सोरप्शन पंप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(32 intermediate revisions by 4 users not shown)
Line 1: Line 1:
सोरप्शन पंप एक [[[[खालीपन]] पंप]]वैक्यूम पंप है जो [[आणविक छलनी]] जैसी बहुत छिद्रपूर्ण सामग्री पर अणुओं को अवशोषित करके एक वैक्यूम बनाता है जिसे [[क्रायोजेन]], आमतौर पर [[तरल नाइट्रोजन]] द्वारा ठंडा किया जाता है। परम दाब लगभग 10 -20 मिलीबार होता है।  
'''सोरप्शन पंप''' एक [[खालीपन|निर्वात]] पंप उपकरण है जो [[आणविक छलनी]] जैसी बहुत छिद्रपूर्ण सामग्री पर अणुओं को अवशोषित एक उपकरण बनाता है जिसे [[क्रायोजेन]], प्राय:[[: तरल नाइट्रोजन]] द्वारा ठंडा किया जाता है। परम दाब लगभग 10 -2मिलीबार होता है।  


कुछ तकनीकों से इसे 10-7 मिलीबार तक कम किया जा सकता है।मुख्य लाभ तेल या अन्य संदूषकों की अनुपस्थिति,में कम लागत और कंपन मुक्त संचालन हैं क्योंकि कोई हिलने वाले हिस्से नहीं हैं। इसका [[नियॉन|मुख्य]] कारण यह है कि यह लगातार काम नहीं कर सकता है और [[हाइड्रोजन]], [[हीलियम]] और [[नियॉन]] को प्रभावी ढंग से पंप नहीं कर सकता है, तरल नाइट्रोजन की तुलना में कम संघनन तापमान वाली सभी गैसें। मुख्य अनुप्रयोग में एक [[आयन पंप (भौतिकी)]] के लिए [[रफिंग पंप]] के रूप में है। [[अति उच्च वैक्यूम]] प्रयोगों में स्पटर-आयन पंप, होता है।उदाहरण - [[सतह भौतिकी]] में।
विशेष तकनीकों से इसे 10-7 मिलीबार तक कम किया जा सकता है।इसका मुख्य लाभ तेल या अन्य दूषित पदार्थों की अनुपस्थिति,में कम लागत और कंपन मुक्त संचालन हैं क्योंकि ये कोई कंपन करने वाले हिस्से नहीं हैं। इसका [[नियॉन|मुख्य]] कारण यह है कि ये लगातार कार्य नहीं कर सकता है और [[हाइड्रोजन]], [[हीलियम]] और [[नियॉन]] को प्रभावी ढंग से पंप नहीं कर सकता है, तरल नाइट्रोजन की तुलना में कम संघनन तापमान वाली सभी गैसें मुख्य अनुप्रयोग में एक [[आयन पंप (भौतिकी)]] के लिए [[रफिंग पंप]] के रूप में हैं। [[अति उच्च वैक्यूम|अति उच्च निर्वात]] प्रयोगों में लीथियम-आयन पंप, होता है।उदाहरण - [[सतह भौतिकी]] में।


== निर्माण ==
== निर्माण ==
सोरप्शन पंप आमतौर पर [[स्टेनलेस स्टील]], [[अल्युमीनियम]] या [[बोरोसिलीकेट कांच]] में बनाया जाता है। यह आणविक छलनी से भरा एक साधारण [[पाइरेक्स]] फ्लास्क या छिद्रित ट्यूबिंग और ऊष्म -संचालन पंखों वाले धातु के फ्लास्क से युक्त एक विस्तृत धातु का निर्माण हो सकता है। जिससे दबाव रहित वाल्व स्थापित किया जा सकता है। बनावट केवल पंपिंग गति को प्रभावित करता है न कि अंतिम दबाव जिस तक पहुँचा जा सकता है। बनावट विवरण ऊष्म संचालन पंखों और छिद्रित ट्यूबिंग का उपयोग कर उच्च गैस प्रवाहकत्त्व का उपयोग करके तेजी से ठंडा करने के लिए होता है।
सोरप्शन पंप प्रायः [[स्टेनलेस स्टील]], [[अल्युमीनियम]] या [[बोरोसिलीकेट कांच]] में बनाया जाता है। यह आणविक छलनी से भरा एक साधारण [[पाइरेक्स]] फ्लास्क या छिद्रित ट्यूबिंग और ऊष्म -संचालन पंखों वाले धातु के फ्लास्क से युक्त एक विस्तृत धातु का निर्माण हो सकता है। जिससे दबाव रहित छिद्र स्थापित किया जा सकता है। बनावट केवल पंपिंग गति को प्रभावित करता है न कि अंतिम दबाव जिस तक पहुँचा जा सकता है। बनावट विवरण ऊष्म संचालन पंखों और छिद्रित ट्यूबिंग का उपयोग कर उच्च गैस प्रवाहकत्त्व को ठंडा करने के लिए होता है।


उपयोग की जाने वाली विशिष्ट आणविक छलनी एक सिंथेटिक [[ज़ीइलाइट|ज़ीयोलाइट]] है जिसका छिद्र व्यास लगभग 0.4 [[नैनोमीटर]] (टाइप 4ए) और सतह क्षेत्र लगभग 500 मीटर2/ग्राम है। सोरप्शन पंप में 300 ग्राम और 1.2 किलो ग्राम आणविक छलनी के बीच होता है। 15-लीटर प्रणाली को 300 ग्राम  आण्विक छलनी द्वारा लगभग 10-2मिलीबार तक पंप किया जा सकता है।<sup><ref name="nh">''Modern Vacuum Practice'', Nigel S. Harris, 3rd ed. 2005, chapter 11.</ref>
उपयोग की जाने वाली विशिष्ट आणविक छलनी एक सजातीय [[ज़ीइलाइट|ज़ीयोलाइट]] है जिसका छिद्र ब्यास से लगभग 0.4 [[नैनोमीटर]] (टाइप 4ए) और सतह क्षेत्र लगभग 500 मीटर2/ग्राम है। सोरप्शन पंप में 300 ग्राम और 1.2 किलो ग्राम आणविक छलनी के बीच होता है। 15-लीटर प्रणाली को 300 ग्राम  आण्विक छलनी द्वारा लगभग 10-2मिलीबार तक पंप किया जा सकता है।<sup><ref name="nh">''Modern Vacuum Practice'', Nigel S. Harris, 3rd ed. 2005, chapter 11.</ref>






== ऑपरेशन ==
== कार्यवाही ==
[[सोखना]] पंप एक चक्रीय पंप है और इसके चक्र में 3 चरण होते हैं: सोखना, [[desorption]] और पुनर्जनन।
[[सोखना]] पंप एक चक्रीय पंप है और इसके चक्र में 3 चरण होते हैं: सोखना, [[desorption|अवशोषण]] और पुनर्जनन।


सोर्प्शन चरण में पंप वास्तव में वैक्यूम बनाने के लिए प्रयोग किया जाता है। यह पंप बॉडी को कम तापमान पर ठंडा करके प्राप्त किया जाता है, आमतौर पर इसे तरल नाइट्रोजन से भरे [[वैक्यूम फ्लास्क]] में डुबो कर। गैसें अब या तो संघनित होंगी या आणविक छलनी की बड़ी सतह द्वारा सोख ली जाएंगी।
सोरप्शन  पंप वास्तव में निर्वात बनाने के लिए प्रयोग किया जाता है। यह पंप बॉडी को कम तापमान पर ठंडा करके प्राप्त किया जाता है, आमतौर पर इसे तरल नाइट्रोजन से भरे [[वैक्यूम फ्लास्क|निर्वात फ्लास्क]] में डुबो कर गैसें अब या तो संघनित होंगी या आणविक छलनी की बड़ी सतह द्वारा सोख ली जाएंगी।


desorption चरण में पंप को कमरे के तापमान तक गर्म करने की अनुमति दी जाती है और गैसें दबाव राहत वाल्व या वातावरण के अन्य उद्घाटन के माध्यम से बाहर निकलती हैं। यदि पंप का उपयोग जहरीली, ज्वलनशील या अन्य खतरनाक गैसों को पंप करने के लिए किया गया है, तो वातावरण में सुरक्षित रूप से बाहर निकलने के लिए सावधान रहना होगा क्योंकि सोर्प्शन चरण के दौरान पंप किए गए सभी गैसों को डिसोर्शन चरण के दौरान छोड़ा जाएगा।
अवशोषण में पंप को कमरे के तापमान तक गर्म करने की अनुमति दी जाती है और गैसें दबाव राहत वाल्व या वातावरण के अन्य उद्घाटन के माध्यम से बाहर निकलती हैं। यदि पंप का उपयोग जहरीली, ज्वलनशील या अन्य संकटपूर्ण गैसों को पंप करने के लिए किया गया है, तो वातावरण में सुरक्षित रूप से बाहर निकलने के लिए सावधान रहना होगा क्योंकि सोरप्शन चरण के दौरान पंप किए गए सभी गैसों को अवशोषण के दौरान छोड़ा जाएगा।


पुनर्जनन चरण में पंप बॉडी को 300 °C तक गर्म किया जाता है ताकि जल वाष्प को बाहर निकाला जा सके जो कमरे के तापमान पर उजड़ता नहीं है और आणविक छलनी में जमा हो जाता है। एक पंप को पूरी तरह से पुन: उत्पन्न करने में आमतौर पर 2 घंटे लगते हैं।<ref name="nh" />
पुनः पंप बॉडी को जलवाष्प में चलाने के लिए 300 डिग्री सेल्सियस तक गर्म किया जाता है जो कमरे के तापमान पर उजड़ता नहीं है और आणविक छलनी में जमा हो जाता है। एक पंप को पूरी तरह से पुन: उत्पन्न करने में आमतौर पर 2 घंटे लगते हैं।<ref name="nh" />


पंप का उपयोग सोखने और उजाड़ने के चक्र में तब तक किया जा सकता है जब तक कि यह बहुत अधिक दक्षता खो देता है और पुन: उत्पन्न नहीं होता है या ऐसे चक्र में होता है जहां पुनर्जनन के बाद हमेशा सोखना और उजाड़ना होता है।
पंप का उपयोग सोखने और उजाड़ने के चक्र में तब तक किया जा सकता है जब तक कि यह बहुत अधिक दक्षता खो देता है और पुन: उत्पन्न नहीं होता है या ऐसे चक्र में होता है जहां पुनर्जनन के बाद हमेशा सोखना और उजाड़ना होता है।
Line 24: Line 24:


== प्रदर्शन में सुधार ==
== प्रदर्शन में सुधार ==
पंपिंग क्षमता को एक अन्य सरल और साफ वैक्यूम पंप जैसे [[डायाफ्राम पंप]] या यहां तक ​​कि एक [[पानी एस्पिरेटर]] या संपीड़ित-वायु [[वेंटुरी पंप]] द्वारा सिस्टम को प्रीपंप करके बेहतर बनाया जा सकता है।
पंपिंग क्षमता को एक अन्य सरल और साफ अणु  जैसे [[डायाफ्राम पंप]] या यहां तक ​​कि एक [[पानी एस्पिरेटर]] या संपीड़ित-वायु [[वेंटुरी पंप]] द्वारा सिस्टम को प्रीपंप करके बेहतर बनाया जा सकता है।


कम दबाव प्राप्त करने के लिए अनुक्रमिक या मल्टीस्टेज पंपिंग का उपयोग किया जा सकता है। इस मामले में दो या दो से अधिक पंप वैक्यूम पोत के समानांतर में जुड़े हुए हैं। प्रत्येक पंप में इसे निर्वात पात्र से अलग करने के लिए एक वाल्व होता है। पंप डाउन की शुरुआत में सभी वाल्व खुले होते हैं। पहला पंप ठंडा हो गया है जबकि अन्य अभी भी गर्म हैं। जब पहला पंप अपने अंतिम दबाव तक पहुँच जाता है तो उसे बंद कर दिया जाता है और अगला पंप ठंडा कर दिया जाता है। अंतिम दबाव 10 में हैं<sup>-4</sup> एमबार क्षेत्र। जो बचा है वह मुख्य रूप से हीलियम है क्योंकि इसे लगभग बिल्कुल भी पंप नहीं किया जाता है।<ref name="vt">''Vacuum Technology'', A. Roth, 3rd ed. 1990, chapter 5.5.</em></ref> अंतिम दबाव लगभग हवा में हीलियम के आंशिक दबाव के बराबर होता है।
कम दबाव प्राप्त करने के लिए अनुक्रमिक या मल्टीस्टेज पंपिंग का उपयोग किया जा सकता है। इस मामले में दो या दो से अधिक पंप अणु पोत के समानांतर में जुड़े हुए हैं। प्रत्येक पंप में इसे निर्वात पात्र से अलग करने के लिए एक वाल्व होता है। पंप डाउन की शुरुआत में सभी वाल्व खुले होते हैं। पहला पंप ठंडा हो जाता है जबकि अन्य कुछ समय तक गर्म रहते हैं। जब पहला पंप अपने अंतिम दबाव तक पहुँच जाता है तो उसे बंद कर दिया जाता है और अगला पंप ठंडा कर दिया जाता है। अंतिम दबाव 10-4 मिलीबार क्षेत्र में है। जो बचा है वह मुख्य रूप से हीलियम है क्योंकि इसे लगभग बिल्कुल भी पंप नहीं किया जाता है।<ref name="vt">''Vacuum Technology'', A. Roth, 3rd ed. 1990, chapter 5.5.</em></ref> अंतिम दबाव लगभग हवा में हीलियम के आंशिक दबाव के बराबर होता है।


हाइड्रोजन, हीलियम और नियॉन के अपवाद के साथ एक सोखने वाला पंप सभी गैसों को प्रभावी ढंग से पंप करता है जो तरल नाइट्रोजन तापमान पर घनीभूत नहीं होते हैं और उनके छोटे आणविक आकार के कारण आणविक छलनी द्वारा कुशलता से अवशोषित नहीं होते हैं। पंप डाउन करने से पहले निर्वात प्रणाली को शुष्क शुद्ध नाइट्रोजन से शुद्ध करके इस समस्या को हल किया जा सकता है। एस्पिरेटर रफ पम्पिंग के साथ शुद्ध प्रणाली में 10 का अंतिम दबाव<sup>-4</sup> mbar एक सोर्प्शन पंप के लिए और 10<sup>अनुक्रमिक पम्पिंग के लिए −7</sup> mbar तक पहुँचा जा सकता है।<ref name="bsa">''Building Scientific Apparatus'', John H. Moore et al., 3rd ed. 2003, chapter 3.6.</em></ref> शुष्क शुद्ध नाइट्रोजन का एक विशिष्ट स्रोत एक तरल नाइट्रोजन देवर हेड स्पेस होगा।
हाइड्रोजन, हीलियम और नियॉन के अपवाद के साथ एक सोखने वाला पंप सभी गैसों को प्रभावी ढंग से पंप करता है जो तरल नाइट्रोजन तापमान पर संघनित नहीं होते हैं और आणविक छलनी द्वारा उनके छोटे आणविक आकार के कारण अवशोषित नहीं होते हैं। नीचे पंप करने से पहले स्थिर प्रणाली को शुष्क नाइट्रोजन से शुद्ध करके इस समस्या को हल किया जा सकता है। एस्पिरेटर रफ पम्पिंग के साथ शुद्ध प्रणाली में सोरप्शन को 10-4 मिलीबार तक अंतिम दबाव और अनुक्रमिक पंपिंग के लिए 10-7 मिलीबार तक पहुँचा जा सकता है।<ref name="bsa">''Building Scientific Apparatus'', John H. Moore et al., 3rd ed. 2003, chapter 3.6.</em></ref> शुष्क शुद्ध नाइट्रोजन का एक विशिष्ट स्रोत तथा तरल नाइट्रोजन का आविष्कार सर जेम्स देवर हेड स्पेस द्वारा किया गया।


यह सुझाव दिया गया है<ref name="hvt">''High-Vacuum Technology: A Practical Guide'', Marsbed H. Hablanian, 2nd ed. 1997, chapter 5.8.5.</em></ref> कि एक गतिशील पम्पिंग तकनीक को लागू करके हाइड्रोजन, हीलियम और नियॉन को शुष्क नाइट्रोजन शोधन का सहारा लिए बिना भी पंप किया जा सकता है। यह पंप को वाल्व के साथ वैक्यूम पोत बंद करने के लिए प्रीकूलिंग करके किया जाता है। वाल्व तब खोला जाता है जब पंप ठंडा होता है और सोखने योग्य गैसों का दबाव अन्य सभी गैसों को पंप में ले जाएगा। हाइड्रोजन, हीलियम या नियॉन के निर्वात पात्र में [[back-migrate]] होने से पहले वाल्व बंद हो जाता है। अनुक्रमिक पम्पिंग भी लागू किया जा सकता है। कोई अंतिम दबाव नहीं दिया जाता है।
इसमें सुझाव दिया गया <ref name="hvt">''High-Vacuum Technology: A Practical Guide'', Marsbed H. Hablanian, 2nd ed. 1997, chapter 5.8.5.</em></ref> कि एक गतिशील पम्पिंग तकनीक को लागू करके हाइड्रोजन, हीलियम और नियॉन को शुष्क नाइट्रोजन शोधन का सहारा लिए बिना भी पंप किया जा सकता है। यह पंप को वाल्व के साथ निर्वात पोत बंद करने के लिए प्रीकूलिंग करके किया जाता है। वाल्व तब खोला जाता है जब पंप ठंडा होता है और सोखने योग्य गैसों का दबाव अन्य सभी गैसों को पंप में ले जाएगा। हाइड्रोजन, हीलियम या नियॉन के निर्वात पात्र में [[back-migrate|पीछे माइग्रेट]] होने से पहले वाल्व बंद हो जाता है औरअनुक्रमिक पम्पिंग भी लागू किया जा सकता है। कोई अंतिम दबाव नहीं दिया जाता है।


निरंतर पम्पिंग को समानांतर में दो पंपों का उपयोग करके अनुकरण किया जा सकता है और एक पंप को सिस्टम को पंप करने दिया जा सकता है, जबकि अन्य पंप, अस्थायी रूप से सिस्टम से सील-बंद, desorption चरण में है और वायुमंडल को निकाल रहा है। जब पंप अच्छी तरह से अवशोषित हो जाता है तो इसे ठंडा किया जाता है और सिस्टम से दोबारा जोड़ा जाता है। दूसरे पंप को बंद कर दिया जाता है और desorption में चला जाता है। यह एक सतत चक्र बन जाता है।<ref name="vt" />
निरंतर पम्पिंग को समानांतर में दो पंपों का उपयोग करके अनुकरण किया जा सकता है और एक प्रणाली को पंप करने दिया जा सकता है, जबकि अन्य पंप, अस्थायी रूप से प्रणाली, अवशोषण चरण में है और वायुमंडल को निकाल रहा है। जब पंप अच्छी तरह से अवशोषित हो जाता है तो इसे ठंडा किया जाता है और प्रणाली से दोबारा जोड़ा जाता है। दूसरे पंप को बंद कर दिया जाता है और अवशोषण में चला जाता है। यह एक सतत चक्र बन जाता है।<ref name="vt" />




==संदर्भ==
==संदर्भ==
<references />
<references />
[[Category: वैक्यूम पंप]]


[[Category: Machine Translated Page]]
[[Category:Created On 25/01/2023]]
[[Category:Created On 25/01/2023]]
[[Category:Machine Translated Page]]
[[Category:वैक्यूम पंप]]

Latest revision as of 19:55, 3 February 2023

सोरप्शन पंप एक निर्वात पंप उपकरण है जो आणविक छलनी जैसी बहुत छिद्रपूर्ण सामग्री पर अणुओं को अवशोषित एक उपकरण बनाता है जिसे क्रायोजेन, प्राय: तरल नाइट्रोजन द्वारा ठंडा किया जाता है। परम दाब लगभग 10 -2मिलीबार होता है।

विशेष तकनीकों से इसे 10-7 मिलीबार तक कम किया जा सकता है।इसका मुख्य लाभ तेल या अन्य दूषित पदार्थों की अनुपस्थिति,में कम लागत और कंपन मुक्त संचालन हैं क्योंकि ये कोई कंपन करने वाले हिस्से नहीं हैं। इसका मुख्य कारण यह है कि ये लगातार कार्य नहीं कर सकता है और हाइड्रोजन, हीलियम और नियॉन को प्रभावी ढंग से पंप नहीं कर सकता है, तरल नाइट्रोजन की तुलना में कम संघनन तापमान वाली सभी गैसें मुख्य अनुप्रयोग में एक आयन पंप (भौतिकी) के लिए रफिंग पंप के रूप में हैं। अति उच्च निर्वात प्रयोगों में लीथियम-आयन पंप, होता है।उदाहरण - सतह भौतिकी में।

निर्माण

सोरप्शन पंप प्रायः स्टेनलेस स्टील, अल्युमीनियम या बोरोसिलीकेट कांच में बनाया जाता है। यह आणविक छलनी से भरा एक साधारण पाइरेक्स फ्लास्क या छिद्रित ट्यूबिंग और ऊष्म -संचालन पंखों वाले धातु के फ्लास्क से युक्त एक विस्तृत धातु का निर्माण हो सकता है। जिससे दबाव रहित छिद्र स्थापित किया जा सकता है। बनावट केवल पंपिंग गति को प्रभावित करता है न कि अंतिम दबाव जिस तक पहुँचा जा सकता है। बनावट विवरण ऊष्म संचालन पंखों और छिद्रित ट्यूबिंग का उपयोग कर उच्च गैस प्रवाहकत्त्व को ठंडा करने के लिए होता है।

उपयोग की जाने वाली विशिष्ट आणविक छलनी एक सजातीय ज़ीयोलाइट है जिसका छिद्र ब्यास से लगभग 0.4 नैनोमीटर (टाइप 4ए) और सतह क्षेत्र लगभग 500 मीटर2/ग्राम है। सोरप्शन पंप में 300 ग्राम और 1.2 किलो ग्राम आणविक छलनी के बीच होता है। 15-लीटर प्रणाली को 300 ग्राम आण्विक छलनी द्वारा लगभग 10-2मिलीबार तक पंप किया जा सकता है।[1]


कार्यवाही

सोखना पंप एक चक्रीय पंप है और इसके चक्र में 3 चरण होते हैं: सोखना, अवशोषण और पुनर्जनन।

सोरप्शन पंप वास्तव में निर्वात बनाने के लिए प्रयोग किया जाता है। यह पंप बॉडी को कम तापमान पर ठंडा करके प्राप्त किया जाता है, आमतौर पर इसे तरल नाइट्रोजन से भरे निर्वात फ्लास्क में डुबो कर गैसें अब या तो संघनित होंगी या आणविक छलनी की बड़ी सतह द्वारा सोख ली जाएंगी।

अवशोषण में पंप को कमरे के तापमान तक गर्म करने की अनुमति दी जाती है और गैसें दबाव राहत वाल्व या वातावरण के अन्य उद्घाटन के माध्यम से बाहर निकलती हैं। यदि पंप का उपयोग जहरीली, ज्वलनशील या अन्य संकटपूर्ण गैसों को पंप करने के लिए किया गया है, तो वातावरण में सुरक्षित रूप से बाहर निकलने के लिए सावधान रहना होगा क्योंकि सोरप्शन चरण के दौरान पंप किए गए सभी गैसों को अवशोषण के दौरान छोड़ा जाएगा।

पुनः पंप बॉडी को जलवाष्प में चलाने के लिए 300 डिग्री सेल्सियस तक गर्म किया जाता है जो कमरे के तापमान पर उजड़ता नहीं है और आणविक छलनी में जमा हो जाता है। एक पंप को पूरी तरह से पुन: उत्पन्न करने में आमतौर पर 2 घंटे लगते हैं।[1]

पंप का उपयोग सोखने और उजाड़ने के चक्र में तब तक किया जा सकता है जब तक कि यह बहुत अधिक दक्षता खो देता है और पुन: उत्पन्न नहीं होता है या ऐसे चक्र में होता है जहां पुनर्जनन के बाद हमेशा सोखना और उजाड़ना होता है।

नई आणविक छलनी के साथ एक सोखने वाले पंप को भरने के बाद इसे हमेशा पुनर्जीवित किया जाना चाहिए क्योंकि नई आणविक छलनी संभवतः जल वाष्प से संतृप्त होती है। इसके अलावा जब कोई पंप उपयोग में नहीं होता है तो उसे जल वाष्प संतृप्ति को रोकने के लिए वातावरण से बंद कर देना चाहिए।

प्रदर्शन में सुधार

पंपिंग क्षमता को एक अन्य सरल और साफ अणु जैसे डायाफ्राम पंप या यहां तक ​​कि एक पानी एस्पिरेटर या संपीड़ित-वायु वेंटुरी पंप द्वारा सिस्टम को प्रीपंप करके बेहतर बनाया जा सकता है।

कम दबाव प्राप्त करने के लिए अनुक्रमिक या मल्टीस्टेज पंपिंग का उपयोग किया जा सकता है। इस मामले में दो या दो से अधिक पंप अणु पोत के समानांतर में जुड़े हुए हैं। प्रत्येक पंप में इसे निर्वात पात्र से अलग करने के लिए एक वाल्व होता है। पंप डाउन की शुरुआत में सभी वाल्व खुले होते हैं। पहला पंप ठंडा हो जाता है जबकि अन्य कुछ समय तक गर्म रहते हैं। जब पहला पंप अपने अंतिम दबाव तक पहुँच जाता है तो उसे बंद कर दिया जाता है और अगला पंप ठंडा कर दिया जाता है। अंतिम दबाव 10-4 मिलीबार क्षेत्र में है। जो बचा है वह मुख्य रूप से हीलियम है क्योंकि इसे लगभग बिल्कुल भी पंप नहीं किया जाता है।[2] अंतिम दबाव लगभग हवा में हीलियम के आंशिक दबाव के बराबर होता है।

हाइड्रोजन, हीलियम और नियॉन के अपवाद के साथ एक सोखने वाला पंप सभी गैसों को प्रभावी ढंग से पंप करता है जो तरल नाइट्रोजन तापमान पर संघनित नहीं होते हैं और आणविक छलनी द्वारा उनके छोटे आणविक आकार के कारण अवशोषित नहीं होते हैं। नीचे पंप करने से पहले स्थिर प्रणाली को शुष्क नाइट्रोजन से शुद्ध करके इस समस्या को हल किया जा सकता है। एस्पिरेटर रफ पम्पिंग के साथ शुद्ध प्रणाली में सोरप्शन को 10-4 मिलीबार तक अंतिम दबाव और अनुक्रमिक पंपिंग के लिए 10-7 मिलीबार तक पहुँचा जा सकता है।[3] शुष्क शुद्ध नाइट्रोजन का एक विशिष्ट स्रोत तथा तरल नाइट्रोजन का आविष्कार सर जेम्स देवर हेड स्पेस द्वारा किया गया।

इसमें सुझाव दिया गया [4] कि एक गतिशील पम्पिंग तकनीक को लागू करके हाइड्रोजन, हीलियम और नियॉन को शुष्क नाइट्रोजन शोधन का सहारा लिए बिना भी पंप किया जा सकता है। यह पंप को वाल्व के साथ निर्वात पोत बंद करने के लिए प्रीकूलिंग करके किया जाता है। वाल्व तब खोला जाता है जब पंप ठंडा होता है और सोखने योग्य गैसों का दबाव अन्य सभी गैसों को पंप में ले जाएगा। हाइड्रोजन, हीलियम या नियॉन के निर्वात पात्र में पीछे माइग्रेट होने से पहले वाल्व बंद हो जाता है औरअनुक्रमिक पम्पिंग भी लागू किया जा सकता है। कोई अंतिम दबाव नहीं दिया जाता है।

निरंतर पम्पिंग को समानांतर में दो पंपों का उपयोग करके अनुकरण किया जा सकता है और एक प्रणाली को पंप करने दिया जा सकता है, जबकि अन्य पंप, अस्थायी रूप से प्रणाली, अवशोषण चरण में है और वायुमंडल को निकाल रहा है। जब पंप अच्छी तरह से अवशोषित हो जाता है तो इसे ठंडा किया जाता है और प्रणाली से दोबारा जोड़ा जाता है। दूसरे पंप को बंद कर दिया जाता है और अवशोषण में चला जाता है। यह एक सतत चक्र बन जाता है।[2]


संदर्भ

  1. 1.0 1.1 Modern Vacuum Practice, Nigel S. Harris, 3rd ed. 2005, chapter 11.
  2. 2.0 2.1 Vacuum Technology, A. Roth, 3rd ed. 1990, chapter 5.5.
  3. Building Scientific Apparatus, John H. Moore et al., 3rd ed. 2003, chapter 3.6.
  4. High-Vacuum Technology: A Practical Guide, Marsbed H. Hablanian, 2nd ed. 1997, chapter 5.8.5.