सेमिनॉर्म: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, एक सेमिनोर्म एक मानक (गणित) है जिसे सकारात्मक निश्चित होने की आवश्यकता नहीं है। सेमिमानक [[उत्तल सेट|उत्तल समुच्चय]] के साथ घनिष्ठ रूप से जुड़े हुए हैं: प्रत्येक सेमिमानक कुछ अवशोषित समुच्चय का मिंकोव्स्की कार्यात्मक है [[बिल्कुल उत्तल सेट|बिल्कुल उत्तल समुच्चय]] और, इसके विपरीत, ऐसे किसी भी समुच्चय का मिंकोव्स्की कार्यात्मक एक सेमिमानक है। | गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, एक सेमिनोर्म एक मानक (गणित) है जिसे सकारात्मक निश्चित होने की आवश्यकता नहीं है। सेमिमानक [[उत्तल सेट|उत्तल समुच्चय]] के साथ घनिष्ठ रूप से जुड़े हुए हैं: प्रत्येक सेमिमानक कुछ अवशोषित समुच्चय का मिंकोव्स्की कार्यात्मक है [[बिल्कुल उत्तल सेट|बिल्कुल उत्तल समुच्चय]] और, इसके विपरीत, ऐसे किसी भी समुच्चय का मिंकोव्स्की कार्यात्मक एक सेमिमानक है। | ||
एक [[Index.php?title=Index.php?title=संस्थानिक सदिश समष्टि|संस्थानिक सदिश समष्टि]] स्थानीय रूप से उत्तल होता है | एक [[Index.php?title=Index.php?title=संस्थानिक सदिश समष्टि|संस्थानिक सदिश समष्टि]] स्थानीय रूप से उत्तल होता है यदि इसकी सांस्थिति सेमिनोर्म्स के एक परिवार द्वारा प्रेरित होती है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 19: | Line 15: | ||
परिभाषा के अनुसार, एक मानक (गणित) पर <math>X</math> एक सेमिनोर्म है जो बिंदुओं को भी भिन्न करता है, जिसका तात्पर्य है कि इसमें निम्नलिखित अतिरिक्त गुण हैं: | परिभाषा के अनुसार, एक मानक (गणित) पर <math>X</math> एक सेमिनोर्म है जो बिंदुओं को भी भिन्न करता है, जिसका तात्पर्य है कि इसमें निम्नलिखित अतिरिक्त गुण हैं: | ||
सकारात्मक निश्चित / {{visible anchor|बिंदु भिन्न करना }}: सभी के लिए <math>x \in X,</math> यदि <math>p(x) = 0</math> फिर <math>x = 0.</math> {{em|{{visible anchor|सेमिनोर्म्ड स्पेस }}}} जोड़ी है <math>(X, p)</math> एक सदिश स्थान से मिलकर <math>X</math> और एक सेमिमानक <math>p</math> पर <math>X.</math> यदि सेमिमानक <math>p</math> यह भी एक मानक है तो सेमिमानक स्पेस <math>(X, p)</math> {{em|[[नोर्म्ड स्पेस ]]}}ए कहा जाता है , चूँकि निरपेक्ष एकरूपता का तात्पर्य सकारात्मक एकरूपता से है, प्रत्येक सेमिनोर्म एक प्रकार का कार्य है जिसे एक [[Index.php?title=उपरैखिक फलन|उपरैखिक फलन]] कहा जाता है। एक मानचित्र <math>p : X \to \R</math> कहा जाता है {{em|[[उपरैखिक फलन ]]}} यदि यह उप-योगात्मक और [[सकारात्मक सजातीय]] है। एक सेमिमानक के विपरीत, एक उपरैखिक फलन अनिवार्य रूप से गैर-नकारात्मक नहीं है। हाहन-बनाक प्रमेय के संदर्भ में उपरैखिक कार्यों का प्रायः सामना किया जाता है। एक वास्तविक मूल्यवान कार्य <math>p : X \to \R</math> एक सेमिनोर्म है यदि और केवल यदि यह एक उपरैखिक फलन और संतुलित फलन है। | सकारात्मक निश्चित / {{visible anchor|बिंदु भिन्न करना }}: सभी के लिए <math>x \in X,</math> यदि <math>p(x) = 0</math> फिर <math>x = 0.</math> {{em|{{visible anchor|सेमिनोर्म्ड स्पेस }}}} जोड़ी है <math>(X, p)</math> एक सदिश स्थान से मिलकर <math>X</math> और एक सेमिमानक <math>p</math> पर <math>X.</math> यदि सेमिमानक <math>p</math> यह भी एक मानक है तो सेमिमानक स्पेस <math>(X, p)</math> {{em|[[नोर्म्ड स्पेस ]]}} ए कहा जाता है , चूँकि निरपेक्ष एकरूपता का तात्पर्य सकारात्मक एकरूपता से है, प्रत्येक सेमिनोर्म एक प्रकार का कार्य है जिसे एक [[Index.php?title=उपरैखिक फलन|उपरैखिक फलन]] कहा जाता है। एक मानचित्र <math>p : X \to \R</math> कहा जाता है {{em|[[उपरैखिक फलन ]]}} यदि यह उप-योगात्मक और [[सकारात्मक सजातीय]] है। एक सेमिमानक के विपरीत, एक उपरैखिक फलन अनिवार्य रूप से गैर-नकारात्मक नहीं है। हाहन-बनाक प्रमेय के संदर्भ में उपरैखिक कार्यों का प्रायः सामना किया जाता है। एक वास्तविक मूल्यवान कार्य <math>p : X \to \R</math> एक सेमिनोर्म है यदि और केवल यदि यह एक उपरैखिक फलन और संतुलित फलन है। | ||
<li> | <li> | ||
== उदाहरण == | == उदाहरण == | ||
Line 26: | Line 22: | ||
जहाँ पे <math>p \wedge q \leq p</math> तथा <math>p \wedge q \leq q.</math>{{sfn|Wilansky|2013|pp=15-21}}सेमिमानक का स्थान <math>X</math> उपरोक्त कार्यों के संबंध में सामान्यतः एक [[वितरण जाली]] नहीं है। उदाहरण के लिए, खत्म <math>\R^2</math>, <math>p(x, y) := \max(|x|, |y|), q(x, y) := 2|x|, r(x, y) := 2|y| </math> ऐसे हैं<math display="block">((p \vee q) \wedge (p \vee r)) (x, y) = \inf \{\max(2|x_1|, |y_1|) + \max(|x_2|, 2|y_2|) : x = x_1 + x_2 \text{ and } y = y_1 + y_2\} \quad \text{ while } \quad (p \vee q \wedge r) (x, y) := \max(|x|, |y|)</math>यदि <math>L : X \to Y</math> एक रेखीय मानचित्र है और <math>q : Y \to \R</math> पर एक सेमिनोर्म है <math>Y,</math> फिर <math>q \circ L : X \to \R</math> पर एक सेमिनोर्म है <math>X.</math> सेमिमानक <math>q \circ L</math> पर एक मानदंड होगा <math>X</math> यदि और केवल यदि <math>L</math> अन्तःक्षेपण और प्रतिबंध है <math>q\big\vert_{L(X)}</math> पर एक | जहाँ पे <math>p \wedge q \leq p</math> तथा <math>p \wedge q \leq q.</math>{{sfn|Wilansky|2013|pp=15-21}} सेमिमानक का स्थान <math>X</math> उपरोक्त कार्यों के संबंध में सामान्यतः एक [[वितरण जाली]] नहीं है। उदाहरण के लिए, खत्म <math>\R^2</math>, <math>p(x, y) := \max(|x|, |y|), q(x, y) := 2|x|, r(x, y) := 2|y| </math> ऐसे हैं<math display="block">((p \vee q) \wedge (p \vee r)) (x, y) = \inf \{\max(2|x_1|, |y_1|) + \max(|x_2|, 2|y_2|) : x = x_1 + x_2 \text{ and } y = y_1 + y_2\} \quad \text{ while } \quad (p \vee q \wedge r) (x, y) := \max(|x|, |y|)</math>यदि <math>L : X \to Y</math> एक रेखीय मानचित्र है और <math>q : Y \to \R</math> पर एक सेमिनोर्म है <math>Y,</math> फिर <math>q \circ L : X \to \R</math> पर एक सेमिनोर्म है <math>X.</math> सेमिमानक <math>q \circ L</math> पर एक मानदंड होगा <math>X</math> यदि और केवल यदि <math>L</math> अन्तःक्षेपण और प्रतिबंध है <math>q\big\vert_{L(X)}</math> पर एक मानक है </ul><math>L(X).</math>्श | ||
<li>'''मिन्कोव्स्की कार्यात्मकता और अर्धमान्य'''{{Main|मिन्कोव्स्की कार्यात्मक}} | |||
{{Main|मिन्कोव्स्की कार्यात्मक}} | |||
एक सदिश स्थान पर सेमीनॉर्म्स <math>X</math> मिंकोवस्की प्रकार्यात्मक के माध्यम से, के उपसमुच्चयों से घनिष्ठ रूप से बंधे हुए हैं <math>X</math> जो उत्तल समुच्चय , [[संतुलित सेट|संतुलित समुच्चय]] और अवशोषक समुच्चय हैं। ऐसा उपसमुच्चय दिया है <math>D</math> का <math>X,</math> मिन्कोवस्की की कार्यात्मकता <math>D</math> एक सेमिनोर्म है। और इसके विपरीत, एक सेमीनॉर्म दिया <math>p</math> पर <math>X,</math> समुच्चय <math>\{x \in X : p(x) < 1\}</math> तथा <math>\{x \in X : p(x) \leq 1\}</math> उत्तल, संतुलित और अवशोषित हैं और इसके अतिरिक्त, इन दो समुच्चय (साथ ही उनके बीच में पड़े किसी भी समुच्चय ) का मिंकोव्स्की कार्यात्मक है <math>p.</math>{{sfn|Schaefer|Wolff|1999|p=40}} | एक सदिश स्थान पर सेमीनॉर्म्स <math>X</math> मिंकोवस्की प्रकार्यात्मक के माध्यम से, के उपसमुच्चयों से घनिष्ठ रूप से बंधे हुए हैं <math>X</math> जो उत्तल समुच्चय , [[संतुलित सेट|संतुलित समुच्चय]] और अवशोषक समुच्चय हैं। ऐसा उपसमुच्चय दिया है <math>D</math> का <math>X,</math> मिन्कोवस्की की कार्यात्मकता <math>D</math> एक सेमिनोर्म है। और इसके विपरीत, एक सेमीनॉर्म दिया <math>p</math> पर <math>X,</math> समुच्चय <math>\{x \in X : p(x) < 1\}</math> तथा <math>\{x \in X : p(x) \leq 1\}</math> उत्तल, संतुलित और अवशोषित हैं और इसके अतिरिक्त, इन दो समुच्चय (साथ ही उनके बीच में पड़े किसी भी समुच्चय ) का मिंकोव्स्की कार्यात्मक है <math>p.</math>{{sfn|Schaefer|Wolff|1999|p=40}} | ||
Line 42: | Line 37: | ||
* यदि <math>p</math> वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है <math>X</math> तो वहाँ एक रैखिक कार्यात्मक उपलब्ध है <math>f</math> पर <math>X</math> ऐसा है कि <math>f \leq p</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} | * यदि <math>p</math> वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है <math>X</math> तो वहाँ एक रैखिक कार्यात्मक उपलब्ध है <math>f</math> पर <math>X</math> ऐसा है कि <math>f \leq p</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} | ||
* यदि <math>X</math> एक वास्तविक सदिश स्थान है, <math>f</math> पर एक रैखिक कार्यात्मक है <math>X,</math> तथा <math>p</math> पर एक उपरैखिक फलन है <math>X,</math> फिर <math>f \leq p</math> पर <math>X</math> यदि और केवल यदि <math>f^{-1}(1) \cap \{x \in X : p(x) < 1 = \varnothing\}</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} | * यदि <math>X</math> एक वास्तविक सदिश स्थान है, <math>f</math> पर एक रैखिक कार्यात्मक है <math>X,</math> तथा <math>p</math> पर एक उपरैखिक फलन है <math>X,</math> फिर <math>f \leq p</math> पर <math>X</math> यदि और केवल यदि <math>f^{-1}(1) \cap \{x \in X : p(x) < 1 = \varnothing\}</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} | ||
सेमिनोर्म्स के अन्य गुण | '''सेमिनोर्म्स के अन्य गुण''' | ||
प्रत्येक सेमिनार एक संतुलित कार्य है। | प्रत्येक सेमिनार एक संतुलित कार्य है। | ||
Line 58: | Line 53: | ||
यदि उपरोक्त शर्तों में से कोई भी संबद्ध होता है, तो निम्नलिखित समतुल्य हैं: <math>p</math> एक आदर्श है; | यदि उपरोक्त शर्तों में से कोई भी संबद्ध होता है, तो निम्नलिखित समतुल्य हैं: <math>p</math> एक आदर्श है; | ||
<math>\{x \in X : p(x) < 1\}</math> एक गैर-तुच्छ सदिश उप-स्थान सम्मिलित नहीं है।{{sfn|Narici|Beckenstein|2011|p=149}} | <math>\{x \in X : p(x) < 1\}</math> एक गैर-तुच्छ सदिश उप-स्थान सम्मिलित नहीं है।{{sfn|Narici|Beckenstein|2011|p=149}} | ||
<li>पर एक [[Index.php?title=Index.php?title=मानक सदिश समष्टि|मानक सदिश समष्टि]] उपलब्ध है <math>X,</math> जिसके संबंध में, <math>\{x \in X : p(x) < 1\}</math> घिरा हुआ है।</li> | <li>पर एक [[Index.php?title=Index.php?title=मानक सदिश समष्टि|मानक सदिश समष्टि]] उपलब्ध है <math>X,</math> जिसके संबंध में, <math>\{x \in X : p(x) < 1\}</math> घिरा हुआ है।</li> | ||
यदि <math>p</math> वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है <math>X</math> उसके बाद निम्न बराबर हैं:{{sfn|Narici|Beckenstein|2011|pp=177-220}} <math>p</math> एक [[रैखिक कार्यात्मक]] है; | यदि <math>p</math> वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है <math>X</math> उसके बाद निम्न बराबर हैं:{{sfn|Narici|Beckenstein|2011|pp=177-220}} <math>p</math> एक [[रैखिक कार्यात्मक]] है; | ||
Line 67: | Line 63: | ||
==== हैन-बनच प्रमेय सेमिनोर्म्स के लिए ==== | ==== हैन-बनच प्रमेय सेमिनोर्म्स के लिए ==== | ||
सेमिनोर्म्स हन-बनाक प्रमेय का एक विशेष रूप से स्वच्छ सूत्रीकरण प्रदान करते हैं: यदि <math>M</math> एक सेमिनोर्म्ड समष्टि का एक सदिश उपसमष्टि है <math>(X, p)</math> और यदि <math>f</math> पर एक सतत रैखिक कार्यात्मक है <math>M,</math> फिर <math>f</math> एक सतत रैखिक कार्यात्मक तक बढ़ाया जा सकता है <math>F</math> पर <math>X</math> जिसका वही मानदंड है <math>f.</math>{{sfn|Wilansky|2013|pp=21-26}} एक समान विस्तार संपत्ति भी | सेमिनोर्म्स हन-बनाक प्रमेय का एक विशेष रूप से स्वच्छ सूत्रीकरण प्रदान करते हैं: यदि <math>M</math> एक सेमिनोर्म्ड समष्टि का एक सदिश उपसमष्टि है <math>(X, p)</math> और यदि <math>f</math> पर एक सतत रैखिक कार्यात्मक है <math>M,</math> फिर <math>f</math> एक सतत रैखिक कार्यात्मक तक बढ़ाया जा सकता है <math>F</math> पर <math>X</math> जिसका वही मानदंड है <math>f.</math>{{sfn|Wilansky|2013|pp=21-26}} | ||
<li>सेमीनॉर्म्स के लिए एक समान विस्तार संपत्ति भी है: | |||
</ul>{{Math theorem|name=प्रमेय{{sfn|Narici|Beckenstein|2011|pp=150}}{{sfn|Wilansky|2013|pp=18-21}}|note=विस्तार सेमिनार|math_statement= | |||
यदि <math>M</math> की सदिश उपसमष्टि है <math>X,</math> <math>p</math> पर एक सेमिनार है <math>M,</math> और <math>q</math> पर एक सेमिनार है <math>X</math> ऐसा है कि <math>p \leq q\big\vert_M,</math>तो <math>X</math> पर एक सेमिनॉर्म विद्यमान होता है <math>P</math> जैसे कि <math>P\big\vert_M = p</math> और<math>P \leq q.</math> | यदि <math>M</math> की सदिश उपसमष्टि है <math>X,</math> <math>p</math> पर एक सेमिनार है <math>M,</math> और <math>q</math> पर एक सेमिनार है <math>X</math> ऐसा है कि <math>p \leq q\big\vert_M,</math>तो <math>X</math> पर एक सेमिनॉर्म विद्यमान होता है <math>P</math> जैसे कि <math>P\big\vert_M = p</math> और<math>P \leq q.</math> | ||
}} | }} | ||
: प्रमाण : चलो <math>S</math> का [[उत्तल पतवार]] हो <math>\{m \in M : p(m) \leq 1\} \cup \{x \in X : q(x) \leq 1\}.</math> फिर <math>S</math> एक अवशोषित समुच्चय पूर्णतः उत्तल समुच्चय है <math>X</math>और इसलिए मिन्कोव्स्की कार्यात्मक <math>P</math> का <math>S</math> पर एक सेमीनॉर्म है <math>X.</math> यह सेमिनार संतुष्ट करता है <math>p = P</math> पर <math>M</math> तथा <math>P \leq q</math> पर <math>X.</math> | : प्रमाण : चलो <math>S</math> का [[उत्तल पतवार]] हो <math>\{m \in M : p(m) \leq 1\} \cup \{x \in X : q(x) \leq 1\}.</math> फिर <math>S</math> एक अवशोषित समुच्चय पूर्णतः उत्तल समुच्चय है <math>X</math>और इसलिए मिन्कोव्स्की कार्यात्मक <math>P</math> का <math>S</math> पर एक सेमीनॉर्म है <math>X.</math> यह सेमिनार संतुष्ट करता है <math>p = P</math> पर <math>M</math> तथा <math>P \leq q</math> पर <math>X.</math> | ||
== सेमीमानकड स्पेस की टोपोलॉजी == | == सेमीमानकड स्पेस की टोपोलॉजी == | ||
Line 108: | Line 105: | ||
असीम रूप से कई सेमिनोर्मेबल समष्टि का उत्पाद फिर से सेमिनोर्मेबल है यदि और केवल यदि इन सभी जगहों में से कई छोटे हैं (यानी, 0-आकार )।{{sfn|Narici|Beckenstein|2011|pp=156–175}} | असीम रूप से कई सेमिनोर्मेबल समष्टि का उत्पाद फिर से सेमिनोर्मेबल है यदि और केवल यदि इन सभी जगहों में से कई छोटे हैं (यानी, 0-आकार )।{{sfn|Narici|Beckenstein|2011|pp=156–175}} | ||
<li> | <li> | ||
=== सांस्थितिक गुण === | === सांस्थितिक गुण === | ||
Line 117: | Line 115: | ||
यदि <math>p</math> संस्थानिक सदिश समष्टि पर एक सेमिनोर्म है <math>X,</math> उसके बाद निम्न बराबर हैं:{{sfn|Schaefer|Wolff|1999|p=40}} <math>p</math> निरंतर है। | यदि <math>p</math> संस्थानिक सदिश समष्टि पर एक सेमिनोर्म है <math>X,</math> उसके बाद निम्न बराबर हैं:{{sfn|Schaefer|Wolff|1999|p=40}} <math>p</math> निरंतर है। | ||
</ul> | </ul> | ||
<math>p</math> 0 पर निरंतर है;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | <math>p</math> 0 पर निरंतर है;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | ||
<math>\{x \in X : p(x) < 1\}</math> में खुला है <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | <math>\{x \in X : p(x) < 1\}</math> में खुला है <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | ||
<math>\{x \in X : p(x) \leq 1\}</math> में 0 का बंद पड़ोस है <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | <math>\{x \in X : p(x) \leq 1\}</math> में 0 का बंद पड़ोस है <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | ||
<math>p</math> समान रूप से निरंतर है <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | <math>p</math> समान रूप से निरंतर है <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}} | ||
<li>एक सतत सेमिमानक उपस्थित है <math>q</math> पर <math>X</math> ऐसा है कि <math>p \leq q.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} | |||
<li>एक सतत सेमिमानक उपस्थित है <math>q</math> पर <math>X</math> ऐसा है कि <math>p \leq q.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} | |||
विशेष रूप से, यदि <math>(X, p)</math> एक सेमीमानक स्पेस है तो एक सेमिमानक <math>q</math> पर <math>X</math> निरंतर है यदि और केवल यदि <math>q</math> के धनात्मक अदिश गुणक का प्रभुत्व है <math>p.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} | विशेष रूप से, यदि <math>(X, p)</math> एक सेमीमानक स्पेस है तो एक सेमिमानक <math>q</math> पर <math>X</math> निरंतर है यदि और केवल यदि <math>q</math> के धनात्मक अदिश गुणक का प्रभुत्व है <math>p.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} | ||
Line 134: | Line 132: | ||
<math>F</math> निरंतर है;</li> | <math>F</math> निरंतर है;</li> | ||
<math>\|F\|_{p,q} < \infty</math>;{{sfn|Wilansky|2013|pp=21-26}} | <math>\|F\|_{p,q} < \infty</math>;{{sfn|Wilansky|2013|pp=21-26}} | ||
<li>वहाँ एक वास्तविक उपस्थित है <math>K \geq 0</math> ऐसा है कि <math>p \leq K q</math>;{{sfn|Wilansky|2013|pp=21-26}} | <li>वहाँ एक वास्तविक उपस्थित है <math>K \geq 0</math> ऐसा है कि <math>p \leq K q</math>;{{sfn|Wilansky|2013|pp=21-26}} | ||
* इस विषय में, <math>\|F\|_{p,q} \leq K.</math | * इस विषय में, <math>\|F\|_{p,q} \leq K.</math> | ||
यदि <math>F</math> तब निरंतर है <math>q(F(x)) \leq \|F\|_{p,q} p(x)</math> सभी के लिए <math>x \in X.</math>{{sfn|Wilansky|2013|pp=21-26}} | यदि <math>F</math> तब निरंतर है <math>q(F(x)) \leq \|F\|_{p,q} p(x)</math> सभी के लिए <math>x \in X.</math>{{sfn|Wilansky|2013|pp=21-26}} | ||
सभी निरंतर रैखिक मानचित्रों का स्थान <math>F : (X, p) \to (Y, q)</math> सेमिनोर्म्ड रिक्त स्थान के बीच स्वयं सेमिनोर्म के तहत एक सेमिनोर्मड स्थान है <math>\|F\|_{p,q}.</math> यह सेमिमानक एक आदर्श है यदि <math>q</math> एक आदर्श है।{{sfn|Wilansky|2013|pp=21-26}} | सभी निरंतर रैखिक मानचित्रों का स्थान <math>F : (X, p) \to (Y, q)</math> सेमिनोर्म्ड रिक्त स्थान के बीच स्वयं सेमिनोर्म के तहत एक सेमिनोर्मड स्थान है <math>\|F\|_{p,q}.</math> यह सेमिमानक एक आदर्श है यदि <math>q</math> एक आदर्श है।{{sfn|Wilansky|2013|pp=21-26}} | ||
Line 146: | Line 143: | ||
इसकी अवधारणा {{em|नॉर्म }} रचना में बीजगणित करता है {{em|नहीं}} एक मानक के सामान्य गुणों को साझा करें। | इसकी अवधारणा {{em|नॉर्म }} रचना में बीजगणित करता है {{em|नहीं}} एक मानक के सामान्य गुणों को साझा करें। | ||
एक रचना बीजगणित <math>(A, *, N)</math> एक क्षेत्र पर एक बीजगणित के होते हैं <math>A,</math> एक समावेशन (गणित) <math>\,*,</math> और एक [[द्विघात रूप]] <math>N,</math> जिसे | एक रचना बीजगणित <math>(A, *, N)</math> एक क्षेत्र पर एक बीजगणित के होते हैं <math>A,</math> एक समावेशन (गणित) <math>\,*,</math> और एक [[द्विघात रूप]] <math>N,</math> जिसे आदर्श कहते हैं। कई विषयों में <math>N</math> एक [[Index.php?title=समदैशिक द्विघात रूप|समदैशिक द्विघात रूप]] है ताकि <math>A</math> कम से कम एक [[अशक्त वेक्टर|अशक्त सदिश]] है, जो इस लेख में चर्चा किए गए सामान्य मानदंड के लिए आवश्यक बिंदुओं के पृथक्करण के विपरीत है। | ||
एक {{em|अल्ट्रासेमिनॉर्म }} या ए {{em|गैर-आर्किमिडीयन सेमिनॉर्म}} एक सेमिनोर्म है <math>p : X \to \R</math> वह भी संतुष्ट करता है <math>p(x + y) \leq \max \{p(x), p(y)\} \text{ for all } x, y \in X.</math> | एक {{em|अल्ट्रासेमिनॉर्म }} या ए {{em|गैर-आर्किमिडीयन सेमिनॉर्म}} एक सेमिनोर्म है <math>p : X \to \R</math> वह भी संतुष्ट करता है <math>p(x + y) \leq \max \{p(x), p(y)\} \text{ for all } x, y \in X.</math> | ||
Line 217: | Line 214: | ||
{{DEFAULTSORT:Norm (Mathematics)}} | {{DEFAULTSORT:Norm (Mathematics)}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Norm (Mathematics)]] | ||
[[Category:Collapse templates|Norm (Mathematics)]] | |||
[[Category: | [[Category:Created On 25/11/2022|Norm (Mathematics)]] | ||
[[Category:Created On 25/11/2022]] | [[Category:Machine Translated Page|Norm (Mathematics)]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Norm (Mathematics)]] | |||
[[Category:Pages with script errors|Norm (Mathematics)]] | |||
[[Category:Sidebars with styles needing conversion|Norm (Mathematics)]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Norm (Mathematics)]] | |||
[[Category:Templates generating microformats|Norm (Mathematics)]] | |||
[[Category:Templates that are not mobile friendly|Norm (Mathematics)]] | |||
[[Category:Templates using TemplateData|Norm (Mathematics)]] | |||
[[Category:Wikipedia metatemplates|Norm (Mathematics)]] | |||
[[Category:रैखिक बीजगणित|Norm (Mathematics)]] |
Latest revision as of 19:05, 31 January 2023
गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, एक सेमिनोर्म एक मानक (गणित) है जिसे सकारात्मक निश्चित होने की आवश्यकता नहीं है। सेमिमानक उत्तल समुच्चय के साथ घनिष्ठ रूप से जुड़े हुए हैं: प्रत्येक सेमिमानक कुछ अवशोषित समुच्चय का मिंकोव्स्की कार्यात्मक है बिल्कुल उत्तल समुच्चय और, इसके विपरीत, ऐसे किसी भी समुच्चय का मिंकोव्स्की कार्यात्मक एक सेमिमानक है।
एक संस्थानिक सदिश समष्टि स्थानीय रूप से उत्तल होता है यदि इसकी सांस्थिति सेमिनोर्म्स के एक परिवार द्वारा प्रेरित होती है।
परिभाषा
होने देना या तो वास्तविक संख्या पर एक सदिश समष्टि हो या जटिल संख्या संख्या एक वास्तविक मूल्यवान कार्य ए कहा जाता है सेमिनोर्म्स यदि यह निम्नलिखित दो शर्तों को पूरा करता है:
- उप-योगात्मक कार्य / त्रिभुज असमानता: सभी के लिए
- सजातीय कार्य: सभी के लिए और सभी अदिश
ये दो शर्तें इसका तात्पर्य हैं कि [proof 1] और वह प्रत्येक सेमिमानक निम्नलिखित संपत्ति भी है:[proof 2]
नकारात्मक: सभी के लिए कुछ लेखकों में सेमिनोर्म (और कभी-कभी मानदंड) की परिभाषा के भाग के रूप में गैर-नकारात्मकता सम्मिलित है, यद्यपि यह आवश्यक नहीं है क्योंकि यह अन्य दो गुणों से अनुसरण करता है।
परिभाषा के अनुसार, एक मानक (गणित) पर एक सेमिनोर्म है जो बिंदुओं को भी भिन्न करता है, जिसका तात्पर्य है कि इसमें निम्नलिखित अतिरिक्त गुण हैं:
सकारात्मक निश्चित / बिंदु भिन्न करना : सभी के लिए यदि फिर सेमिनोर्म्ड स्पेस जोड़ी है एक सदिश स्थान से मिलकर और एक सेमिमानक पर यदि सेमिमानक यह भी एक मानक है तो सेमिमानक स्पेस नोर्म्ड स्पेस ए कहा जाता है , चूँकि निरपेक्ष एकरूपता का तात्पर्य सकारात्मक एकरूपता से है, प्रत्येक सेमिनोर्म एक प्रकार का कार्य है जिसे एक उपरैखिक फलन कहा जाता है। एक मानचित्र कहा जाता है उपरैखिक फलन यदि यह उप-योगात्मक और सकारात्मक सजातीय है। एक सेमिमानक के विपरीत, एक उपरैखिक फलन अनिवार्य रूप से गैर-नकारात्मक नहीं है। हाहन-बनाक प्रमेय के संदर्भ में उपरैखिक कार्यों का प्रायः सामना किया जाता है। एक वास्तविक मूल्यवान कार्य एक सेमिनोर्म है यदि और केवल यदि यह एक उपरैखिक फलन और संतुलित फलन है।
उदाहरण
यहाँ पर जो निरंतर को संदर्भित करता है मानचित्र पर असतत सांस्थिति को प्रेरित करता है यदि सदिश समष्टि पर कोई रैखिक रूप है तो उसका निरपेक्ष मान द्वारा परिभाषित एक सेमिमानक है। एक उपरैखिक फलन एक वास्तविक सदिश स्थान पर एक सेमिनोर्म है यदि और केवल यदि यह एक है सममित फलन , जिसका अर्थ है कि सभी के लिए प्रत्येक वास्तविक-मूल्यवान उपरैखिक फलन एक वास्तविक सदिश स्थान पर सेमिनोर्म उत्पन्न करता है द्वारा परिभाषित [1] सेमिमानक का कोई भी परिमित योग सेमिमानक होता है। एक सदिश उप-क्षेत्र के लिए एक सेमिमानक (क्रमशः,मानदंड) का प्रतिबंध एक बार फिर से एक सेमिमानक (क्रमशः, मानदंड) है। यदि तथा सेमिमानक (क्रमशः, मानदंड) हैं तथा फिर मानचित्र द्वारा परिभाषित एक सेमिमानक (क्रमशः, एक आदर्श) है विशेष रूप से, मानचित्र पर द्वारा परिभाषित तथा दोनों सेमिनोर्म पर हैं यदि तथा सेमिनोर्म चल रहे हैं तो हैं[2]
एक सदिश स्थान पर सेमीनॉर्म्स मिंकोवस्की प्रकार्यात्मक के माध्यम से, के उपसमुच्चयों से घनिष्ठ रूप से बंधे हुए हैं जो उत्तल समुच्चय , संतुलित समुच्चय और अवशोषक समुच्चय हैं। ऐसा उपसमुच्चय दिया है का मिन्कोवस्की की कार्यात्मकता एक सेमिनोर्म है। और इसके विपरीत, एक सेमीनॉर्म दिया पर समुच्चय तथा उत्तल, संतुलित और अवशोषित हैं और इसके अतिरिक्त, इन दो समुच्चय (साथ ही उनके बीच में पड़े किसी भी समुच्चय ) का मिंकोव्स्की कार्यात्मक है [4]
बीजगणितीय गुण
प्रत्येक सेमिमानक एक उपरैखिक फलन है, और इस प्रकार सभी उपरैखिक फलन के गुण को संतुष्ट करता है, जिसमें निम्न सम्मिलित हैं:
- उत्तल कार्य
- उत्क्रम त्रिकोण असमानता [1][5]
- किसी के लिए , [6]
- किसी के लिए , एक अवशोषित समुच्चय पूर्णतः उत्तल समुच्चय है [2]
- तथा [1][5]
- यदि वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है तो वहाँ एक रैखिक कार्यात्मक उपलब्ध है पर ऐसा है कि [5]
- यदि एक वास्तविक सदिश स्थान है, पर एक रैखिक कार्यात्मक है तथा पर एक उपरैखिक फलन है फिर पर यदि और केवल यदि [5]
सेमिनोर्म्स के अन्य गुण
प्रत्येक सेमिनार एक संतुलित कार्य है।
यदि पर एक सेमीनॉर्म है फिर:
पर एक आदर्श है यदि और केवल यदि एक गैर-तुच्छ सदिश उप-स्थान सम्मिलित नहीं है। की सदिश उपसमष्टि है किसी के लिए [2]
अन्य मानक जैसी अवधारणाओं से संबंध
होने देना एक गैर-नकारात्मक कार्य हो। निम्नलिखित समतुल्य हैं: एक सेमिमानक है। उत्तल फलन F-सेमिमानक है-सेमिनोर्म। एक उत्तल संतुलित मेट्रिज़ेबल संस्थानिक सदिश समष्टि है | जी-सेमिमानक।[8]
यदि उपरोक्त शर्तों में से कोई भी संबद्ध होता है, तो निम्नलिखित समतुल्य हैं: एक आदर्श है; एक गैर-तुच्छ सदिश उप-स्थान सम्मिलित नहीं है।[9]
यदि वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है उसके बाद निम्न बराबर हैं:[5] एक रैखिक कार्यात्मक है; ;;
सेमीमानक्स से जुड़ी असमानताएँ
यदि सेमीनार चल रहे हैं फिर यदि और केवल यदि तात्पर्य [10] यदि तथा ऐसे हैं तात्पर्य फिर सभी के लिए [11] मान लीजिए कि तथा सकारात्मक वास्तविक संख्याएं हैं और सेमिनोर्म चल रहे हैं ऐसा कि प्रत्येक के लिए यदि फिर फिर [9] यदि वास्तविक से अधिक एक सदिश स्थान है और एक गैर-शून्य रैखिक कार्यात्मक है फिर यदि और केवल यदि [10] यदि पर एक सेमिनार है तथा पर एक रैखिक कार्यात्मक है फिर: पर यदि और केवल यदि पर (प्रमाण के लिए पाद टिप्पणी देखें)।[12][13] पर यदि और केवल यदि [5][10] यदि तथा ऐसे हैं तात्पर्य फिर सभी के लिए [11]
हैन-बनच प्रमेय सेमिनोर्म्स के लिए
सेमिनोर्म्स हन-बनाक प्रमेय का एक विशेष रूप से स्वच्छ सूत्रीकरण प्रदान करते हैं: यदि एक सेमिनोर्म्ड समष्टि का एक सदिश उपसमष्टि है और यदि पर एक सतत रैखिक कार्यात्मक है फिर एक सतत रैखिक कार्यात्मक तक बढ़ाया जा सकता है पर जिसका वही मानदंड है [14]
प्रमेय[15][11] (विस्तार सेमिनार) — यदि की सदिश उपसमष्टि है पर एक सेमिनार है और पर एक सेमिनार है ऐसा है कि तो पर एक सेमिनॉर्म विद्यमान होता है जैसे कि और
- प्रमाण : चलो का उत्तल पतवार हो फिर एक अवशोषित समुच्चय पूर्णतः उत्तल समुच्चय है और इसलिए मिन्कोव्स्की कार्यात्मक का पर एक सेमीनॉर्म है यह सेमिनार संतुष्ट करता है पर तथा पर
सेमीमानकड स्पेस की टोपोलॉजी
स्यूडोमेट्रिक्स और प्रेरित टोपोलॉजी
एक सेमिमानक पर एक सांस्थिति को प्रेरित करता है, जिसे कहा जाता है सेमिनॉर्म-प्रेरित सांस्थिति, कैनोनिकल अनुवाद अपरिवर्तनीय स्यूडोमेट्रिक समष्टि के माध्यम से ; यह सांस्थिति हॉसडॉर्फ स्पेस है यदि और केवल यदि एक मीट्रिक है, जो तब और केवल तभी होता है एक आदर्श (गणित) है।[3] यह सांस्थिति बनाती है एक स्थानीय रूप से उत्तल संस्थानिक सदिश समष्टि मेट्रिजेबल संस्थानिक सदिश समष्टि संस्थानिक सदिश समष्टि जिसमें मूल के आस-पास एक परिबद्ध समुच्चय (संस्थानिक सदिश समष्टि ) और मूल पर एक पड़ोस का आधार होता है, जिसमें निम्नलिखित खुली गेंदें (या बंद गेंदें) होती हैं। मूल:
मजबूत, कमजोर, और समतुल्य सेमीमानक्स
मजबूत और कमजोर सेमीमानक्स की धारणाएं मजबूत और कमजोर मानक (गणित) की धारणाओं के समान हैं। यदि तथा सेमीनार चल रहे हैं तब हम कहते हैं है मजबूत अतिरिक्त और कि है कमज़ोर अतिरिक्त यदि निम्न में से कोई भी समतुल्य स्थिति रखती है:
- सांस्थिति सक्रिय प्रेरक द्वारा प्रेरित सांस्थिति से अधिक अच्छा है
- यदि में क्रम है फिर में तात्पर्य में [3]
- यदि में एक नेट (गणित) है फिर में तात्पर्य में
- पर आबद्ध है [3]
- यदि फिर सभी के लिए [3]
- एक वास्तविक उपस्थित है ऐसा है कि पर [3]
सेमिनोर्म्स तथा कहा जाता है बराबर यदि वे दोनों एक दूसरे से कमजोर (या दोनों मजबूत) हैं। ऐसा तब होता है जब वे निम्नलिखित में से किसी भी स्थिति को पूरा करते हैं:
सांस्थिति सक्रिय है प्रेरक द्वारा प्रेरित सांस्थिति के समान है से अधिक मजबूत है तथा से अधिक मजबूत है [3] यदि में क्रम है फिर यदि और केवल यदि सकारात्मक वास्तविक संख्याएं उपस्थित हैं तथा ऐसा है कि
सामान्यता और अर्ध-सामान्यता
एक संस्थानिक सदिश समष्टि (टीवीएस) कहा जाता है एक सेमिनोर्मेबल समष्टि (क्रमशः, एक सामान्य स्थान ) यदि इसकी सांस्थिति एकल सेमिमानक (प्रतिक्रिया एकल मानदंड) से प्रेरित है। एक टीवीएस सामान्य है यदि और केवल यदि यह सेमिनोर्मेबल है और हॉसडॉर्फ या समकक्ष है, यदि और केवल यदि यह सेमिनोर्मेबल है और टी1 है (क्योंकि एक टीवीएस हॉसडॉर्फ है यदि और केवल यदि यह एक टी 1 स्पेस है। टी1 अंतरिक्ष)। एक स्थानीय रूप से बाउंड संस्थानिक सदिश समष्टि एक संस्थानिक सदिश समष्टि है जो मूल के एक सीमित पड़ोस के पास है।
संस्थानिक सदिश रिक्त स्थान की सामान्यता कोल्मोगोरोव की मानकता कसौटी द्वारा विशेषता है। एक टीवीएस सेमिनोर्मेबल है यदि और केवल यदि इसकी उत्पत्ति के उत्तल बाध्य पड़ोस है।[16] इस प्रकार एक स्थानीय रूप से उत्तल टीवीएस सेमिनोर्मेबल है यदि और केवल यदि इसमें एक गैर-खाली परिबद्ध खुला समुच्चय है।[17] एक टीवीएस सामान्य है यदि और केवल यदि यह एक टी1 स्पेस | टी है1 अंतरिक्ष और मूल के एक घिरे उत्तल पड़ोस को स्वीकार करता है।
यदि एक हॉउसडॉर्फ स्थानीय रूप से उत्तल टीवीएस है तो निम्नलिखित समतुल्य हैं:
सामान्य है। सेमिनोर्मेबल है। मूल का एक सीमाबद्ध पड़ोस है। मजबूत दोहरा का सामान्य है।[18] मजबूत दोहरा का मेट्रिजेबल संस्थानिक सदिश समष्टि है।[18] आगे, परिमित आयामी है यदि और केवल यदि सामान्य है (यहाँ अर्थ है कमजोर- * सांस्थिति से संपन्न)।
असीम रूप से कई सेमिनोर्मेबल समष्टि का उत्पाद फिर से सेमिनोर्मेबल है यदि और केवल यदि इन सभी जगहों में से कई छोटे हैं (यानी, 0-आकार )।[17]
सांस्थितिक गुण
यदि एक टीवीएस और है पर एक सतत सेमिनार है फिर बंद में के बराबर है [2] का समापन स्थानीय रूप से उत्तल स्थान में जिसका सांस्थिति निरंतर सेमिनोर्म्स के एक परिवार द्वारा परिभाषित किया गया है के बराबर है [10] एक उपसमुच्चय एक अर्धवृत्ताकार स्थान में परिबद्ध समुच्चय (संस्थानिक सदिश समष्टि ) है यदि और केवल यदि घिरा है।[19] यदि एक सेमिनोर्ड स्पेस है तो स्थानीय रूप से उत्तल सांस्थिति प्रवृत्त करता है बनाता है द्वारा दिए गए कैनोनिकल स्यूडोमेट्रिक के साथ मेट्रिजेबल संस्थानिक सदिश समष्टि में सभी के लिए [20] अनंत रूप से अनेक सेमिनोर्मेबल स्थानों का गुणनफल फिर से सेमिनोर्मेबल होता है यदि और केवल यदि इनमें से बहुत से रिक्त स्थान तुच्छ हैं (अर्थात, 0-आयामी)।[17]
सेमिनोर्म्स की निरंतरता
यदि संस्थानिक सदिश समष्टि पर एक सेमिनोर्म है उसके बाद निम्न बराबर हैं:[4] निरंतर है।
0 पर निरंतर है;[2] में खुला है ;[2] में 0 का बंद पड़ोस है ;[2] समान रूप से निरंतर है ;[2]
रैखिक मानचित्रों की निरंतरता
यदि सेमिनोर्म्ड रिक्त स्थान के बीच एक नक्शा है तो चलो[14]
;[14]
- इस विषय में,
सामान्यीकरण
इसकी अवधारणा नॉर्म रचना में बीजगणित करता है नहीं एक मानक के सामान्य गुणों को साझा करें।
एक रचना बीजगणित एक क्षेत्र पर एक बीजगणित के होते हैं एक समावेशन (गणित) और एक द्विघात रूप जिसे आदर्श कहते हैं। कई विषयों में एक समदैशिक द्विघात रूप है ताकि कम से कम एक अशक्त सदिश है, जो इस लेख में चर्चा किए गए सामान्य मानदंड के लिए आवश्यक बिंदुओं के पृथक्करण के विपरीत है।
एक अल्ट्रासेमिनॉर्म या ए गैर-आर्किमिडीयन सेमिनॉर्म एक सेमिनोर्म है वह भी संतुष्ट करता है कमजोर करने वाली उप-विषमता: अर्ध-सेमिनोर्म्स
मानचित्र ए कहा जाता है अर्ध-सेमिनोर्म यदि यह (बिल्कुल) सजातीय है और कुछ उपस्थित है ऐसा है कि का सबसे छोटा मान जिसके लिए यह धारण कहा जाता है का गुणक बिंदुओं को भिन्न करने वाले अर्ध-सम्मेलन को कहा जाता है अर्ध-आदर्श पर कमजोर पड़ रही एकरूपता- -सेमिनोर्म्स
मानचित्र ए कहा जाता है -सेमिनॉर्म यदि यह सहायक है और उपस्थित है ऐसा है कि और सभी के लिए और अदिश
यह भी देखें
- असममित मानदंड
- बनच स्थान
- संकुचन मानचित्रण – Function reducing distance between all points
- बेहतरीन स्थानीय उत्तल टोपोलॉजी
- हन-बनाक प्रमेय
- गोवर्स मानदंड
- स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश समष्टि
- महालनोबिस दूरी
- मैट्रिक्स मानदंड
- मिन्कोव्स्की कार्यात्मक
- सामान्य (गणित) – Length in a vector space
- नॉर्मड सदिश समष्टि
- मानदंडों और मेट्रिक्स का संबंध
- सबलाइनियर फ़ंक्शन
टिप्पणियाँ
Proofs
- ↑ If denotes the zero vector in while denote the zero scalar, then absolute homogeneity implies that
- ↑ Suppose is a seminorm and let Then absolute homogeneity implies The triangle inequality now implies Because was an arbitrary vector in it follows that which implies that (by subtracting from both sides). Thus which implies (by multiplying thru by ).
संदर्भ
- ↑ 1.0 1.1 1.2 Narici & Beckenstein 2011, pp. 120–121.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Narici & Beckenstein 2011, pp. 116–128.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Wilansky 2013, pp. 15–21.
- ↑ 4.0 4.1 4.2 4.3 Schaefer & Wolff 1999, p. 40.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Narici & Beckenstein 2011, pp. 177–220.
- ↑ Narici & Beckenstein 2011, pp. 116−128.
- ↑ Narici & Beckenstein 2011, pp. 107–113.
- ↑ Schechter 1996, p. 691.
- ↑ 9.0 9.1 Narici & Beckenstein 2011, p. 149.
- ↑ 10.0 10.1 10.2 10.3 Narici & Beckenstein 2011, pp. 149–153.
- ↑ 11.0 11.1 11.2 Wilansky 2013, pp. 18–21.
- ↑ Obvious if is a real vector space. For the non-trivial direction, assume that on and let Let and be real numbers such that Then
- ↑ Wilansky 2013, p. 20.
- ↑ 14.0 14.1 14.2 14.3 14.4 14.5 Wilansky 2013, pp. 21–26.
- ↑ Narici & Beckenstein 2011, pp. 150.
- ↑ Wilansky 2013, pp. 50–51.
- ↑ 17.0 17.1 17.2 Narici & Beckenstein 2011, pp. 156–175.
- ↑ 18.0 18.1 Trèves 2006, pp. 136–149, 195–201, 240–252, 335–390, 420–433.
- ↑ Wilansky 2013, pp. 49–50.
- ↑ Narici & Beckenstein 2011, pp. 115–154.
- Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
- Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN 978-0-387-90081-0. OCLC 878109401.
- Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
- Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics. Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
- Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
- Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Prugovečki, Eduard (1981). Quantum mechanics in Hilbert space (2nd ed.). Academic Press. p. 20. ISBN 0-12-566060-X.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
- Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.