह]] [[ डेडेकिंड रिंग |वलय]] M<sub>''n''</sub>(''R'') पर, प्राकृतिक मापांक ''R''<sup> ''n''</sup> प्रक्षेपी है लेकिन मुक्त नहीं है।{{dubious|reason=Needs qualification, e.g., 'for n>1': n=1 is a clear counterexample.|date=May 2022}} सामान्यतः, किसी भी [[ सेमीसिम्पल रिंग |अर्ध-सरल]] [[ डेडेकिंड रिंग |वलय]] पर, प्रत्येक मापांक प्रक्षेपी होता है, लेकिन[[ शून्य आदर्श ]]और वलय एकमात्र मुक्त आदर्श हैं। | ||
मुक्त और | मुक्त और प्रक्षेपी मापांक के मध्य का अंतर, बीजगणितीय K-सिद्धांत द्वारा मापा जाता है। नीचे देखें। | ||
=== प्रक्षेपी विरुद्ध समतल मापांक === | === प्रक्षेपी विरुद्ध समतल मापांक === | ||
प्रत्येक प्रक्षेपी | प्रत्येक प्रक्षेपी C समतल मापांक है।<ref>{{cite book|author=Hazewinkel |display-authors=etal |title=Algebras, Rings and Modules, Part 1|year=2004|contribution=Corollary 5.4.5|url={{Google books|plainurl=y|id=AibpdVNkFDYC|page=131|text=Every projective module is flat}}|page=131}}</ref> यह सामान्य रूप से सत्य नहीं है: एबेलियन समूह Q, Z-मापांक है जो समतल है, लेकिन अनुमानित नहीं है।<ref>{{cite book|author=Hazewinkel |display-authors=etal |year=2004|contribution=Remark after Corollary 5.4.5|title=Algebras, Rings and Modules, Part 1|url={{Google books|plainurl=y|id=AibpdVNkFDYC|page=132|text=Q is flat but it is not projective}}|pages=131–132}}</ref> | ||
इसके विपरीत, | |||
इसके विपरीत, सूक्ष्म रूप से संबंधित समतल प्रक्षेपी है।<ref>{{harvnb|Cohn|2003|loc=Corollary 4.6.4}}</ref> | |||
{{harvtxt|गोवरोव|1965}} और {{harvtxt|लाजार्ड|1969}} यह सिद्ध किया कि मापांक | {{harvtxt|गोवरोव|1965}} और {{harvtxt|लाजार्ड|1969}} ने यह सिद्ध किया कि मापांक M समतल है यदि केवल यह सीमित रूप से उत्पन्न मुक्त मापांक की सरल सीमा है। | ||
सामान्यतः, समतलता और प्रक्षेप्य के | सामान्यतः, समतलता और प्रक्षेप्य के मध्य त्रुटिहीन संबंध {{harvtxt|रेनॉड|ग्रुसन|1971}} द्वारा स्थापित किया गया था (यह सभी देखें {{harvtxt|ड्रिनफेल्ड|2006}} और {{harvtxt|ब्रौनलिंग|ग्रोचेनिग|वोल्फसन|2016}}) जिन्होंने यह प्रदर्शित किया कि मापांक M प्रक्षेपी है यदि केवल यह निम्नलिखित नियमों को संतुष्ट करता है: | ||
* | *M समतल है। | ||
* | *M[[ गिनती योग्य सेट | गणनात्मक रूप से]] उत्पन्न मापांक का प्रत्यक्ष योग है। | ||
* | *M निश्चित मित्तग-लेफलर प्रकार की स्थिति को संतुष्ट करता है। | ||
इस लक्षण वर्णन का उपयोग यह | इस लक्षण वर्णन का उपयोग यह प्रदर्शित करने के लिए किया जा सकता है कि यदि <math>R \to S</math> क्रम-विनिमेय वलयों का समतल रूपांतरण मानचित्र है <math>M</math> और <math>R</math>-मापांक, तब <math>M</math> केवल <math>M \otimes_R S</math> प्रक्षेपी है।<ref>{{Cite web |title=Section 10.95 (05A4): Descending properties of modules—The Stacks project |url=https://stacks.math.columbia.edu/tag/05A4 |access-date=2022-11-03 |website=stacks.math.columbia.edu |language=en}}</ref> दूसरे शब्दों में, प्रक्षेपी होने की संपत्ति[[ ईमानदारी से सपाट वंश | समतल वंश]] को संतुष्ट करती है। | ||
== प्रक्षेपी मापांक की श्रेणी == | == प्रक्षेपी मापांक की श्रेणी == | ||
प्रक्षेपी मापांक के | प्रक्षेपी मापांक के उप- मापांक को प्रक्षेपी होने की आवश्यकता नहीं है; वलय R जिसके लिए बाएं मापांक के प्रत्येक उप-मापांक के प्रक्षेपी होते है, उसे वंशानुगत वलय कहा जाता है। | ||
प्रक्षेपी मापांक के [[ भागफल मॉड्यूल |भागफल मापांक]] को भी प्रक्षेपी होने की आवश्यकता नहीं है, उदाहरण के लिए 'z'/n 'z' का | प्रक्षेपी मापांक के [[ भागफल मॉड्यूल |भागफल मापांक]] को भी प्रक्षेपी होने की आवश्यकता नहीं है, उदाहरण के लिए 'z'/n 'z' का भागफल है, लेकिन घुमाव-मुक्त मापांक नहीं है। इसलिए समतल और प्रक्षेपी नहीं है। | ||
वलय पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक की श्रेणी [[ सटीक श्रेणी |त्रुटिहीन श्रेणी]] है।([[ बीजगणित |बीजगणितीय]] के-सिद्धांत भी देखें)। | |||
== प्रक्षेपी संकल्प == | == प्रक्षेपी संकल्प == | ||
{{Main|प्रक्षेपी संकल्प}} | {{Main|प्रक्षेपी संकल्प}} | ||
मापांक | मापांक M,को देखते हुए, M का 'प्रक्षेपी विभेदन (बीजगणित)' मापांक का अनंत [[ सटीक अनुक्रम |त्रुटिहीन अनुक्रम]] है | ||
: ··· → ''P<sub>n</sub>'' → ··· → ''P''<sub>2</sub> → ''P''<sub>1</sub> → ''P''<sub>0</sub> → ''M'' → 0, | : ··· → ''P<sub>n</sub>'' → ··· → ''P''<sub>2</sub> → ''P''<sub>1</sub> → ''P''<sub>0</sub> → ''M'' → 0, | ||
सभी | सभी P<sub>''i''</sub>; प्रक्षेपी के साथ प्रत्येक मापांक में अनुमानित विभेदन होता है। वास्तव में मुक्त विभेदन उपस्थित होता है। प्रक्षेपी मापांक के त्रुटिहीन अनुक्रम को कभी-कभी {{nowrap|''P''(''M'') → ''M'' → 0}} या {{nowrap|''P''<sub>•</sub> → ''M'' → 0}} के रूप में संक्षिप्त किया जा सकता है। [[ नियमित अनुक्रम |नियमित अनुक्रम]] के[[ जटिल शर्ट | जटिल परिसर]] द्वारा प्रक्षेपी संकल्प का उत्कृष्ट उदाहरण दिया गया है, जो अनुक्रम द्वारा उत्पन्न आदर्श (वलय सिद्धांत) का मुक्त संकल्प है। | ||
परिमित विभेदन की लंबाई सूचकांक n है जैसे कि P<sub>''n''</sub> [[ शून्य मॉड्यूल |अशून्य मापांक]] है और {{nowrap|1=''P''<sub>''i''</sub> = 0}} के लिए ''i'' n से अधिक है। यदि M परिमित प्रक्षेपी विभेदन को स्वीकार करता है, तो M के सभी परिमित प्रक्षेपी संकल्प के मध्य न्यूनतम लंबाई को इसका 'प्रक्षेपी आयाम' कहा जाता है और इसे pd(M) से निरूपित किया जाता है। यदि M परिमित प्रक्षेपी विभेदन को स्वीकार नहीं करता है, तब सम्मेलन द्वारा प्रक्षेप्य आयाम को अनंत कहा जाता है। उदाहरण के रूप में, मापांक M पर विचार करें जैसे कि {{nowrap|1=pd(''M'') = 0}}, इस स्थिति में, अनुक्रम 0 →P<sub>0</sub> → M→ 0 की त्रुटिहीनता को प्रदर्शित करता है कि केंद्र में तीर समरूपी है, और इसलिए M स्वयं प्रक्षेपी है। | |||
== | == क्रम-विनिमेय वलयों पर प्रक्षेपी मापांक == | ||
क्रम-विनिमेय वलयों पर प्रक्षेपी मापांक में उत्तम गुण होते हैं। | |||
प्रक्षेपी मापांक का [[ स्थानीयकरण |स्थानीयकरण]] (क्रमविनिमेय बीजगणित) स्थानीयकृत | प्रक्षेपी मापांक का [[ स्थानीयकरण |स्थानीयकरण]] (क्रमविनिमेय बीजगणित) स्थानीयकृत वलय पर अनुमानित मापांक है। | ||
स्थानीय | स्थानीय वलय पर प्रक्षेपी मापांक निःशुल्क है। इस प्रकार प्रक्षेपी मापांक स्थानीय रूप से मुक्त है। | ||
नोथेरियन | नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के लिए यह सत्य है: क्रमविनिमेय नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक स्थानीय रूप से मुक्त है यदि केवल यह अनुमानित हो। | ||
चूंकि, | चूंकि, [[ नथियन रिंग |गैर-नोएथेरियन वलय]] पर सूक्ष्म रूप से उत्पन्न मापांक के उदाहरण हैं जो स्थानीय रूप से स्वतंत्र हैं और अनुमानित नहीं हैं। उदाहरण के लिए, [[ बूलियन रिंग |बूलियन वलय]] में दो तत्वों के क्षेत्र 'f'<sub>2</sub>, के लिए इसके सभी स्थानीयकरण समरूपी होते हैं, इसलिए बूलियन वलय पर कोई भी मापांक स्थानीय रूप से मुक्त होता है, किन्तु बूलियन के वलयों पर कुछ गैर-प्रक्षेप्य मापांक होते हैं। उदाहरण R/I है जहां, R 'F<sub>2</sub>' की कई प्रतियों का प्रत्यक्ष उत्पाद है और I, R के अंदर 'F<sub>2</sub>' की कई प्रतियों का प्रत्यक्ष योग है। R-मापांक R/I स्थानीय रूप से मुक्त है क्योंकि R बूलियन है (और यह R-मापांक के रूप में भी सूक्ष्म रूप से उत्पन्न होता है, आकार 1 के विस्तारित हुए समुच्चय), लेकिन R/I प्रक्षेपी नहीं है क्योंकि प्रमुख आदर्श नहीं है। (यदि भागफल मापांक R/I, किसी भी क्रम-विनिमेय वलय R और आदर्श के लिए, प्रक्षेपी R-मापांक प्रमुख है।) | ||
बूलियन के | |||
चूंकि, यह | चूंकि, यह सत्य है कि क्रमविनिमेय वलय R (विशेष रूप से यदि M सूक्ष्म रूप से उत्पन्न R-मापांक है और R नूथेरियन है) पर[[ बारीक रूप से प्रस्तुत मॉड्यूल | सूक्ष्म रूप से प्रस्तुत मापांक]] के लिए, निम्नलिखित समतुल्य हैं।<ref>Exercises 4.11 and 4.12 and Corollary 6.6 of David Eisenbud, ''Commutative Algebra with a view towards Algebraic Geometry'', GTM 150, Springer-Verlag, 1995. Also, {{harvnb|Milne|1980}}</ref> | ||
#<math>M</math> | #<math>M</math> समतल होता है। | ||
#<math>M</math> प्रक्षेपी है। | #<math>M</math> प्रक्षेपी होता है। | ||
#<math>M_\mathfrak{m}</math> | #<math>M_\mathfrak{m}</math> इस रूप में स्वतंत्र है <math>R_\mathfrak{m}</math> प्रत्येक [[ अधिकतम आदर्श |अधिकतम आदर्श]] के लिए <math>\mathfrak{m}</math>-R मापांक होता है। | ||
#<math>M_\mathfrak{p}</math> | #<math>M_\mathfrak{p}</math> इस रूप में स्वतंत्र है <math>R_\mathfrak{p}</math>-प्रत्येक अभाज्य गुणजावली के लिए मापांक R का <math>\mathfrak{p}</math> होता है। | ||
# | #जहाँ <math>f_1,\ldots,f_n \in R</math> इकाई आदर्श उत्पन्न करता है जैसे कि <math>M[f_i^{-1}]</math> के रूप में स्वतंत्र है <math>R[f_i^{-1}]</math> प्रत्येक i के लिए मापांक होता है। | ||
#<math>\widetilde{M}</math> | #<math>\widetilde{M}</math> स्थानीय रूप से मुक्त बंडल है <math>\operatorname{Spec}R</math> (जहां <math>\widetilde{M}</math> मापांक से जुड़ा बंडल है) | ||
इसके अतिरिक्त, यदि | इसके अतिरिक्त, यदि R नोथेरियन [[ अभिन्न डोमेन |अभिन्न डोमेन]] है, तो, निराश के लेम्मा द्वारा, ये स्थितियाँ समतुल्य हैं | ||
* | *आयाम (सदिश स्थान) <math>k(\mathfrak{p})</math>-[[ सदिश स्थल ]] <math>M \otimes_R k(\mathfrak{p})</math> सभी अभाज्य गुणजावली के लिए समान है <math>\mathfrak{p}</math> R, जहां <math>k(\mathfrak{p})</math> पर अवशेष क्षेत्र <math>\mathfrak{p}</math>.<ref>That is, <math>k(\mathfrak{p})=R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}</math> is the residue field of the local ring <math>R_\mathfrak{p}</math>.</ref>है कहने का अर्थ यह है कि, M में निरंतर श्रेणी है (जैसा कि नीचे परिभाषित किया गया है)। | ||
माना A | माना A क्रम-विनिमेय वलय है। यदि B वलय पर (संभवतः गैर-क्रमविनिमेय) A-बीजगणित है, जो [[ सबरिंग |उप-वलय]] के रूप में सूक्ष्म रूप से उत्पन्न प्रक्षेप्य A-मापांक है, तो A,B का प्रत्यक्ष कारक है।।<ref>{{harvnb|Bourbaki, Algèbre commutative|1989|loc=Ch II, §5, Exercise 4}}</ref> | ||
=== श्रेणी === | === श्रेणी === | ||
क्रम-विनिमेय वलय R और X पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक होता है। R वलय का स्पेक्ट्रम हो। प्रमुख आदर्श पर P की श्रेणी <math>\mathfrak{p}</math> X में मुक्त की श्रेणी <math>R_{\mathfrak{p}}</math>-मापांक का <math>P_{\mathfrak{p}}</math> है। यह X पर स्थानीय रूप से निरंतर कार्य करता है। विशेष रूप से, यदि X जुड़ा हुआ है (अर्थात यदि R में 0 और 1 से कोई अन्य वर्गसम नहीं है), तो P निरंतर श्रेणी में है। | |||
== सदिश बंडलों और स्थानीय रूप से मुक्त मापांक == | == सदिश बंडलों और स्थानीय रूप से मुक्त मापांक == | ||
सिद्धांत की मूल प्रेरणा यह है कि प्रक्षेपी मापांक (अल्प से अल्प कुछ क्रमविनिमेय वलयों से अधिक)[[ वेक्टर बंडल | सदिश बंडलों]] के अनुरूप हैं। इसे [[ कॉम्पैक्ट स्पेस |कॉम्पैक्ट]] [[ हौसडॉर्फ स्पेस |हौसडॉर्फ स्पेस]] निरंतर वास्तविक-मूल्यवान [[ सतत कार्य (टोपोलॉजी) |कार्यों]] के वलय के लिए त्रुटिहीन बनाया जा सकता है, (सेरे-स्वान प्रमेय देखें जो अंतरिक्ष के ऊपर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक है) कॉम्पैक्ट मैनिफोल्ड [[ विविध |विविध]] पर कार्यों के स्थान पर मापांक सदिश बंडल के वर्गों का स्थान है)। | |||
सिद्धांत की मूल प्रेरणा यह है कि प्रक्षेपी मापांक ( | |||
सदिश बंडल स्थानीय रूप से मुक्त | सदिश बंडल स्थानीय रूप से मुक्त हैं। यदि स्थानीयकरण की कुछ धारणा है, जिसे मापांक पर ले जाया जा सकता है, जैसे कि वलय के सामान्य स्थानीयकरण, कोई स्थानीय रूप से मुक्त मापांक को परिभाषित कर सकता है, और प्रक्षेप्य मापांक तब सामान्यतः स्थानीय रूप से मुक्त मापांक के साथ मेल खाते हैं। | ||
== | == बहुपद वलय पर प्रक्षेपी मापांक == | ||
क्विलन -सुस्लिन प्रमेय, जो सेरे की समस्या | क्विलन -सुस्लिन प्रमेय, जो सेरे की समस्या का समाधान करता है, परिणाम यह है: यदि k क्षेत्र है, या सामान्यतः प्रमुख आदर्श डोमेन है, और R = K[X1,...,Xn] K के ऊपर बहुपद वलय है, तब R पर प्रत्येक प्रक्षेपी मापांक मुक्त होता है। इस समस्या को पहले सेरे द्वारा K A क्षेत्र (और मापांक को सूक्ष्म रूप से उत्पन्न किया जा रहा है) के साथ उठाया गया था।बास ने इसे गैर-फिनती उत्पन्न मापांक के लिए बसाया,<ref>{{cite journal|title=Big projective modules are free|last=Bass|first=Hyman|journal=Illinois Journal of Mathematics|volume=7|number=1|year=1963|publisher=Duke University Press|doi=10.1215/ijm/1255637479|at=Corollary 4.5}}</ref> और क्विलन और सुज़लिन ने स्वतंत्र रूप से साथ ही साथ सूक्ष्म रूप से उत्पन्न मापांक की स्थिति का उपाय किया। | ||
इस समस्या को पहले सेरे द्वारा K A | |||
चूंकि | चूंकि प्रमुख आदर्श डोमेन पर प्रत्येक प्रक्षेपी मापांक स्वतंत्र है, कोई भी यह प्रश्न पूछ सकता है: यदि R क्रम-विनिमेय वलय है जैसे कि प्रत्येक (सूक्ष्म रूप से उत्पन्न) प्रक्षेपी R-मापांक स्वतंत्र है, तो प्रत्येक (सूक्ष्म रूप से उत्पन्न) प्रक्षेपी R[X] है। यदि मापांक का उत्तर न है। तो वक्र के स्थानीय वलय के समान R के साथ[[ प्रतिवाद | प्रतिवाद]] होता है y2 = x3 मूल में, इस प्रकार क्विलन-सुस्लिन प्रमेय कभी भी चर की संख्या पर साधारण गणितीय प्रेरण द्वारा सिद्ध नहीं किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*प्रोजेक्टिव कवर | |||
* | |||
*शानुएल का लेम्मा | *शानुएल का लेम्मा | ||
* | *रद्दीकरण प्रमेय | ||
*[[ मॉड्यूलर प्रतिनिधित्व सिद्धांत ]] | *[[मॉड्यूलर प्रतिनिधित्व सिद्धांत]] | ||
Line 142: | Line 140: | ||
{{Reflist}} | {{Reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
* {{cite book | author1=William A. Adkins |author2=Steven H. Weintraub |title=Algebra: An Approach via Module Theory | url=https://archive.org/details/springer_10.1007-978-1-4612-0923-2 |publisher=Springer |year=1992 |at=Sec 3.5}} | * {{cite book | author1=William A. Adkins |author2=Steven H. Weintraub |title=Algebra: An Approach via Module Theory | url=https://archive.org/details/springer_10.1007-978-1-4612-0923-2 |publisher=Springer |year=1992 |at=Sec 3.5}} | ||
Line 164: | Line 159: | ||
{{Authority control}} | {{Authority control}} | ||
[[ | [[Category:All accuracy disputes]] | ||
[[ | [[Category:Articles with disputed statements from May 2022]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 04/01/2023]] | [[Category:Created On 04/01/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 13:15, 27 October 2023
गणित में, विशेष रूप से बीजगणित में, प्रक्षेपी मापांक का वर्ग (समूह सिद्धांत) मुक्त मापांक के कुछ मुख्य गुणों का अध्यन करते हुए, वलय (गणित) के साथ मुक्त मापांक (अर्थात, मापांक के आधार पर) के वर्ग को बढ़ाता है। इन मापांक के विभिन्न समकक्ष लक्षण नीचे प्रदर्शित हैं।
प्रत्येक मुक्त मापांक प्रक्षेपी मापांक है, लेकिन संवाद के आधार पर कुछ वलयों को धारण करने में विफल है, जैसे कि डेडेकिंड वलय जो प्रमुख आदर्श डोमेन नहीं हैं। चूंकि, प्रत्येक प्रक्षेपी मापांक मुक्त मापांक है यदि वलय प्रमुख आदर्श डोमेन है जैसे कि पूर्णांक, या बहुपद वलय (यह क्विलन -सुस्लिन प्रमेय है)।
प्रक्षेपी मापांक को प्रथम बार 1956 में हेनरी कार्टन और सैमुअल एलेनबर्ग द्वारा प्रभावशाली पुस्तक 'समरूप बीजगणित' 'में प्रस्तुत किया गया था।
परिभाषाएँ
उद्यत संपत्ति
सामान्य श्रेणी की सैद्धांतिक परिभाषा उद्यत की संपत्ति के संदर्भ में है जो मुक्त से प्रक्षेप्य मापांक तक ले जाती है: मापांक P प्रक्षेपी है यदि केवल प्रत्येक विशेषण मापांक समरूपता के लिए f : N ↠ M और प्रत्येक मापांक समरूपता g : P → M, मापांक समरूपता h : P → N उपस्थित है जैसे कि f h = g (हमें उद्यत समरूपता H की आवश्यकता नहीं है; यह सार्वभौमिक संपत्ति नहीं है।)
- प्रक्षेपी की इस परिभाषा का लाभ यह है कि इसे मापांक श्रेणियों की तुलना में अधिक सामान्य श्रेणी (गणित) में किया जा सकता है: हमें मुक्त वस्तु की धारणा की आवश्यकता नहीं है। यह उभय (श्रेणी सिद्धांत) भी हो सकता है, जिससे एकत्र मापांक हो सकते हैं। भारोत्तोलन संपत्ति को प्रत्येक रूपवाद के रूप में भी उभय किया जा सकता है से कारक प्रत्येक एपिमोर्फिज्म के माध्यम से कारक को इस प्रकार, परिभाषा के अनुसार, प्रक्षेपी मापांक R-मापांक की श्रेणी में प्रक्षेप्य वस्तुएं हैं।
विभाजित-त्रुटिहीन अनुक्रम
मापांक P प्रक्षेपी है यदि केवल मापांक प्रपत्र के प्रत्येक छोटे त्रुटिहीन अनुक्रम:
विभाजित त्रुटिहीन अनुक्रम है। अर्थात, प्रत्येक विशेषण मापांक समरूपता के लिए f : B ↠ P खंड मानचित्र उपस्थित है, अर्थात, मापांक समरूपतावाद h : P → B ऐसा है कि fh = idP; समान रूप से, उस स्थिति में, h(P) B का प्रत्यक्ष योग है, h, P से h(P) तक समरूपता है और h f सारांश h(P), पर प्रक्षेपण है।
मुक्त मापांक के प्रत्यक्ष सारांश
मापांक P प्रक्षेपी है यदि केवल कोई अन्य मापांक Q है जैसे कि P और Q का प्रत्यक्ष योग मुक्त मापांक है।
शुद्धता
R-मापांक P प्रक्षेपी है यदि केवल सह-संयोजक कारक Hom(P, -): R-Mod → Ab त्रुटिहीन कारक है, जहां R-Mod बाएं R-मापांक की श्रेणी है और 'Ab' एबेलियन समूहों की श्रेणी है। जब वलय R विनिमेय वलय है, तो 'Ab' को पूर्ववर्ती लक्षण वर्णन में R-Mod द्वारा लाभप्रद रूप से परिवर्तित कर दिया जाता है। यह कारक सदैव त्रुटिहीन ही विभक्त कर दिया जाता है, लेकिन, जब P प्रक्षेपी होता है, तो यह सही त्रुटिहीन भी होता है। इसका अर्थ यह है कि P प्रक्षेपी है यदि केवल यह कारक एपिमोर्फिज्म (विशेषण समरूपता) को संरक्षित करता है, या यदि परिमित कोलिमिट्स को संरक्षित करता है।
उभय आधार
मापांक P प्रक्षेपी है यदि कोई समुच्चय उपस्थित है और में प्रत्येक x के लिए fi (x) अत्यधिक i के लिए केवल अशून्य है, और
।
प्राथमिक उदाहरण और गुण
प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी शीघ्रता से घटाया जाता है:
- प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी होते हैं।
- यदि e = e2 वलय R में वर्गसम (वलय सिद्धांत) है, तब R, R पर प्रक्षेपी बाएं मापांक है।
अन्य मापांक-सिद्धांत गुणों से संबंध
मुक्त और समतल मापांक के लिए प्रक्षेपी मापांक का संबंध गुणों के निम्नलिखित आरेख में प्रस्तुत किया गया है:
बाएं-से-दाएं निहितार्थ किसी भी वलय पर सही हैं, चूंकि कुछ लेखक केवल डोमेन (वलय सिद्धांत) पर घुमाव-मुक्त मापांक को परिभाषित करते हैं। दाएं-से-बाएं निहितार्थ भी सही हैं। ऐसे और भी वलय हो सकते हैं जिन पर वे सत्य हों। उदाहरण के लिए, स्थानीय वलय या पीआईडी लेबल किए गए निहितार्थ क्षेत्र (गणित) पर बहुपद वलयों के लिए भी सही है: यह क्विलन -सुस्लिन प्रमेय है।
प्रक्षेपी विरुद्ध मुक्त मापांक
कोई भी मुक्त मापांक प्रक्षेपी है। निम्नलिखित स्थितियों में यह विपरीत सत्य है:
- यदि R क्षेत्र, तिरछा क्षेत्र है: इस स्थिति में कोई भी मापांक मुक्त होता है।
- यदि वलय R प्रमुख आदर्श प्रांत है। उदाहरण के लिए, यह R = Z (पूर्णांक), पर लागू होता है, इसलिए एबेलियन समूह अनुमानित है यदि केवल यह मुक्त एबेलियन समूह है। इसका कारण यह है कि प्रमुख आदर्श डोमेन पर मापांक का कोई भी उप- मापांक मुक्त है।
- यदि R स्थानीय वलय है। यह तथ्य स्थानीय रूप से मुक्त = प्रक्षेप्य के अंतर्ज्ञान का आधार है। यह तथ्य सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक के लिए सिद्ध करना गणितीय प्रमाण के लिए सरल है। सामान्यतः, यह कपलान्स्की (1958) होने के कारण है; प्रक्षेपी मापांक पर कप्लांस्की के प्रमेय को देखें।
सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है:
- वलय के प्रत्यक्ष उत्पाद पर R × S जहां R और S शून्य वलय हैं, दोनों R × 0 और 0 × S गैर-मुक्त प्रक्षेपी मापांक हैं।
- डेडेकिंड डोमेन पर अप्रमुख आदर्श (वलय सिद्धांत) प्रायः प्रक्षेपी मापांक होता है जो मुक्त मापांक नहीं होता है।
- आव्यूह वलय Mn(R) पर, प्राकृतिक मापांक R n प्रक्षेपी है लेकिन मुक्त नहीं है।[dubious ] सामान्यतः, किसी भी अर्ध-सरल वलय पर, प्रत्येक मापांक प्रक्षेपी होता है, लेकिनशून्य आदर्श और वलय एकमात्र मुक्त आदर्श हैं।
मुक्त और प्रक्षेपी मापांक के मध्य का अंतर, बीजगणितीय K-सिद्धांत द्वारा मापा जाता है। नीचे देखें।
प्रक्षेपी विरुद्ध समतल मापांक
प्रत्येक प्रक्षेपी C समतल मापांक है।[1] यह सामान्य रूप से सत्य नहीं है: एबेलियन समूह Q, Z-मापांक है जो समतल है, लेकिन अनुमानित नहीं है।[2]
इसके विपरीत, सूक्ष्म रूप से संबंधित समतल प्रक्षेपी है।[3]
गोवरोव (1965) और लाजार्ड (1969) ने यह सिद्ध किया कि मापांक M समतल है यदि केवल यह सीमित रूप से उत्पन्न मुक्त मापांक की सरल सीमा है।
सामान्यतः, समतलता और प्रक्षेप्य के मध्य त्रुटिहीन संबंध रेनॉड & ग्रुसन (1971) द्वारा स्थापित किया गया था (यह सभी देखें ड्रिनफेल्ड (2006) और ब्रौनलिंग, ग्रोचेनिग & वोल्फसन (2016) ) जिन्होंने यह प्रदर्शित किया कि मापांक M प्रक्षेपी है यदि केवल यह निम्नलिखित नियमों को संतुष्ट करता है:
- M समतल है।
- M गणनात्मक रूप से उत्पन्न मापांक का प्रत्यक्ष योग है।
- M निश्चित मित्तग-लेफलर प्रकार की स्थिति को संतुष्ट करता है।
इस लक्षण वर्णन का उपयोग यह प्रदर्शित करने के लिए किया जा सकता है कि यदि क्रम-विनिमेय वलयों का समतल रूपांतरण मानचित्र है और -मापांक, तब केवल प्रक्षेपी है।[4] दूसरे शब्दों में, प्रक्षेपी होने की संपत्ति समतल वंश को संतुष्ट करती है।
प्रक्षेपी मापांक की श्रेणी
प्रक्षेपी मापांक के उप- मापांक को प्रक्षेपी होने की आवश्यकता नहीं है; वलय R जिसके लिए बाएं मापांक के प्रत्येक उप-मापांक के प्रक्षेपी होते है, उसे वंशानुगत वलय कहा जाता है।
प्रक्षेपी मापांक के भागफल मापांक को भी प्रक्षेपी होने की आवश्यकता नहीं है, उदाहरण के लिए 'z'/n 'z' का भागफल है, लेकिन घुमाव-मुक्त मापांक नहीं है। इसलिए समतल और प्रक्षेपी नहीं है।
वलय पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक की श्रेणी त्रुटिहीन श्रेणी है।(बीजगणितीय के-सिद्धांत भी देखें)।
प्रक्षेपी संकल्प
मापांक M,को देखते हुए, M का 'प्रक्षेपी विभेदन (बीजगणित)' मापांक का अनंत त्रुटिहीन अनुक्रम है
- ··· → Pn → ··· → P2 → P1 → P0 → M → 0,
सभी Pi; प्रक्षेपी के साथ प्रत्येक मापांक में अनुमानित विभेदन होता है। वास्तव में मुक्त विभेदन उपस्थित होता है। प्रक्षेपी मापांक के त्रुटिहीन अनुक्रम को कभी-कभी P(M) → M → 0 या P• → M → 0 के रूप में संक्षिप्त किया जा सकता है। नियमित अनुक्रम के जटिल परिसर द्वारा प्रक्षेपी संकल्प का उत्कृष्ट उदाहरण दिया गया है, जो अनुक्रम द्वारा उत्पन्न आदर्श (वलय सिद्धांत) का मुक्त संकल्प है।
परिमित विभेदन की लंबाई सूचकांक n है जैसे कि Pn अशून्य मापांक है और Pi = 0 के लिए i n से अधिक है। यदि M परिमित प्रक्षेपी विभेदन को स्वीकार करता है, तो M के सभी परिमित प्रक्षेपी संकल्प के मध्य न्यूनतम लंबाई को इसका 'प्रक्षेपी आयाम' कहा जाता है और इसे pd(M) से निरूपित किया जाता है। यदि M परिमित प्रक्षेपी विभेदन को स्वीकार नहीं करता है, तब सम्मेलन द्वारा प्रक्षेप्य आयाम को अनंत कहा जाता है। उदाहरण के रूप में, मापांक M पर विचार करें जैसे कि pd(M) = 0, इस स्थिति में, अनुक्रम 0 →P0 → M→ 0 की त्रुटिहीनता को प्रदर्शित करता है कि केंद्र में तीर समरूपी है, और इसलिए M स्वयं प्रक्षेपी है।
क्रम-विनिमेय वलयों पर प्रक्षेपी मापांक
क्रम-विनिमेय वलयों पर प्रक्षेपी मापांक में उत्तम गुण होते हैं।
प्रक्षेपी मापांक का स्थानीयकरण (क्रमविनिमेय बीजगणित) स्थानीयकृत वलय पर अनुमानित मापांक है।
स्थानीय वलय पर प्रक्षेपी मापांक निःशुल्क है। इस प्रकार प्रक्षेपी मापांक स्थानीय रूप से मुक्त है।
नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के लिए यह सत्य है: क्रमविनिमेय नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक स्थानीय रूप से मुक्त है यदि केवल यह अनुमानित हो।
चूंकि, गैर-नोएथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के उदाहरण हैं जो स्थानीय रूप से स्वतंत्र हैं और अनुमानित नहीं हैं। उदाहरण के लिए, बूलियन वलय में दो तत्वों के क्षेत्र 'f'2, के लिए इसके सभी स्थानीयकरण समरूपी होते हैं, इसलिए बूलियन वलय पर कोई भी मापांक स्थानीय रूप से मुक्त होता है, किन्तु बूलियन के वलयों पर कुछ गैर-प्रक्षेप्य मापांक होते हैं। उदाहरण R/I है जहां, R 'F2' की कई प्रतियों का प्रत्यक्ष उत्पाद है और I, R के अंदर 'F2' की कई प्रतियों का प्रत्यक्ष योग है। R-मापांक R/I स्थानीय रूप से मुक्त है क्योंकि R बूलियन है (और यह R-मापांक के रूप में भी सूक्ष्म रूप से उत्पन्न होता है, आकार 1 के विस्तारित हुए समुच्चय), लेकिन R/I प्रक्षेपी नहीं है क्योंकि प्रमुख आदर्श नहीं है। (यदि भागफल मापांक R/I, किसी भी क्रम-विनिमेय वलय R और आदर्श के लिए, प्रक्षेपी R-मापांक प्रमुख है।)
चूंकि, यह सत्य है कि क्रमविनिमेय वलय R (विशेष रूप से यदि M सूक्ष्म रूप से उत्पन्न R-मापांक है और R नूथेरियन है) पर सूक्ष्म रूप से प्रस्तुत मापांक के लिए, निम्नलिखित समतुल्य हैं।[5]
- समतल होता है।
- प्रक्षेपी होता है।
- इस रूप में स्वतंत्र है प्रत्येक अधिकतम आदर्श के लिए -R मापांक होता है।
- इस रूप में स्वतंत्र है -प्रत्येक अभाज्य गुणजावली के लिए मापांक R का होता है।
- जहाँ इकाई आदर्श उत्पन्न करता है जैसे कि के रूप में स्वतंत्र है प्रत्येक i के लिए मापांक होता है।
- स्थानीय रूप से मुक्त बंडल है (जहां मापांक से जुड़ा बंडल है)
इसके अतिरिक्त, यदि R नोथेरियन अभिन्न डोमेन है, तो, निराश के लेम्मा द्वारा, ये स्थितियाँ समतुल्य हैं
- आयाम (सदिश स्थान) -सदिश स्थल सभी अभाज्य गुणजावली के लिए समान है R, जहां पर अवशेष क्षेत्र .[6]है कहने का अर्थ यह है कि, M में निरंतर श्रेणी है (जैसा कि नीचे परिभाषित किया गया है)।
माना A क्रम-विनिमेय वलय है। यदि B वलय पर (संभवतः गैर-क्रमविनिमेय) A-बीजगणित है, जो उप-वलय के रूप में सूक्ष्म रूप से उत्पन्न प्रक्षेप्य A-मापांक है, तो A,B का प्रत्यक्ष कारक है।।[7]
श्रेणी
क्रम-विनिमेय वलय R और X पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक होता है। R वलय का स्पेक्ट्रम हो। प्रमुख आदर्श पर P की श्रेणी X में मुक्त की श्रेणी -मापांक का है। यह X पर स्थानीय रूप से निरंतर कार्य करता है। विशेष रूप से, यदि X जुड़ा हुआ है (अर्थात यदि R में 0 और 1 से कोई अन्य वर्गसम नहीं है), तो P निरंतर श्रेणी में है।
सदिश बंडलों और स्थानीय रूप से मुक्त मापांक
सिद्धांत की मूल प्रेरणा यह है कि प्रक्षेपी मापांक (अल्प से अल्प कुछ क्रमविनिमेय वलयों से अधिक) सदिश बंडलों के अनुरूप हैं। इसे कॉम्पैक्ट हौसडॉर्फ स्पेस निरंतर वास्तविक-मूल्यवान कार्यों के वलय के लिए त्रुटिहीन बनाया जा सकता है, (सेरे-स्वान प्रमेय देखें जो अंतरिक्ष के ऊपर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक है) कॉम्पैक्ट मैनिफोल्ड विविध पर कार्यों के स्थान पर मापांक सदिश बंडल के वर्गों का स्थान है)।
सदिश बंडल स्थानीय रूप से मुक्त हैं। यदि स्थानीयकरण की कुछ धारणा है, जिसे मापांक पर ले जाया जा सकता है, जैसे कि वलय के सामान्य स्थानीयकरण, कोई स्थानीय रूप से मुक्त मापांक को परिभाषित कर सकता है, और प्रक्षेप्य मापांक तब सामान्यतः स्थानीय रूप से मुक्त मापांक के साथ मेल खाते हैं।
बहुपद वलय पर प्रक्षेपी मापांक
क्विलन -सुस्लिन प्रमेय, जो सेरे की समस्या का समाधान करता है, परिणाम यह है: यदि k क्षेत्र है, या सामान्यतः प्रमुख आदर्श डोमेन है, और R = K[X1,...,Xn] K के ऊपर बहुपद वलय है, तब R पर प्रत्येक प्रक्षेपी मापांक मुक्त होता है। इस समस्या को पहले सेरे द्वारा K A क्षेत्र (और मापांक को सूक्ष्म रूप से उत्पन्न किया जा रहा है) के साथ उठाया गया था।बास ने इसे गैर-फिनती उत्पन्न मापांक के लिए बसाया,[8] और क्विलन और सुज़लिन ने स्वतंत्र रूप से साथ ही साथ सूक्ष्म रूप से उत्पन्न मापांक की स्थिति का उपाय किया।
चूंकि प्रमुख आदर्श डोमेन पर प्रत्येक प्रक्षेपी मापांक स्वतंत्र है, कोई भी यह प्रश्न पूछ सकता है: यदि R क्रम-विनिमेय वलय है जैसे कि प्रत्येक (सूक्ष्म रूप से उत्पन्न) प्रक्षेपी R-मापांक स्वतंत्र है, तो प्रत्येक (सूक्ष्म रूप से उत्पन्न) प्रक्षेपी R[X] है। यदि मापांक का उत्तर न है। तो वक्र के स्थानीय वलय के समान R के साथ प्रतिवाद होता है y2 = x3 मूल में, इस प्रकार क्विलन-सुस्लिन प्रमेय कभी भी चर की संख्या पर साधारण गणितीय प्रेरण द्वारा सिद्ध नहीं किया जा सकता है।
यह भी देखें
- प्रोजेक्टिव कवर
- शानुएल का लेम्मा
- रद्दीकरण प्रमेय
- मॉड्यूलर प्रतिनिधित्व सिद्धांत
टिप्पणियाँ
- ↑ Hazewinkel; et al. (2004). "Corollary 5.4.5". Algebras, Rings and Modules, Part 1. p. 131.
- ↑ Hazewinkel; et al. (2004). "Remark after Corollary 5.4.5". Algebras, Rings and Modules, Part 1. pp. 131–132.
- ↑ Cohn 2003, Corollary 4.6.4
- ↑ "Section 10.95 (05A4): Descending properties of modules—The Stacks project". stacks.math.columbia.edu (in English). Retrieved 2022-11-03.
- ↑ Exercises 4.11 and 4.12 and Corollary 6.6 of David Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, GTM 150, Springer-Verlag, 1995. Also, Milne 1980
- ↑ That is, is the residue field of the local ring .
- ↑ Bourbaki, Algèbre commutative 1989, Ch II, §5, Exercise 4
- ↑ Bass, Hyman (1963). "Big projective modules are free". Illinois Journal of Mathematics. Duke University Press. 7 (1). Corollary 4.5. doi:10.1215/ijm/1255637479.
संदर्भ
- William A. Adkins; Steven H. Weintraub (1992). Algebra: An Approach via Module Theory. Springer. Sec 3.5.
- Iain T. Adamson (1972). Elementary rings and modules. University Mathematical Texts. Oliver and Boyd. ISBN 0-05-002192-3.
- Nicolas Bourbaki, Commutative algebra, Ch. II, §5
- Braunling, Oliver; Groechenig, Michael; Wolfson, Jesse (2016), "Tate objects in exact categories", Mosc. Math. J., 16 (3), arXiv:1402.4969v4, doi:10.17323/1609-4514-2016-16-3-433-504, MR 3510209, S2CID 118374422
- Paul M. Cohn (2003). Further algebra and applications. Springer. ISBN 1-85233-667-6.
- Drinfeld, Vladimir (2006), "Infinite-dimensional vector bundles in algebraic geometry: an introduction", in Pavel Etingof; Vladimir Retakh; I. M. Singer (eds.), The Unity of Mathematics, Birkhäuser Boston, pp. 263–304, arXiv:math/0309155v4, doi:10.1007/0-8176-4467-9_7, ISBN 978-0-8176-4076-7, MR 2181808
- Govorov, V. E. (1965), "On flat modules (Russian)", Siberian Math. J., 6: 300–304
- Hazewinkel, Michiel; Gubareni, Nadiya; Kirichenko, Vladimir V. (2004). Algebras, rings and modules. Springer Science. ISBN 978-1-4020-2690-4.
- Kaplansky, Irving (1958), "Projective modules", Ann. of Math., 2, 68 (2): 372–377, doi:10.2307/1970252, hdl:10338.dmlcz/101124, JSTOR 1970252, MR 0100017
- Lang, Serge (1993). Algebra (3rd ed.). Addison–Wesley. ISBN 0-201-55540-9.
- Lazard, D. (1969), "Autour de la platitude", Bulletin de la Société Mathématique de France, 97: 81–128, doi:10.24033/bsmf.1675
- Milne, James (1980). Étale cohomology. Princeton Univ. Press. ISBN 0-691-08238-3.
- Donald S. Passman (2004) A Course in Ring Theory, especially chapter 2 Projective modules, pp 13–22, AMS Chelsea, ISBN 0-8218-3680-3 .
- Raynaud, Michel; Gruson, Laurent (1971), "Critères de platitude et de projectivité. Techniques de "platification" d'un module", Invent. Math., 13: 1–89, Bibcode:1971InMat..13....1R, doi:10.1007/BF01390094, MR 0308104, S2CID 117528099
- Paulo Ribenboim (1969) Rings and Modules, §1.6 Projective modules, pp 19–24, Interscience Publishers.
- Charles Weibel, The K-book: An introduction to algebraic K-theory